
Incremental Analysis of 
Interference Among AspectsInterference Among Aspects

Authors:
Emilia Katz, Shmuel Katz

Th T h i
1

The Technion



Motivation

• Multiple aspects are often woven into the same p p
system
=> Unintended interactions among the aspects may 

i h i hoccur, even if each aspect is “correct” when woven 
alone

• Libraries of reusable aspects (example: a library• Libraries of reusable aspects (example: a library 
implementing the ACID properties for transactional 
objects)
=> Usage guidelines for the participating aspects are 
needed

2



New Interference Type
Previously defined interference types: 
Interference caused byInterference caused by -
• Common join-points

U d i h d i bl example –• Updating shared variables
• Changing join-points

example 
soon!

⇒Not enough!
⇒More general definition is needed! 
Interference caused by the semantics of the 

aspects!

3



Aspect SpecificationsWhat is a 
“correct” prior 

kb d laspect?
Pair of LTL formulas

work… because model-
checking is used in 

proof method
Specification of aspect A is (PA, RA)
The principle: assume – guarantee (generalized)

p
automatization …

A assumes: PA holds in the base system
– what’s true at joinpoints

in any reasonable
base system for Aunusual!

– global properties of base system
– properties of aspect parameters

A t R i t i th t

in any woven 
system with A

A guarantees: RA is true in the woven system
– new properties added by A

properties of base system maintained in woven system
possibly global !

4

– properties of base system maintained in woven system



Semantic Interference Among g
Aspects

pairwise definition;pairwise definition; 
will be generalized 

to N aspects…

One aspect “causes” another to not give the 
desired result (violate its guarantee):

• Aspect A satisfies its specification (PA, RA)
• Aspect B satisfies its specification (PB, RB)p p ( B, B)
• Base system satisfies both PA and PB

5



Aspect Interference
From now on: 
assume all the Aspect Interference

A B aspects; S underlying system

aspects are 
“correct”
A, B – aspects; S – underlying system

(S A) WRONG(S + A) +B WRONG
S + A OK OR 

(S + B) +A WRONG
S + B OK ORS + B OK OR

S + (A,B) WRONG

6
This (“joint”) weaving 
will be discussed later



Interference Examplep
General description:
• Two aspects – part of a security-aspects library, toTwo aspects part of a security aspects library, to 

be used in password-protected systems
• Aspect E encrypts passwords

Whenever a password is sent from the login screen 
of the system, it is encrypted (there is also a 
decryption part, but we ignore it here)yp p , g )

• Aspect F for retrieving forgotten passwords
Adds a button to report that the password is 
f tt Wh th b tt i d itforgotten. When the button is pressed, security 
questions are asked. If the answers are correct, the 
password is sent to the user.

7



Example Usage: Internet Access to 
Bank Accounts

Underlying system:Underlying system:

Internet

send (login, password)

Internet 
terminal

Server

grant_access (info)

8



Adding Password EncryptionAdding Password Encryption
Aspect E, responsible for encryption.
E’s pointcut: a password is sent from login 

screen
E’s assumption, PE: password-containing 

messages are sent only from login screenmessages are sent only from login screen
E’s guarantee, RE: each time a password is 

sent it is encryptedsent, it is encrypted

9



Later addition: aspect F

Aspect F, retrieving forgotten passwords:
F’s pointcut: “forgot_password” button  is 

pressedp
F’s assumption, PF: true (no assumption 

needed)needed)
F’s guarantee, RF: each time a password is 

forgotten it’s e mailed to the user providedforgotten, it s e-mailed to the user, provided 
the security questions are answered

10



Example – contd.(3)p ( )
Unencrypted!!!

d (l i
(S+E)+F: F

send (login, 
encr(password))“forgot_psw.” 

pressede-mail psw.

Internet 
terminal

Server
terminal

grant_access 
(info)

11



Cause of the problem
• Common join-points? – No.
• Updating shared variables? No• Updating shared variables? – No.
• Changing join-points? – Not as written.

Th ti f E d F? Y !• The semantics of E and F? – Yes!
1. The presence of F (resulting in e-mailed passwords) 

violates the guarantee of E (all passwords encrypted)violates the guarantee of E (all passwords encrypted) 
F cannot be woven after E.

