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ABSTRACT
Abstraction is an operation of software specifications widely
used in formal development and verification. One of the
desirable features of the operation is compositionality. It
would make abstraction easier to deal with if a system can
be abstracted by composing the individual abstractions of
the components of the original system. It is considered
that compositional abstractions of aspect-oriented software
would be useful because the base system and the aspects
can be individually abstracted. However, there are only a
few research results dealing with these operations consis-
tently because the relation between abstraction and aspect
weaving is logically too complicated. This paper proposes
a formal model to solve the difficulty of compositional ab-
straction of aspect-oriented software. Our model is based
on an enhanced version of the equational abstraction ap-
proach in rewriting logic that is an algebraic specification
framework. We first validate our model by applying it to an
example of state machine and next describe our approach to
compositional abstraction.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—object-oriented design methods; D.2.4 [Software En-

gineering]: Software/Program Verification—formal meth-
ods; F.3.2 [Logics and Meanings of Programs]: Seman-
tics of Programming Languages—algebraic approaches to se-
mantics

General Terms
Design, Theory, Verification

Keywords
Abstraction, State Machines, Rewriting Logic, Composi-
tionality

1. INTRODUCTION

Aspect-oriented software development (AOSD) is spread-
ing quickly and widely these days. It is considered as pro-
viding a modularization facility to large-scale practical pro-
grams from a direction different from the traditional ap-
proaches such as structured, object-oriented, and component-
based ones. In AOSD, cross-cutting concerns are extracted
from the specifications of both the static structures and the
dynamic behaviors and are encapsulated as aspects. In this
paper, we focus on behavioral specifications. The behaviors
of aspect-oriented software are so complicated that it is not
easy to inspect such software manually if it has a practical
scale and complexity. This is because formal models and for-
mal verification techniques for aspect-oriented software are
desired and many approaches [9, 1, 10, 20, 22, 21, 5, 13, 12,
11] are proposed.

The desirable features of formal models of modularization
approaches include facilities of modular or compositional
reasoning and verification. We mean by the word “com-
positional” that if we check some property for each module
individually we can conclude that the entire system satisfies
the same or another property. In this paper, we focus on the
abstraction relation between behavioral specifications used
in efficient model checking, which is a verification technique.
Abstraction means the existence of a mapping between the
state spaces of two state-transition behavior models that
preserves the transition relations and some properties satis-
fied by the states. The model of the target of the mapping is
called the abstract model. The significance of this relation
comes from the following fact. If an abstract model satisfies
a property written in some temporal logic, the refined model
also satisfies the property. From this viewpoint, any exist-
ing approaches are insufficient. Only Jagadeesan et al. [11]
deal with the (bi)simulation relation between specifications
that is relevant to abstraction in a compositional manner.
However, it is not easy to see if two given specifications have
the relation or not.

In this paper, we propose a formal model of aspect-oriented
software based on an algebraic specification framework called
rewriting logic [14]. We also present an approach to specify
abstraction relations on the basis of the notion of equational
abstraction [15]. Rewriting logic is a logical framework in
which we can derive equality and rewriting relations between
terms from a set of axioms called a rewrite theory consisting
of equations and rewrite rules. As a computation model, a
state of a system is represented by an equivalence class of
terms with respect to the equality, and transitions are repre-
sented by rewriting relations between the terms. Equational



abstraction is a very simple framework to create an abstract
model by adding a set of equations. The projection func-
tion from the terms representing the system state to their
equivalence classes is the abstraction mapping. In our ap-
proach, the behaviors of the base system and the aspect are
individually modeled by the rewriting relations of the state
terms of each system in one rewrite theory. We can create
the rewrite theory that models the system in which the as-
pects are woven into the base system. Then the union of the
sets of equations between the base systems and the aspects,
respectively, can produce an abstraction mapping between
the entire systems in a consistent way. As a result, for exam-
ple, our approach enables us to carry out abstraction of an
aspect-oriented system specifications by abstracting the base
system and the aspect specifications individually as shown in
Figure 1. This feature would be especially useful for aspect-
oriented software because the entire specifications tend to
become much larger and much more complicated than the
base system and the aspect specifications. Our approach
would reduce the cost of abstracting the entire system to
the total of the costs of abstracting each components.

Figure 1: Individual Abstraction of Base System and

Aspect

This paper is organized as follows. In Section 2 we sum-
marize the background information of our approach consist-
ing of the state machine model of aspects for compositional
model checking and rewriting logic. Section 3 presents our
aspect modeling method and justify of our model by demon-
strating that we can model an existing formal model cor-
rectly. Section 4 describes the equational abstraction in our
approach and shows that our model can realize composi-
tional abstraction. Section 5 compares our proposal with
the related research efforts. Section 6 presents some con-
cluding remarks and future work.

2. BACKGROUNDS
In this section, we summarize the background informa-

tion of our approach consisting of the state machine model
of aspects for compositional model checking and rewriting
logic.

2.1 State Machine Model of Aspects
A state machine M is a tuple (S,S0,→, L) consisting of

the set of the states S, the set of the initial states S0 ⊆ S, the
transition relation →⊆ S × S, and the labeling function L :

S → 2AP where AP is the finite1 set of atomic propositions.
We assume that different truth values can be assigned to
each atomic proposition in AP at different states in S. For
any state s, L(s) is the set of atomic propositions that are
true at s. This definition of a state machine corresponds
to a Kripke structure in the literature [7] enhanced with
the initial states. “→” must be total, that is, ∀s ∈ S ∃s′ ∈
S (s → s′). For general binary relation →⊆ S × S that is
not total, we can create a total relation →•=→ ∪{(s, s)|s ∈
S,¬∃s′ (s → s′)} that is an extension of →.

The following definitions form a simplified version of Katz
and Katz [12].

