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Motivation

• Multiple aspects are often woven into the same p p
system
=> Unintended interactions among the aspects may 

i h i hoccur, even if each aspect is “correct” when woven 
alone

• Libraries of reusable aspects (example: a library• Libraries of reusable aspects (example: a library 
implementing the ACID properties for transactional 
objects)
=> Usage guidelines for the participating aspects are 
needed
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New Interference Type
Previously defined interference types: 
Interference caused byInterference caused by -
• Common join-points

U d i h d i bl example –• Updating shared variables
• Changing join-points

example 
soon!

⇒Not enough!
⇒More general definition is needed! 
Interference caused by the semantics of the 

aspects!
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Aspect SpecificationsWhat is a 
“correct” prior 

kb d laspect?
Pair of LTL formulas

work… because model-
checking is used in 

proof method
Specification of aspect A is (PA, RA)
The principle: assume – guarantee (generalized)

p
automatization …

A assumes: PA holds in the base system
– what’s true at joinpoints

in any reasonable
base system for Aunusual!

– global properties of base system
– properties of aspect parameters

A t R i t i th t

in any woven 
system with A

A guarantees: RA is true in the woven system
– new properties added by A

properties of base system maintained in woven system
possibly global !
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Semantic Interference Among g
Aspects

pairwise definition;pairwise definition; 
will be generalized 

to N aspects…

One aspect “causes” another to not give the 
desired result (violate its guarantee):

• Aspect A satisfies its specification (PA, RA)
• Aspect B satisfies its specification (PB, RB)p p ( B, B)
• Base system satisfies both PA and PB
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Aspect Interference
From now on: 
assume all the Aspect Interference

A B aspects; S underlying system

aspects are 
“correct”
A, B – aspects; S – underlying system

(S A) WRONG(S + A) +B WRONG
S + A OK OR 

(S + B) +A WRONG
S + B OK ORS + B OK OR

S + (A,B) WRONG

6
This (“joint”) weaving 
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Interference Examplep
General description:
• Two aspects – part of a security-aspects library, toTwo aspects part of a security aspects library, to 

be used in password-protected systems
• Aspect E encrypts passwords

Whenever a password is sent from the login screen 
of the system, it is encrypted (there is also a 
decryption part, but we ignore it here)yp p , g )

• Aspect F for retrieving forgotten passwords
Adds a button to report that the password is 
f tt Wh th b tt i d itforgotten. When the button is pressed, security 
questions are asked. If the answers are correct, the 
password is sent to the user.
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Example Usage: Internet Access to 
Bank Accounts

Underlying system:Underlying system:

Internet

send (login, password)

Internet 
terminal

Server

grant_access (info)
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Adding Password EncryptionAdding Password Encryption
Aspect E, responsible for encryption.
E’s pointcut: a password is sent from login 

screen
E’s assumption, PE: password-containing 

messages are sent only from login screenmessages are sent only from login screen
E’s guarantee, RE: each time a password is 

sent it is encryptedsent, it is encrypted

9



Later addition: aspect F

Aspect F, retrieving forgotten passwords:
F’s pointcut: “forgot_password” button  is 

pressedp
F’s assumption, PF: true (no assumption 

needed)needed)
F’s guarantee, RF: each time a password is 

forgotten it’s e mailed to the user providedforgotten, it s e-mailed to the user, provided 
the security questions are answered
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Example – contd.(3)p ( )
Unencrypted!!!

d (l i
(S+E)+F: F

send (login, 
encr(password))“forgot_psw.” 

pressede-mail psw.

Internet 
terminal

Server
terminal

grant_access 
(info)
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Cause of the problem
• Common join-points? – No.
• Updating shared variables? No• Updating shared variables? – No.
• Changing join-points? – Not as written.

Th ti f E d F? Y !• The semantics of E and F? – Yes!
1. The presence of F (resulting in e-mailed passwords) 

violates the guarantee of E (all passwords encrypted)violates the guarantee of E (all passwords encrypted) 
F cannot be woven after E.