2 The presence of F (e mailed passwords) violates the2. The presence of F (e-mailed passwords) violates the
assumption of E (passwords sent from Login Screen 
only) E cannot be woven after F

12

y)



Semantic Interference – more formallySemantic Interference – more formally

A – aspect specified by (PA, RA)
We assume both 

aspects are correctA aspect, specified by (PA, RA)
B – aspect, specified by (PB, RB)

aspects are correct

Definition: A does not interfere with B if for every 
system Ssystem S,

(*)( | ) (( ) | )A B A BS P P S A B R R= ∧ → + + = ∧

(*) Notation: OK

both assumptions 
hold

both guarantees 
hold

13

(*) Notation: OKAB



Non-Interference in a Libraryy
• Generalization of the definition to a library of N 

aspects: 
The aspect library is interference free if for every subset 

f h h h iof the aspects, when they are woven into a system 
that satisfies all their assumptions, the resulting 
system satisfies all the guaranteessystem satisfies all the guarantees

• We detect interference or prove interference freedom• We detect interference or prove interference-freedom 
using model-checking, where advice is modeled as 
state-transition system

14

state transition system



Proving Non-Interferenceg
• Need to prove: OKAB and OKBA

• Intuitive method: Direct proof.
• For every system S satisfying PA ∧ PB,For every system S satisfying PA ∧ PB,

show that ((S+A)+B) and ((S+B)+A) satisfy RA ∧ RB

• But: What about N aspects in a library?But: What about N aspects in a library?
• Pairwise checks are not enough!

Need to prove for every subset of aspects separately!Need to prove for every subset of aspects separately!
(for all the subsets of 2,3,…N aspects)

15



Incremental Non-Interference Proof

Theorem (dividing the proof task):
A keeps the 
assumptionTheorem (dividing the proof task):

To prove OKAB, it’s enough to show
[KP ](( | ) ( | ))S S P P S A P∀ → +

assumption 
of B

[KPAB]
And

(( | ) ( | ))A B BS S P P S A P∀ = ∧ → + =

[KRAB](( | ) ( | ))A B AS S R P S B R∀ = ∧ → + =

B keeps the 
guarantee of A

16



The Incremental Method
G liGeneralizes to N

• If N aspects pairwise satisfy KP and KR in both 
directions, for any combination of m ≤ N aspects 
from that set, there is no semantic interference.

• Each one preserves the assumption and guarantee 
f ll h h hof all the others, so no matter how many are 

applied, all guarantees will hold if all assumptions 
held in the baseheld in the base

• The above generalization does NOT hold for the 
Direct method

17

Direct method. example –
soon!



Adding an Aspect to a Library
t

?

APA, 
RA

A1, A2, … An
library of aspectsnew aspect

A’s assume-
guarantee 

A
PA, RA

A1
PA1, RA1

A2
PA2, RA2…

?

?

…

?<A, Ai> ; <Ai, A> -

specification

refinement

“offline
” 

checks!
An

PAn, RAn
…

?

<A, Ai> or <Ai, A>

pairwise interference 
checks, based on 
model-checking

refinement checks!

A, A1, A2, … Ancounterexample unavoidable 
interference

all checks succeeded
A, Ai  or Ai, A  

check failed extended 
library    

(A added)

error analysis 
guidelines

usage guidelines: 
interference free

extended 
(i l di A)

18

guidelines interference free 
subsets; permissible 

weaving orders

(including A)



Non-generalization of Direct: Example

• Aspect A: Encrypts “secret” data sent in the system
– In the bank system, encrypts passwords sent from login screen

• Aspect B: Adds a possibility to “remember” the 
password of the userpassword of the user 
– Adds a private variable “password” to the User class, and 

stores the password there if needed.
• Aspect C: “Publishes” data of specified non-secret 

objects [objects with no “secret” fields] – sends all the 
object data (including private fields) upon requestobject data (including private fields) upon request.
– In the bank system – sends user data.

19



Aspect Specifications:
• Aspect A:

– Assumes the password are the only type of secret data, and ssu es t e passwo d a e t e o y type o sec et data, a d
the passwords are sent only from the login screen

– Guarantees all the secret data is sent encrypted
A t B• Aspect B:
– Assumes nothing (adds the “save_password” button itself)
– Guarantees the password is stored in the user data if it wasGuarantees the password is stored in the user data if it was 

requested
• Aspect C:

– Assumes user objects store no secret data
– Guarantees all stored user data is sent

20



Interference? B violates C’s 
assumption:

• Incremental method:
Verification of KP fails

p
password might be 

“secret”
– Verification of KPBC fails 
– Interference among the aspects is 

detected by pairwise checks alone.
How??? – C’s 

assumption is only y p
• Direct method:

– All pairwise interference checks

checked for the 
original base system, 

not for the systemAll pairwise interference checks 
succeed!