Definition 1. An aspect machine A over a set of atomic
propositions AP is a tuple (SA, SA

0 , SA
ret ,→A, LA) where SA

is the set of the states, SA
0 ⊆ SA is the set of the initial

states, →A⊆ SA × SA is the transition relation, LA : SA →
2AP is the labeling function, and SA

ret ⊆ SA is the set of re-
turn states such that ∀s ∈ SA

ret∀s′ ∈ SA (s → s′ implies s =
s′).

Definition 2. A pointcut descriptor ρ over a set of atomic
propositions AP is a predicate on finite sequences of labels.
This means that ρ(λ) is a boolean value for each λ = l0l1 . . . ln
where li ⊆ AP (i = 0, . . . , n).

Definition 3. For a state machine M = (S, S0,→, L)
and a (finite or infinite) state sequence s0s1 . . . (sn),
label(s0s1 . . . (sn)) is a label sequence L(s0)L(s1) . . . (L(sn)).
A pointcut descriptor ρ matches a finite state sequence
s0s1 . . . sn if and only if ρ(label(s0s1 . . . sn)) is true .

Definition 4. Let B = (SB , SB
0 ,→B, LB) be a state ma-

chine over a set of atomic propositions APB, ρ be a point-
cut descriptor over APB, and “pointcut” be a symbol that
is not an element of APB. Another state machine Bρ =
(SBρ , SBρ

0 ,→Bρ , LBρ) is said to be a pointcut-ready ma-
chine for B and ρ if and only if the following conditions
hold.

• SBρ ⊇ SB

• LBρ : SBρ → 2(APB∪{pointcut})

• ∀s0, . . . , sk ∈ Bρ (s0 →Bρ s1 →Bρ . . . →Bρ sk and s0 ∈

SBρ

0 implies (ρ(label(s0s1 . . . sk)) if and only if pointcut ∈
LBρ(sk)))

• ∀l ∈ (2APB )ω ((∃πBρ : path in Bρ (label(πBρ) = l)) if
and only if (∃πB : path in B (label(πB) = l)))

where for a set S, Sω is the set of infinite sequences of
elements of S.

Definition 5. Suppose the following constructs are given.

• An aspect machine A = (SA, SA
0 , SA

ret ,→A, LA) over
AP

• A pointcut descriptor ρ over AP

• A state machine B = (SB, SB
0 ,→B , LB) called a base

machine over APB ⊇ AP and its pointcut-ready ma-
chine Bρ = (SBρ , SBρ

0 ,→Bρ , LBρ)

1AP may be an infinite set in general. However, we deal with
only finite sets as AP in order to enable M to be represented
in rewriting logic.



Then we define as follows the augmented machine B̃ =

(SB̃ , SB̃
0 ,→B̃, LB̃) in which the aspect machine is woven into

the base machine.

• SB̃ = SBρ ∪ SA

• SB̃
0 = SBρ

0

• →B̃= {(s, t) ∈→Bρ |pointcut /∈ LBρ(s)}∪ →A

∪{(s, t) ∈ SBρ × SA
0 |pointcut ∈ LBρ (s),

LBρ(s) ∩ AP = LA(t)}
∪{(s, t) ∈ SA

ret × SBρ |LA(s) = LBρ(t) ∩ AP}

• LB̃ = LBρ ∪ LA as sets of pairs

Note that we omitted the treatment of fair states because
we do not mention model checking in this paper.

2.2 Rewriting Logic
Next we explain rewriting logic. It can be summarized as

follows.

• The most primitive construct of rewriting logic is a
term that is a syntactic representation of a data or
a state. Each term may have sorts representing data
types.

• A logical formula of rewriting logic is an equality rela-
tion or a rewriting relation between terms. An equiv-
alence class of terms represents a state of a system. A
transition between states is represented by the rewrit-
ing relation between equivalence classes induced from
the one between terms. For example, suppose [t1] and
[t2] represent two states where [t] denote the equiv-
alence class t belongs to. Then a rewriting relation
between terms t1 → t2 induces [t1] → [t2] representing
a transition from [t1] to [t2].

A term is composed by symbols for constants, variables,
and operators that represent primitive data, placeholders for
terms used to express generic equations or rewrite rules, and
data structure constructors or operations on data, respec-
tively. A constant symbol is usually treated as an operator
symbol with no arguments. For example, f(a, x) is a term
if a is a constant symbol, x is a variable symbol, and f is an
operator symbol with two arguments. Mixfix operators such
as “+ − × /” for numbers can be treated by the placeholder
symbol “ ”. For example, + (2, 3) can also be written as
2 + 3 by replacing the two “ ”s with the two arguments 2
and 3. A term is said to be closed if it includes no variable
symbols.

Rewriting logic usually deals with sorts representing data
types. It can be decided if a term has a sort or not. If a
term t has a sort s, we call t a term of the sort s. Although
it is recently usual to assign multiple sorts to one term at
the same time, we do not deal with such cases in this paper
only for simplicity. However, it would be not difficult to
extend our approach to such general cases. The assignment
of sorts to terms is derived from the initial assignment of
sort information to the variable and the operator symbols.
As for the example of the term f(a, x) above, if a and x
has the sorts s1 and s2 respectively and f is defined as an
operator producing a term of the sort s from two arguments
with the sorts s1 and s2, f(a, x) has the sort s. We write
these definitions as a : s1, x : s2, and f : s1 × s2 → s. We

also write Term(s) for the set of the terms having the sort
s.

The logical formulae of rewriting logic are equality re-
lations or rewriting relations between terms. They respec-
tively are expressed by the symbols“=”and“→”and derived
from axioms of equality and rewriting relations according to
some inference rules. Each type of axioms is called equations
and rewrite rules respectively. A (conditional) equation is a
logical formula “t = t′ if t1 = t′1, . . . , tn = t′n” where t, t′,
ti, and t′i(i = 1, . . . , n) are terms. A (conditional) rewrite
rule is a formula “t → t′ if t1 ⇒ t′1, . . . , tn ⇒ t′n” where
t etc. are terms in the similar way and ⇒ denotes = (the
equality symbol) or → (the rewriting relation symbol). The
both sides of each “=” and “→” need to have the same sort.
The inference rules are described as follows.