2 The presence of F (e mailed passwords) violates the2. The presence of F (e-mailed passwords) violates the
assumption of E (passwords sent from Login Screen 
only) E cannot be woven after F
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Semantic Interference – more formallySemantic Interference – more formally

A – aspect specified by (PA, RA)
We assume both 

aspects are correctA aspect, specified by (PA, RA)
B – aspect, specified by (PB, RB)

aspects are correct

Definition: A does not interfere with B if for every 
system Ssystem S,

(*)( | ) (( ) | )A B A BS P P S A B R R= ∧ → + + = ∧

(*) Notation: OK

both assumptions 
hold

both guarantees 
hold
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Non-Interference in a Libraryy
• Generalization of the definition to a library of N 

aspects: 
The aspect library is interference free if for every subset 

f h h h iof the aspects, when they are woven into a system 
that satisfies all their assumptions, the resulting 
system satisfies all the guaranteessystem satisfies all the guarantees

• We detect interference or prove interference freedom• We detect interference or prove interference-freedom 
using model-checking, where advice is modeled as 
state-transition system
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Proving Non-Interferenceg
• Need to prove: OKAB and OKBA

• Intuitive method: Direct proof.
• For every system S satisfying PA ∧ PB,For every system S satisfying PA ∧ PB,

show that ((S+A)+B) and ((S+B)+A) satisfy RA ∧ RB

• But: What about N aspects in a library?But: What about N aspects in a library?
• Pairwise checks are not enough!

Need to prove for every subset of aspects separately!Need to prove for every subset of aspects separately!
(for all the subsets of 2,3,…N aspects)
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Incremental Non-Interference Proof

Theorem (dividing the proof task):
A keeps the 
assumptionTheorem (dividing the proof task):

To prove OKAB, it’s enough to show
[KP ](( | ) ( | ))S S P P S A P∀ → +

assumption 
of B

[KPAB]
And

(( | ) ( | ))A B BS S P P S A P∀ = ∧ → + =

[KRAB](( | ) ( | ))A B AS S R P S B R∀ = ∧ → + =

B keeps the 
guarantee of A
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The Incremental Method
G liGeneralizes to N

• If N aspects pairwise satisfy KP and KR in both 
directions, for any combination of m ≤ N aspects 
from that set, there is no semantic interference.

• Each one preserves the assumption and guarantee 
f ll h h hof all the others, so no matter how many are 

applied, all guarantees will hold if all assumptions 
held in the baseheld in the base

• The above generalization does NOT hold for the 
Direct method
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Adding an Aspect to a Library
t

?

APA, 
RA

A1, A2, … An
library of aspectsnew aspect

A’s assume-
guarantee 

A
PA, RA

A1
PA1, RA1

A2
PA2, RA2…

?

?

…

?<A, Ai> ; <Ai, A> -

specification

refinement

“offline
” 

checks!
An

PAn, RAn
…

?

<A, Ai> or <Ai, A>

pairwise interference 
checks, based on 
model-checking

refinement checks!

A, A1, A2, … Ancounterexample unavoidable 
interference

all checks succeeded
A, Ai  or Ai, A  

check failed extended 
library    

(A added)

error analysis 
guidelines

usage guidelines: 
interference free

extended 
(i l di A)
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Non-generalization of Direct: Example

• Aspect A: Encrypts “secret” data sent in the system
– In the bank system, encrypts passwords sent from login screen

• Aspect B: Adds a possibility to “remember” the 
password of the userpassword of the user 
– Adds a private variable “password” to the User class, and 

stores the password there if needed.
• Aspect C: “Publishes” data of specified non-secret 

objects [objects with no “secret” fields] – sends all the 
object data (including private fields) upon requestobject data (including private fields) upon request.
– In the bank system – sends user data.

19



Aspect Specifications:
• Aspect A:

– Assumes the password are the only type of secret data, and ssu es t e passwo d a e t e o y type o sec et data, a d
the passwords are sent only from the login screen

– Guarantees all the secret data is sent encrypted
A t B• Aspect B:
– Assumes nothing (adds the “save_password” button itself)
– Guarantees the password is stored in the user data if it wasGuarantees the password is stored in the user data if it was 

requested
• Aspect C:

– Assumes user objects store no secret data
– Guarantees all stored user data is sent
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Interference? B violates C’s 
assumption:

• Incremental method:
Verification of KP fails

p
password might be 

“secret”
– Verification of KPBC fails 
– Interference among the aspects is 

detected by pairwise checks alone.
How??? – C’s 

assumption is only y p
• Direct method:

– All pairwise interference checks

checked for the 
original base system, 

not for the systemAll pairwise interference checks 
succeed!