– But: the aspects do interfere when all 

not for the system 
with B woven

three are applied! Aspect C violates the 
guarantee of A, by sending passwords 
unencrypted after B saves them

problem!

21

unencrypted after B saves them.



Feasibility of Composition
A – aspect, specified by (PA, RA)
B ifi d b (P R )

≡ non-
contradictingB – aspect, specified by (PB, RB) contradicting 
specifications

Definition: composition of A before B is feasible iff all 
the following formulas are satisfiable:
P P ( h i di )PA ⋀ PB (the assumptions are not contradictory)
RA ⋀ PB  (the guarantee of A and the assumption of B)
RA ⋀ RB (the guarantees are not contradictory)

22



Feasibility Check
• Recommended to perform in case interference was 

detecteddetected
• Might be performed even before the verification starts, 

but is not essentialbut is not essential
• Is easier and quicker than the full verification process
• If fails the aspects can not be woven together into a• If fails – the aspects can not be woven together into a 

system without changing their specifications (and 
maybe also their advice)maybe also their advice)

23



Automatic and Modular 
f iInterference Detection

• Both for Direct and Incremental method
• The MAVEN tool – extended: improved and adopted p p

for interference-detection purpose
• Original purpose of MAVEN: automatic modular 

verification of assume-guarantee aspect specifications

24



Strategy – MAVEN tool prior 
k

• Build a “generic” state machine version (TP )
f ti P ( ll d “t bl ”)

work

of assumption PA (called “tableau”)
• Weave the aspect (A) into this model

h hi d i d l

representation 
of all the 

• Prove that this augmented generic model 
(TP+A) satisfies the desired result, RA

possible 
systems 

satisfying PAsatisfying PAby running NuSMV 
model-checker

TψTP Tψ

25



Direct Proof Method
1. Build tableau T for PA ∧ PB

2. Use MAVEN to prove OKAB

weave A into T then weave B- weave A into T, then weave B
- show RA ∧ RB on the result

3. Use MAVEN to prove OKBA

- weave B into T then weave Aweave B into T, then weave A
- show RA ∧ RB on the result

26



Incremental Proof Method
Verify KPAB, KRAB, KPBA, KRBA:
1 Use MAVEN to prove KPAB

A maintains the 
assumption of B

1. Use MAVEN to prove KPAB

- build tableau TP for PA ∧ PB

weave A into T- weave A into TP

- show PB on the result
2 Use MAVEN to prove KR OKAB2. Use MAVEN to prove KRAB

- build tableau TR for RA ∧ PB

B i t T

AB

B maintains the 
- weave B into TR

- show RA on the result
i ( )

guarantee of A

27

3, 4 (for KPBA, KRBA) – symmetric ( OKBA)



Incremental method – advantages 
b d li ti t Nbeyond generalization to N

1. Easier weaving Cause: smaller models 
and TL formulas =>g

2. Quicker verification
3. Incremental verification during library construction, 

and TL formulas => 
lower complexity

and not when a system is run:                             
When adding an aspect to the library, allows 
checking only the new aspect vs all the restchecking only the new aspect vs. all the rest

4. Advantage in failure analysis:
Depending on the verification step at which weDepending on the verification step at which we 

obtained the counterexample, we will know exactly 
which aspect caused interference and how (= which 

t i l t d)
28

property was violated)



Error Analysis
• Who is guilty (failure localization), and what is 

to be done (failure treatment)?to be done (failure treatment)?
• Failure localization:

Which assertion was violated?
Which aspect is responsible for the failure?

• Failure treatment: 
Should the specification of any aspects beShould the specification of any aspects be 
changed?
Should some advice be changed?

29

Should some advice be changed?  