Reflexivity: For any term t, t ⇒ t

Symmetry: For any two terms t, t′, if t = t′, t′ = t

Congruence: For any operator f , t1 ⇒ t′1, . . ., and tn ⇒ t′n
altogether imply f(t1, . . . , tn) ⇒ f(t′1, . . . t

′
n), where all

⇒’s coincide (= or →).

This rule expresses that each subterm can be rewritten
individually.

Replacement: For any axiom“t(x1, . . . , xn) ⇒ t′(x1, . . . , xn)
if s1 ⇒ s′1, . . . , sn ⇒ s′n”,

s1(w̄/x̄) ⇒ s′1(w̄/x̄), . . ., and sn(w̄/x̄) ⇒ s′n(w̄/x̄)
altogether imply t(w̄/x̄) ⇒ t′(w̄/x̄), where w̄ denotes
a sequence of terms w1, . . . , wn and w̄/x̄ denotes the
componentwise substitution of xi’s to wi’s.

This rule produces relations instantiated from the ax-
iom by substituting the variables x̄ to terms w̄ if wi’s
satisfy the conditions.

Note that the original Replacement rule in the litera-
ture such as [14] follows from the above rule, the Con-
gruence rule, and the Transitivity rule.

Equality and Transitivity: t1 ⇒ t2 and t2 ⇒ t3 alto-
gether imply t1 ⇒ t3, where all ⇒’s coincide (Transi-
tivity), or one of the ⇒’s in the premise is = and the
other two are →’s (Equality). Note that the original
Equality rule is derived by applying the above Equality
rule twice for both sides of →.

An axiomatic system of rewriting logic is called a rewrite
theory. A rewrite theory is a tuple (S, Σ, V, E, R) where
each component represents the set of sorts, the signature
(the initial assignments of the operator symbols to their sort
information), the initial assignments of the variable symbols
to the sorts, the set of equations, and the set of rewrite rules,
respectively.

In order to describe concrete rewrite theories, we use the
notation of the Maude language [8] in which sorts, signa-
tures, variable symbols, equations, and rewrite rules are de-
clared with the keywords sort, op, var, eq, and rl2, or their
plural forms such as sorts, respectively. The following de-
scriptions illustrate an example of rewrite theory.

2We also use eq and rl for conditional axioms instead of
ceq and crl used in the literature for simplicity.



sorts S1, S2 .

vars x, y : S1 .

op c : -> S1 .

op f : S1 -> S2 .

op g : S1 S2 -> S2 .

eq g(c, f(c)) = f(c) .

rl g(x, f(y)) -> f(y) if f(x) = f(c) .

Then we explain the relationship between the state ma-
chine model and rewriting logic below as the basis of equa-
tional abstraction.

In fact, a rewriting relation of rewriting logic does not ex-
actly correspond to a transition of a state machine model
because of the Transitivity inference rule allowing compo-
sitions of rewriting relations. Therefore we need a precise
counterpart concept for a transition in rewriting logic. We
define a one-step rewriting relation t →1 t′ as a rewriting
relation limited to one of the following cases.

• The last inference rule used in deriving the relation is
either Equality or Replacement. The condition part of
Replacement may contain any rewriting relations.

• The last inference rule used in deriving the relation
is Congruence where only one assumption ti → t′i is
one-step and all the others consist of identical terms
(tj = t′j for any j 6= i).

For a sort s, we write →1 ∩(Term(s) × Term(s)) as →1
s.

We can create a state machine from a rewrite theory as
follows. Let R be a rewrite theory including the following
information.

• The following theory BOOL:

sort Bool .

ops true, false : -> Bool .

op not_ : Bool -> Bool .

op _and_ : Bool Bool -> Bool .

as well as the equations about boolean algebras. For
example,

var X : Bool .

eq not(false) = true .

eq X and false = false .

• The specifications of the initial states and the labeling
operator:

sorts State, AP .

op init : State -> Bool .

op _|=_ : State AP -> Bool .

where State and _|=_ can be replaced with any sort
and any similar operator respectively. For a term rep-
resenting a state s, init(s) = true means that s rep-
resents an initial state.

In addition, we assume that there are only a finite number of
closed terms for the sorts State and AP. Then the state ma-
chine K(R, State, _|=_) is defined as (Term(State)/=, S0,
(→1

State)
•, L_|=_), where:

• S0 = {[s] (the equivalence class to which the term s
belongs) |s : closed term of the sort State and init(s)
= true}.

• L_|=_([s]) = {p : closed term of the sort AP | ( s |=

p ) = true}.

3. ASPECT MODEL IN REWRITING LOGIC
We define the model of aspect-oriented behavioral speci-

fications in rewriting logic in the following direction.

• We first define a behavioral specification rewrite the-
ory (BSRT) to model behavioral specifications in gen-
eral. A BSRT treats the behaviors as evolutions of
terms called configurations by the rewriting relations.
A configuration consists of an environment and a con-
tinuation. An environment is an assignment of values
to the variables of the specifications (not the variable
symbols of the rewrite theory) at each moment. A
continuation is an expression of a behavioral specifi-
cation representing the behaviors to be executed just
after the moment.

For example, suppose (x : 0) and (x = 1) are terms
representing an environment and a continuation re-
spectively. The former term means that the value 0

is assigned to the variable x. Note that x is treated
as a constant symbol in rewriting logic as well as 0

and 1. The latter denotes the behavior that stores
the value 1 to x and terminates. Then the config-
uration config((x : 0), (x = 1)) is rewritten to
config((x : 1), end) in which end denotes the ter-
mination of the behaviors.