– But: the aspects do interfere when all 

not for the system 
with B woven

three are applied! Aspect C violates the 
guarantee of A, by sending passwords 
unencrypted after B saves them

problem!
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Feasibility of Composition
A – aspect, specified by (PA, RA)
B ifi d b (P R )

≡ non-
contradictingB – aspect, specified by (PB, RB) contradicting 
specifications

Definition: composition of A before B is feasible iff all 
the following formulas are satisfiable:
P P ( h i di )PA ⋀ PB (the assumptions are not contradictory)
RA ⋀ PB  (the guarantee of A and the assumption of B)
RA ⋀ RB (the guarantees are not contradictory)
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Feasibility Check
• Recommended to perform in case interference was 

detecteddetected
• Might be performed even before the verification starts, 

but is not essentialbut is not essential
• Is easier and quicker than the full verification process
• If fails the aspects can not be woven together into a• If fails – the aspects can not be woven together into a 

system without changing their specifications (and 
maybe also their advice)maybe also their advice)
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Automatic and Modular 
f iInterference Detection

• Both for Direct and Incremental method
• The MAVEN tool – extended: improved and adopted p p

for interference-detection purpose
• Original purpose of MAVEN: automatic modular 

verification of assume-guarantee aspect specifications
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Strategy – MAVEN tool prior 
k

• Build a “generic” state machine version (TP )
f ti P ( ll d “t bl ”)

work

of assumption PA (called “tableau”)
• Weave the aspect (A) into this model

h hi d i d l

representation 
of all the 

• Prove that this augmented generic model 
(TP+A) satisfies the desired result, RA

possible 
systems 

satisfying PAsatisfying PAby running NuSMV 
model-checker

TψTP Tψ
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Direct Proof Method
1. Build tableau T for PA ∧ PB

2. Use MAVEN to prove OKAB

weave A into T then weave B- weave A into T, then weave B
- show RA ∧ RB on the result

3. Use MAVEN to prove OKBA

- weave B into T then weave Aweave B into T, then weave A
- show RA ∧ RB on the result
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Incremental Proof Method
Verify KPAB, KRAB, KPBA, KRBA:
1 Use MAVEN to prove KPAB

A maintains the 
assumption of B

1. Use MAVEN to prove KPAB

- build tableau TP for PA ∧ PB

weave A into T- weave A into TP

- show PB on the result
2 Use MAVEN to prove KR OKAB2. Use MAVEN to prove KRAB

- build tableau TR for RA ∧ PB

B i t T

AB

B maintains the 
- weave B into TR

- show RA on the result
i ( )

guarantee of A
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Incremental method – advantages 
b d li ti t Nbeyond generalization to N

1. Easier weaving Cause: smaller models 
and TL formulas =>g

2. Quicker verification
3. Incremental verification during library construction, 

and TL formulas => 
lower complexity

and not when a system is run:                             
When adding an aspect to the library, allows 
checking only the new aspect vs all the restchecking only the new aspect vs. all the rest

4. Advantage in failure analysis:
Depending on the verification step at which weDepending on the verification step at which we 

obtained the counterexample, we will know exactly 
which aspect caused interference and how (= which 

t i l t d)
28
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Error Analysis
• Who is guilty (failure localization), and what is 

to be done (failure treatment)?to be done (failure treatment)?
• Failure localization:

Which assertion was violated?
Which aspect is responsible for the failure?

• Failure treatment: 
Should the specification of any aspects beShould the specification of any aspects be 
changed?
Should some advice be changed?
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Failure Localization

• In Direct method – problematic. 
• In Incremental method – straightforward: 

– Immediately follows from the verification stage y g
that failed : 
KPAB failed  =>  A’s advice violates B’s assumption.AB

KRAB failed  =>  B’s advice violates A’s guarantee

– Possible to detect and localize multiple failures p
(i.e., when both properties are violated)

30



Failure Treatment

• Feasibility check fails =>
– Specifications have to be changed
– Advice implementation might have to be changed

• Feasibility check succeeds =>
– Advice implementation has to be changed
– Specifications might have to be changed