Failure Localization

• In Direct method – problematic. 
• In Incremental method – straightforward: 

– Immediately follows from the verification stage y g
that failed : 
KPAB failed  =>  A’s advice violates B’s assumption.AB

KRAB failed  =>  B’s advice violates A’s guarantee

– Possible to detect and localize multiple failures p
(i.e., when both properties are violated)

30



Failure Treatment

• Feasibility check fails =>
– Specifications have to be changed
– Advice implementation might have to be changed

• Feasibility check succeeds =>
– Advice implementation has to be changed
– Specifications might have to be changed

• Failure elimination impossible =>
Usage guidelines for the aspects (restrictions on the 

possible weaving order)

31



Bank System Example - Reminder

S: system providing internet access to bank 
accounts. Involves sending passwords from 
“login” screen

E: aspect in charge of encrypting the 
passwords sent from login screensp g

F: aspect in charge of retrieving forgotten 
passwords; sends them by e-mailpasswords; sends them by e mail

32



Bank system – Verification Failures

• KREF fails F can not be woven after E, 
because it does not preserve the guarantee 
of E, RE (the e-mailed password will be 
unencrypted)

• KPFE fails F can not be woven before E, FE
because F violates the assumption of E, PE
(the passwords are sent not only from the 
“login” screen)

33



Bank system – Error Analysis

• Example: KPFE check failed, but
• Feasibility check succeeds
• Possible solution: Change the advice of F!g

– For example: 
Change F to bring the user to a login screen C a ge o b g e use o a og sc ee
and offer to enter the new password

– Result: Specifications stay the same, but OKFEp y , FE
now holds, so we can weave F before E (but 
not the reverse)

34



Joint Weaving

• At every point of the program decides which of• At every point of the program decides which of 
the aspects to apply and in which order

h i j i i i l i ?• When is joint weaving equivalent to sequential?
– (S + (A,B)) ≡? ((S+A)+B)
– (S + (A,B)) ≡? ((S+B)+A)

35



Joint Vs. Sequential Weaving - 1
Notation: JA(S) = set of join-points of A in S
If A d B h j i i tIf:
• JA(S)  ∩ JB(S) = ∅

A and B have no common join-points

B does not affect the 
set of A’s join-points

• JA(S+B) = JA(S)                   =>
• JB(S+A) = JB(S)

set of A s join points

A does not affect the set of JB(S+A)  JB(S)
Then: 
(S (A B)) ((S A) B) ((S B) A)

does o ec e se o
B’s join-points

(S + (A,B)) ≡ ((S+A)+B) ≡ ((S+B)+A)

Both orders of sequential 

36

q
weaving are equivalent to 

the joint weaving



Joint Vs. Sequential Weaving - 2
If:

J (S) ∩ J (S) ∅

A and B have no 
common join-points

B does not affect  the 
set of A’s join-points

• JA(S)  ∩ JB(S) = ∅
• JA(S+B) = JA(S)                                =>
• JB(S) ⊆ JB(S+A) ⊆ JB(S) ∪ SA

A does not remo e join A might add join points

Th

A does not remove join-
points matched by B

A might add join-points 
matched by B, but only 

inside A’s advice
Then: 
(S + (A,B)) ≡ ((S+A)+B) Joint weaving of A and 

B is equivalent to first 

37

q
weaving A and then B



Interference Detection in Java Systems

• Work in progress : industrial case study
Toll System (Siemens) – charging for road use
– Formalization of aspect specifications
– Translating advice to transition systems
– Verification of aspects and interference detectionp
Intermediate results:
– Interference between two aspects found and is being p g

analyzed now

38



Interference Detection in Java Systems(2)

• Planned: case study based on library of
reusable aspects that implement ACID

atomicity 
consistency 

isolationreusable aspects that implement ACID 
properties for transactional objects

• Large library of aspects intended to be used as

isolation 
durability

• Large library of aspects, intended to be used as 
benchmark

• Authors state there is interference between the• Authors state there is interference between the 
aspects

• Goal: formalization analysis => interference• Goal: formalization, analysis => interference 
warnings and non-interference proofs for the 
aspects => usage guidance for the library

39

aspects  usage guidance for the library



More Work in Progress

• Generalizing the proof method
– More weaving strategies
– Extending MAVEN

• Refining the error analysis
• Running more complicated examplesu g o e co p cated e a p es
• The formalization and proof method can be 

extended to treat other types of aspectextended to treat other types of aspect 
interactions, such as cooperation [one aspect 
establishes the assumption of another ]

40

establishes the assumption of another…]



Summary

• Semantic interference among aspects is 
d fi ddefined

• Interference-detection method is modular 
and incremental

• Verification result is not “yes” or “no”! y
The method gives usage guidelines for the 
libraryy

• For any comments / questions, please 
write to {emika katz}@cs technion ac il

41

write to {emika,katz}@cs.technion.ac.il



Thank you!Thank you!