• We then define an aspectual rewrite theory (ART) as
a BSRT specifying the base system and the aspects.
The behavioral specifications of the base system and
the advices are separately defined in one ART.

• An ART consists of terms called augmented configura-
tions. An augmented configuration represents a state
of the entire system in which the aspects are woven
into the base system. Each augmented configuration
consists of the following three elements: (1) the cur-
rent system state, (2) the current continuation of the
entire system, and (3) the data indicating either the
aspect whose advice is currently executed or the fact
that the base system is currently executed. The part
of the current continuation of the entire system may
be a behavioral specification of the base system or one
of the advices.

• The actual specifications of the entire system in which
the aspects are woven are given by an extension of the
ART, called augmented ART. The extended part con-
sists of rewrite rules. Some of them specify the behav-
iors at the beginnings of and at the ends of the advice
executions. The remaining rules are those transformed
from the specifications of the base system and the ad-
vice behaviors.

• An ART defines the join points by specifying the start-
ing point of an advice execution and the point at which
the advice execution finishes and the control returns to
the base system. Many aspect-oriented languages in-
cluding AspectJ specifies join points by pointcuts and
advice types (before, after, around, etc.).

• The system specified by an ART can have multiple
aspects. However, we assume that the system can ex-
ecute only one advice at a time. Thus we do not deal
with aspect compositions. On the other hand, multi-
ple aspects may be woven at the same join point. Our



model assume that the order of weaving is nondeter-
minisitic. This may lead to some type of the aspect
interference issues [16]. We assume these restrictions
to make our model as simple as possible and able to
deal with the approach of [12]. As described in Sec-
tion 6, it would be possible to relax this restriction so
as to, for example, make the model deal with aspect
compositions.

• In order to represent the dynamic join point model, an
ART specifies the conditions to detect the join points
by boolean-valued functions over a list of augmented
configurations representing an execution trace.

We define BSRTs as follows.

Definition 6. A rewrite theory R satisfying the follow-
ing conditions is called a BSRT.

• R protects BOOL. The word protects means that R add
no other terms and no other equality relations than
those inferred only from BOOL.

• R has the following sorts.

– ENV for environments.

– BEH for behavioral specifications.

– CONFIG for configurations. A configuration here
consists of a pair of an environment and a behav-
ioral specification representing the current contin-
uation.

• R has the operator config : ENV BEH -> CONFIG that
is the only operator producing a term of the sort CONFIG.
In addition, R is CONFIG-encapsulated [15], meaning
that CONFIG only appears as the codomain of a single
operator (in this case, config as shown above) and
does not appear as an argument in any operator in R.

As the opposite direction of creating K(R, State, | = )
from R, we can create a rewrite theory R(M) from a state
machine M = (S, S0,→, L) as follows.

• R(M) include BOOL.

• R(M) include the following constructs.

sorts MState, AP, APS, Env, BEH, CONFIG .

var S, S’ : MState .

var P : AP .

op initState : MState -> Bool .

op member : AP APS -> Bool .

op lbl : MState -> APS .

op d : -> Env .

op beh : MState -> BEH .

op config : Env BEH -> CONFIG .

op _|=_ : CONFIG AP -> Bool .

op trans : MState MState -> Bool .

eq (config(d, beh(S)) |= P) = member(P, lbl(S)) .

rl config(d, beh(S)) -> config(d, beh(S’))

if trans(S, S’) = true .

where

– The newly introduced sorts represent the states
of the machine
(MState) and the sets of atomic propositions (APS),
respectively. We use only meaningless values (usu-
ally only one constant d) as environments. This
is because the actual states are stored in the sec-
ond argument of config. However, we can also
use a meaningful sort or even MState as the en-
vironment sort instead of Env. If we use MState,
the environment and the behavior part of the con-
figuration changes simultaneously like config(S,

beh(S)) -> config(S’, beh(S’)).

– The operators represent the initial state predi-
cate (initState), the membership function for
APS (member), a representative dummy environ-
ment (d), the system configuration constructor
(config), the labeling function (_|=_), and the
transition relation (trans) respectively.

• For each state s ∈ S, each atomic proposition p, and
each set of atomic propositions ps, constant symbols
(operator symbols with no arguments) op s :

-> MState, op p : -> AP, and op ps : -> APS, re-
spectively, are included in R(M).

• For each atomic proposition p and each set of atomic
propositions ps, the equation eq member(p, ps) = true

or = false for the same left-hand side (LHS) accord-
ing to the membership relation, is included in R(M).
Note that we need only a finite number of these equa-
tions because the number of atomic propositions, and
therefore the number of the sets of them, are finite.

• For each state s ∈ S and each set of atomic proposi-
tions ps, the equation eq lbl(s) = ps is included in
R(M), if L(s) = ps.

• For each transition s → s′, an equation eq trans(s, s′)
= true . is included in R(M).

It is straightforward to see that R(M) is a BSRT and
K(R(M), CONFIG, _|=_) is equivalent to M .

Next, we define ARTs as a specific type of BSRTs.

Definition 7. An ART is a BSRT satisfying the follow-
ing conditions.

• An ART has the following sorts.

– ASP for aspects and a constant indicating the base
system.

– AC for augmented system configurations. An aug-
mented system configuration consists of a tuple of
the terms of the sorts ENV, BEH, and ASP, respec-
tively.

– LAC for lists of augmented system configurations.
In detail, R includes the operations op nil : ->

LAC and op [_|_] : AC LAC -> LAC. A list is
treated as an execution trace used to judge the
point in which an aspect is woven.

– TRC for encapsulated terms of the sort LAC.

• An ART also has the following operators.



– base : -> ASP is the constant indicating that
the base system is currently executed when it is
used in an augmented configuration.