• Failure elimination impossible =>
Usage guidelines for the aspects (restrictions on the 

possible weaving order)
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Bank System Example - Reminder

S: system providing internet access to bank 
accounts. Involves sending passwords from 
“login” screen

E: aspect in charge of encrypting the 
passwords sent from login screensp g

F: aspect in charge of retrieving forgotten 
passwords; sends them by e-mailpasswords; sends them by e mail
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Bank system – Verification Failures

• KREF fails F can not be woven after E, 
because it does not preserve the guarantee 
of E, RE (the e-mailed password will be 
unencrypted)

• KPFE fails F can not be woven before E, FE
because F violates the assumption of E, PE
(the passwords are sent not only from the 
“login” screen)
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Bank system – Error Analysis

• Example: KPFE check failed, but
• Feasibility check succeeds
• Possible solution: Change the advice of F!g

– For example: 
Change F to bring the user to a login screen C a ge o b g e use o a og sc ee
and offer to enter the new password

– Result: Specifications stay the same, but OKFEp y , FE
now holds, so we can weave F before E (but 
not the reverse)
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Joint Weaving

• At every point of the program decides which of• At every point of the program decides which of 
the aspects to apply and in which order

h i j i i i l i ?• When is joint weaving equivalent to sequential?
– (S + (A,B)) ≡? ((S+A)+B)
– (S + (A,B)) ≡? ((S+B)+A)
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Joint Vs. Sequential Weaving - 1
Notation: JA(S) = set of join-points of A in S
If A d B h j i i tIf:
• JA(S)  ∩ JB(S) = ∅

A and B have no common join-points

B does not affect the 
set of A’s join-points

• JA(S+B) = JA(S)                   =>
• JB(S+A) = JB(S)

set of A s join points

A does not affect the set of JB(S+A)  JB(S)
Then: 
(S (A B)) ((S A) B) ((S B) A)

does o ec e se o
B’s join-points

(S + (A,B)) ≡ ((S+A)+B) ≡ ((S+B)+A)

Both orders of sequential 

36

q
weaving are equivalent to 

the joint weaving



Joint Vs. Sequential Weaving - 2
If:

J (S) ∩ J (S) ∅

A and B have no 
common join-points

B does not affect  the 
set of A’s join-points

• JA(S)  ∩ JB(S) = ∅
• JA(S+B) = JA(S)                                =>
• JB(S) ⊆ JB(S+A) ⊆ JB(S) ∪ SA

A does not remo e join A might add join points

Th

A does not remove join-
points matched by B

A might add join-points 
matched by B, but only 

inside A’s advice
Then: 
(S + (A,B)) ≡ ((S+A)+B) Joint weaving of A and 

B is equivalent to first 
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Interference Detection in Java Systems

• Work in progress : industrial case study
Toll System (Siemens) – charging for road use
– Formalization of aspect specifications
– Translating advice to transition systems
– Verification of aspects and interference detectionp
Intermediate results:
– Interference between two aspects found and is being p g

analyzed now
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Interference Detection in Java Systems(2)

• Planned: case study based on library of
reusable aspects that implement ACID

atomicity 
consistency 

isolationreusable aspects that implement ACID 
properties for transactional objects

• Large library of aspects intended to be used as

isolation 
durability

• Large library of aspects, intended to be used as 
benchmark

• Authors state there is interference between the• Authors state there is interference between the 
aspects

• Goal: formalization analysis => interference• Goal: formalization, analysis => interference 
warnings and non-interference proofs for the 
aspects => usage guidance for the library
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More Work in Progress

• Generalizing the proof method
– More weaving strategies
– Extending MAVEN

• Refining the error analysis
• Running more complicated examplesu g o e co p cated e a p es
• The formalization and proof method can be 

extended to treat other types of aspectextended to treat other types of aspect 
interactions, such as cooperation [one aspect 
establishes the assumption of another ]
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establishes the assumption of another…]



Summary

• Semantic interference among aspects is 
d fi ddefined

• Interference-detection method is modular 
and incremental

• Verification result is not “yes” or “no”! y
The method gives usage guidelines for the 
libraryy

• For any comments / questions, please 
write to {emika katz}@cs technion ac il
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Thank you!Thank you!