– isBase : ASP -> Bool is the predicate that be-
comes true if and only if the argument is base. If
this is false, the argument is treated as an actual
aspect. Therefore such a term must not be equal
to base.

– adv : ASP -> BEH produces the behavioral spec-
ification of the advice included in the aspect.

– as : LAC ASP -> Bool is a predicate that be-
comes true in the following two cases. In the first
case, the second argument is an aspect whose ad-
vice can be started immediately after the base
system execution represented by the trace that is
the first argument. In the second case, the second
argument is base and no advices should be started
immediately. as stands for “aspect selection”.

– rtn : CONFIG -> Bool is a predicate that be-
comes true when the argument is a state in which
the advice execution finishes and the system re-
turns to the base system execution (rtn stands
for “return”).

– rstrt : LAC BEH -> Bool becomes true if and
only if the second argument represents a base sys-
tem continuation after the advice execution is fin-
ished (rstrt stands for “restart”).

– ac : ENV BEH ASP -> AC is the only operator
producing the terms of the sort AC.

– trc : LAC -> TRC is the only operator produc-
ing the terms of the sort TRC.

• Any term t of the sort CONFIG satisfying rtn(t) =

true cannot be rewritten without using the Equality
inference rule. This means that the advice cannot be
executed beyond the point to return to the base sys-
tem.

• There are no equations and no rewrite rules of the
terms of the sorts AC and LAC.

We can add the constructs of the behavioral specifications
needed to the entire system in which the aspect is woven into
the base systems.

Definition 8. Let R be an ART. We define R+ as a
rewrite theory in which the following constructs are added to
R.

• The following specifications.

var E : ENV .

vars B, B’ : BEH .

var A : ASP .

rl trc(L)

-> trc([ac(E, B’, base) | L])

if L = [ac(E, B, A) | _],

isBase(A) = false,

rtn(config(E, B)) = true,

rstrt(L, B’) = true .

rl trc(L)

-> trc([ac(E, adv(A), A) | L])

if L = [ac(E, B, base) | _],

as(L, A) = true,

isBase(A) = false .

• The following rewrite rules for each rewrite rule
“config(e, b) -> config(e′, b′) if c”(c is the sequence
of conditions) in R:

rl trc(L) -> trc([ac(e′, b′, base) | L])

if L = [ac(e, b, base) | _],

as(L, base) = true, c .

rl trc(L) -> trc([ac(e′, b′, A) | L])

if L = [ac(e, b, A) | _],

isBase(A) = false, rtn(config(e, b)) = false,

c .

In this definition, the system behaviors are represented by
the rewriting relation between execution traces encapsulated
by the operator trc. However, because each rewriting step
only adds a new term of the sort AC to the head of the list
(representing the last of the trace), the step can be seen as a
rewriting step for the augmented system configuration. The
aim of dealing with the traces is the detection of the join
points.

The four different types of the rewriting relations described
in the above definition represent the following behavior types
respectively: (1) restarting the base system behavior execu-
tion immediately after the advice execution is finished, (2)
starting to execute the advice, (3) continuing the base sys-
tem execution, and (4) continuing the advice execution.

The theorem below justifies our model with respect to
the state machine model via the construction of the rewrite
theory R(M) from a state machine M .

Definition 9. Suppose B be a state machine, ρ be a
pointcut descriptor, both of which are over a set of atomic
propositions APB, and A be an aspect machine over AP⊆APB.
We define an ART A(B, ρ,A) by adding the needed specifi-
cations to R(B). The details are presented in Appendix A.

Theorem 10. In addition to the assumptions of Defini-
tion 9, suppose Bρ

0 be a pointcut-ready machine for B and
ρ. Then we have a pointcut-ready machine Bρ and the aug-
mented machine B̃ for Bρ and A satisfying the following

condition if we write ˜̃B for K(A(B, ρ,A)+, TRC, | = ).

∀l ∈ (2APB )ω ((∃πB̃ : path in B̃ (label(πB̃) = l)) if and

only if (∃π ˜̃B
: path in ˜̃B (label(π ˜̃B

) = l)))

An outline of the proof is given in Appendix B.

4. EQUATIONAL ABSTRACTION IN ASPECT
MODEL

Meseguer et al. proposed the equational abstraction ap-
proach as a model of abstraction for efficient model checking
of rewriting logic specifications. This notion of abstraction
is given in [6].

If we have a state machine M = (SM , SM
0 →M , LM ) and

an equivalence relation ≡ on SM , we can create a quotient

state machine M/ ≡= (SM/≡, S
M/≡
0 ,→M/≡, LM/≡) by the

following definitions. We write [s] ∈ SM/ ≡ as the equiva-
lence class of s ∈ SM .



• S
M/≡
0 = SM

0 / ≡

• For s, s′ ∈ SM , [s] →M/≡ [s′] if and only if there exist
s0 ∈ [s] and s′0 ∈ [s′] satisfying s0 →M s′0.

• LM/≡([s]) = ∩s0∈[s]LM (s)

We say that ≡ is strict if s ≡ s′ ∈ SM implies LM (s) =
LM (s′). The projection mapping [·] : SM → SM/ ≡ is called
an abstraction mapping from M to M/ ≡. An abstraction
mapping in the sense of [6] is a strict one. In this case,
the satisfaction relation of some temporal logic is preserved
by M/ ≡, if we define the satisfaction relation in the usual
way presented in [6]. If M ′ = (SM′ ,→M′ , LM′) is a state
machine isomorphic to M/ ≡, that is, there is a bijection
between A′ and SM/ ≡ preserving the transition relations
and the labeling function, we also say M ′ is an abstract
structure of M .

Then we describe the notion of equational abstraction that
is a simplified version of [15].

Theorem 11. Let R = (S, Σ, V, E, R) be a rewrite theory
including the specifications needed to create K(R, State, | = ).
In addition, let E′ be a set of conditional equations of the
terms of the sort State and R ∪ E′ = (S, Σ, V, E ∪ E′, R).
We define an equivalence relation ≡E′ on Term(State)/ =R

by
[t] ≡R [t′] if and only if t = t′ in R∪ E′

Then, if the following conditions hold, K(R, State, | = )/ ≡R

is equivalent to K(R ∪ E′, State, | = ).

• R is State-deadlock free, that is, (→1
State)

• =→1
State.

In other words, there is at least one one-step rewriting
starting from any term of the sort State.

• R is State-encapsulated.

• R ∪ E′ protects BOOL.

Then we apply equational abstraction to our aspect model.
Suppose that R is an ART with the sort of the atomic propo-
sitions AP and the satisfaction relation predicate op _|=_ :

TRC AP -> Bool. It is clear that R+ and R+ ∪ E′ is TRC-
encapsulated. Therefore, if R+ is TRC-deadlock free, E′ leads
to an abstraction of K(R+, TRC, | = ).

The compositionality of the equational abstraction of our
aspect model is expressed by the following fact.

Theorem 12. R+ ∪ E′ and (R∪ E′)+ are the same.

The proof is straightforward by observing that augmentation
from R to R+ does not affect the equations.

Let ≡ be the equivalence relation induced by E′. If we
create Term(TRC)/ ≡ and →1

TRC from R+ ∪ E′, we can com-
plete a state machine for the abstraction of the entire system
by adding a labeling operator _|=_. Term(CONFIG)/ ≡ and
→1

CONFIG created from R∪E′ lead to a state machine includ-
ing the abstract base system behaviors and the abstract ad-
vice behaviors separately. Therefore the coincidence of the
two rewrite theories means the weaving and the abstraction
operation are commutative. This fact represents the com-
positionality of abstraction in our approach.

5. RELATED WORK
There are many research efforts about formal behavior

models of aspects [9, 1, 10, 20, 21, 5, 13, 12, 11, 4]. Some

of them deal with some features of the approach of this pa-
per. [13, 9, 12] treat finite state machine models of aspect-
oriented systems mainly for the purpose of applying model
checking. In addition, [9, 12] focus on compositional ver-
ification in which it is sufficient to verify the base system
and the advice individually in order to verify the entire sys-
tem. However, they only handle a single system at one time
and do not consider relationships between systems includ-
ing abstraction. [11] treats an aspect model based on the
untyped lambda calculus. The main feature of this model
is that it can model the (bi)simulation relation between two
system expressions in a compositional way, that is, this re-
lation is preserved under the weaving operation. However,
as the literature admits, it is not easy to verify if two ex-
pressions have the (bi)simulation relation. Our model has
limitations such as the first-order nature of algebraic specifi-
cations (while the untyped lambda calculus is higher-order)
and our abstraction relation is a mapping. This enables us
to create abstraction mappings easily. Although other for-
mal models provide various viewpoints to aspect-oriented
systems, they do not treat relationships between two sys-
tems either. [3] proposes an algebraic framework of feature-
oriented development that may include AOSD. It also deals
with stepwise refinement that can be considered as the in-
verse operation of abstraction. However, this paper does not
discuss the formal correctness of the refinement. Recently,
Braga [4] proposed an application of a formal framework
called a constructive approach to modular structural opera-
tional semantics (constructive semantics) to aspect-oriented
software. Although it does not deal with pointcuts depend-
ing on execution traces, it is promising to extend it with our
approach to deal with traces.

There are also many researches about (semi-)automatic
transformations of semiformal aspect behavior models mainly
written in UML in the context of MDA (Model-Driven
Architecture) [2, 23, 24, 17, 19, 18]. We can regard most
of the transformations treated there as a generalization of
the refinement relation in our approach. While we cannot
discuss the correctness of the transformations in these ap-
proaches rigorously, they can treat practical situations with
realistic scales and complexity. Therefore it is interesting
to model them formally in our framework and evaluate the
practical feasibility of our approach.

6. CONCLUSIONS
In this paper, we proposed a formal model of aspect-

oriented systems based on rewriting logic and an approach
of compositional equational abstraction for our model. Be-
cause our approach realizes a highly compositional way of
establishing abstraction relation between aspect-oriented be-
havioral specifications, it is promising as a theoretical foun-
dation of efficient AOSD methodologies.

In our approach, there are many limitations to be re-
laxed in the future. First, our model is too complicated
and rather specific. The details of the configurations could
be abstracted to the more general notion of states. Such ab-
straction would make our model much simpler. Our current
model based on configurations could be obtained by refin-
ing the states back. The expressiveness of our approach is
weak in comparison with the higher-order approaches. We
also omitted the treatment of fair states. We are planning
to treat aspect compositions by extending the aspect infor-
mation in augmented configuration terms. We need to make



clear the limitations by trying to express various examples.
Such trials will also enable us to evaluate the practical fea-
sibility of our approach.

We need to apply our approach to concrete case studies to
estimate how our approach can reduce the costs of reasoning
about aspect-oriented systems. Such reasoning tasks include
verification and model transformations.
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APPENDIX

A. DEFINITION OF A(B, ρ, A)

We describe the definition again. Suppose B be a state
machine, ρ be a pointcut descriptor, both of which are over a
set of atomic propositions APB, and A be an aspect machine
over AP⊆APB. We define an ART A(B, ρ, A) by adding the
needed specifications to R(B).

• The constructs needed to an ART such as the specifi-
cations of ASP and adv.

• The following constructs corresponding to A.

sorts State’, MSSeq .

var S, S1, S2 : State .

var S’, S1’, S2’ : State’ .

var M, M’ : MSSeq .

var L : LAS .

var P : AP .

var A : ASP .

op beh’ : State’ -> BEH .



op lbl’ : State’ -> APS .

op asp : State’ -> ASP .

op nilS : -> MSSeq .

op [[_|_]] : State MSSeq -> MSSeq .

op adl : State -> Bool .

op pc, pm : MSSeq -> Bool .

ops _==B_ : APS APS -> Bool .

op msSeq : LAS -> MSSeq .

op path : MSSeq -> Bool .

op _|=_ : TRC AP -> Bool .

op trans’ : State’ State’ -> Bool .

eq isBase(asp(_)) = false .

eq adv(asp(S’)) = beh’(S’) .

eq msSeq([ac(_, beh’(S’), asp(_)) | L]) = nilS .

eq msSeq([ac(_, beh(S), base) | L]) = nilS

if adl(S) = true .

eq msSeq([ac(_, beh(S), base) | L])

= [[S | msSeq(L)]]

if adl(S) = false .

eq path([[S]]) = initState(S) .

eq path([[S2 | M]]) = true

if M = [[S1 | _]], trans(S1, S2) = true .

eq append([[]], M) = M .

eq append([[S | M]], M’) = [[S | append(M, M’)]] .

eq pc(M) = true

if path(M’) = true, pm(M’) = true,

M’ = append(M, _) .

eq as([ac(_, _, base) | L], base)

= not pc(msSeq(L)) .

eq as(L, asp(S’)) =

pc(msSeq(L)) and (lbl(S) ==B lbl’(S’)) .

eq rstrt([ac(_, beh’(S’), _) | _], S)

= (lbl(S) ==B lbl’(S’)) .

eq trc([ac(_, beh(S), base) |_] |= P)

= member(P, lbl(S)) .

eq trc([ac(_, beh’(S’), A) |_] |= P)

= member(P, lbl’(S’))

if isBase(A) = false .

rl config(d, beh’(S1’)) -> config(d, beh(S2’))

if trans(S1’, S2’) = true .

• For each state s of A, a constant symbol op s : ->

State’.

• For each transition s → t of A, an equation eq trans’(s, t)
= true .

• We provide additional states and transitions as follows
to cope with the case of strongly invasive aspects in [12].
An aspect is said to be strongly invasive if it resumes
to an unreachable state of the pointcut-ready machine.

– For each label P ⊆ AP , a constant op sAP : ->

State representing an additional state and the spec-
ification of its label eq lbl(sAP) = P .

– For each additional state constant sAP and a con-
stant t of the sort State, an equation representing a
transition between them eq trans(sAP , t) = true

.

• For each constant s of the sort State, an equation eq

adl(s) = true . or = false . if s is an additional
one or a state of B, respectively.

• The equations specifying the semantics of pm that satis-
fies pm(m) = true if and only if the pointcut descriptor

ρ matches the inverse of the machine state sequence
m3.

• For each state s and each set of elements of AP ps, eq
lbl’(s) = ps . if and only if L′(s) = ps. Note that ps
can be represented by a constant of the sort APS with
respect to APB because AP ⊆ APB .

• For each pair of constant symbols of the sort APS rep-
resenting a set of atomic propositions ps1 ⊆ APB and
ps2 ⊆ AP , the equation eq (ps1 ==B ps2) = true . or
= false . according to if ps1 ∩ AP = ps2 or not.

• For each state s of the aspect machine A, the equation
eq rtn(config(d, beh’(s))) = true . or = false

. according to if s is a return state (s ∈ RA) or not.

Some constructs are explained in detail as follows.

• Because the initial state from which the aspect machine
execution starts varies according to the last state of the
base machine, we specify an aspect term other than
base by encapsulating an aspect machine state repre-
senting the initial state with the operator asp. Thus we
also specify eq isBase(asp(_)) = false . The ad-
vice extraction operator adv takes out the encapsulated
state by eq adv(asp(S’)) = S’ .

• Although [12] treats only one aspect machine at a time,
we can see that the framework of the literature implic-
itly deals with multiple aspects by the above obser-
vation. In addition, [12] specifies transitions between
states of the base system and the advice that have the
same label (the set of atomic propositions satisfied at
a state). We can model these situations by adding the
following constructs to the rewrite theory.

– The sort MSSeq of sequences of the base machine
states. Terms of this sort is used to detect the join
points by checking them with the pointcut descrip-
tor ρ. Such terms are extracted from the execution
traces. Accordingly, we add the specification of the
extraction operator msSeq and the pointcut pred-
icate pc : MSSeq -> Bool that produces true if
and only if the pointcut descriptor matches the
state sequence.

– Specifications of the equality operator _==_ on the
sort APS and as.

• For a machine state sequence m, pc(m) = true if and
only if the inverse of m is a latter part si+1 . . . sn of a
path π = s0s1 . . . sn, includes only the states of B, si is
not a state of B (that is, a state of A or an additional
state), and is matched by ρ. As we show in the proof
of the main theorem, we can consider the last state of
the path as a pointcut state.

• path produces true if and only if its argument repre-
sents a finite path of B starting form an initial state.

B. PROOF OUTLINE OF THEOREM 10
First we construct Bρ from Bρ

0 by adding the following
constructs.

• For each label P ⊆ AP , an additional state s′ satisfying
LBρ (s′) = P .

3We assume that such algebraic specifications of ρ exists



• For each additional state s′ introduced above and each
state s of Bρ, a transition s′ → s. The latter state may
be an additional one or one originally in Bρ

0 .

Because all the additional states are unreachable in Bρ, it
is easy to see that Bρ is also a pointcut-ready machine for
B and ρ.

Next the transitions of ˜̃B are classified by the following
lemma.

Definition 13. We write e, s, a, l ⇉ e′, s′, a′, l′ for a one-
step rewriting relation in an augmented ART R+ trc([ac(e,
beh(s), a) | l] →
trc([ac(e′, beh(s′), a′) | l′], or beh’ instead of beh if its
argument s or s′ is a state of A.

Lemma 14. A transition of ˜̃B is obtained from either one
of the following four types of one-step rewriting relations.

1. d, s, asp(s′), l ⇉ d, t, base, l′ for a return state s of A
and a state t of B where LA(s) = LB(t) ∩ AP or an
additional state t where LA(s) = LB(t).

2. d, s, base, l ⇉ d, t, asp(t), l′ for a state s of B and an
initial state t of A where LB(s) ∩ AP = LA(t) and
pc(msSeq([[s|l]])) = true.

3. d, s, base, l ⇉ d, t, base, l′ for two states s and t of B
where not pc(msSeq([[s|l]])) = true.

4. d, s, base, l ⇉ d, t, base, l′ for an additional state s and
a constant t of the sort State.

5. d, s, asp(s′), l ⇉ d, t,asp(s′), l′ for two states s and t of
A where s is not a return state.

Proof: This lemma can be proven by the fact that a one-
step rewriting relation of A(M, ρ, A)+ can be obtained only
by applying either one type of the rewrite rule in Definition 8
and each corresponding pair of conditions are equivalent. 2

Fix an l ∈ (2APB )ω. Because the proofs of the two direc-
tions of “if and only if” are almost symmetric, we show only
the “only if” part below. Thus we also fix a path πB̃ of B̃

where label(πB̃) = l and try to create a path π ˜̃
B

of ˜̃B with
the same label.

Lemma 15. Let πB̃ be a path satisfying the left-hand side.
Then we can decompose this path into the fragments π0, π1, . . .
(, πn) satisfying either one of the following two conditions,
where each fragment is a finite path except the last one πn

if it exists.

1. πi starts from an state s of Bρ (s ∈ SBρ

0 ), ends with
a pointcut state s′ of Bρ, that is, a state satisfying
pointcut∈ LBρ(s′), if πi is finite. Every other state
is in SBρ and not a pointcut state.

2. πi starts from an initial state s of A (s ∈ SA
0 ), ends

with a return state s′ of A, if πi is finite. Every other
state is in A and not a return state.

Proof: It is straightforward to define πi’s by induction on i
by taking the longest fragments satisfying the two conditions
alternately. 2

Let l ∈ (2APB )ω be a label, πB̃ be a path of B̃ satisfying
label(πB̃) = l, and π0, π1, . . . (, πn) be a decomposition of πB̃

as in Lemma 15. We can create a path π ˜̃B
of ˜̃B by compos-

ing the fragments π′0, π′1, . . . (, π′n) shown in the following
lemma.

Lemma 16. Under the above assumptions, there is a se-
quence of path fragments π′0, π′1, . . . (, π′n), where each frag-
ment is finite except the last one π′n if it exists, satisfying
label(πi) = label(π′i) for each i, and the following two con-
ditions.

1. If πi satisfies the conditions 1 of Lemma 15, π′i starts
from d, s, base, l, where s is a state of B or an ad-
ditional state. If πi is finite, it also ends with d, s′,
base, l′, where pc(msSeq(l′)) = true. In addition, ev-
ery other state is in SB or an additional state constant.

2. If πi = s0s1 . . . (sn) (sn exists only if πi is finite-length)
satisfies the conditions 2 of Lemma 15, π′i is d, s0,
asp(s0), l0 ⇉ d, s1, asp(s0), l1 ⇉ d, s2, asp(s0), l2 ⇉

. . . (⇉ d, sn, asp(s0), ln).

Proof: We can prove this by induction on i.

• If π0 = π, this is an infinite path of Bρ. By the defini-
tion of Bρ, there is an infinite path of B with the same
label as π. It is easy to obtain the desirable π′0.

• If π0 = s0s1 . . . si0 is finite, it can be extended to an
infinite path π∗

0 because of the totality of →Bρ . Then
there is an infinite path of Bρ with the same label as
π∗

0 . It is easy to obtain the desirable π′0 by limiting the
length of this path.

• To examine the cases for general i, we divide the follow-
ing three cases: (1) πi is infinite, (2) πi is finite-length
and satisfies the condition 1 of Lemma 15, and (3) πi is
finite-length and satisfies the condition 2 of Lemma 15.
In case (1), we need not to proceed any more. In case
(2), we can obtain π′i+1 by finding the next state of
π′i confirming the all the conditions of the case 2 of
Lemma 14 and extending the path from it by connect-
ing the transitions of the case 5 of the Lemma 14. In
case (3), we need to be careful because πi+1 may start
from an unreachable state. We explain this part of the
proof in detail. Note that the last state s of πi+1 is
reachable because it is a pointcut state by Lemma 15
and therefore there is a path that ends with s and is
matched by ρ. Let s0 be the first reachable state of
πi+1 and π+ be the path composed by a path from an
initial state to s0 and the latter part of πi+1 starting
from s0. By the totality of →Bρ , we can extend π+ to
an infinite path π++ by adding transitions after s. By
the definition of Bρ, we have an infinite path π′++ of
B such that label(π++) = label(π′++). Let the state
of π′++ corresponding to s0 and s be s′0 and s, respec-
tively, and s′0s

′
1 . . . s be the subsequence of π′++. If

we also let s′−ks′−k+1 . . . s′−1 be the sequence of addi-
tional state constant of A(B, ρ, A) that has the same
label as s−ks−k+1 . . . s−1 that is the initial segment of

πi+1 before s0, we have the following path of ˜̃B: d,
s′−k, base, l0 ⇉ d, s′−k+1, base, l1 ⇉ . . . d, s′−1, base,
lk−1 ⇉ d, s′0, base, lk ⇉ d, s′1, base, lk+1 ⇉ . . . ⇉

d, s′, base, l, where the initial part until s′0 consists of
the additional transitions. It is straightforward to see
that the execution trace makes the pc operator true be-
cause label(π++) = label(π′++) implies that ρ matches
the both paths and the latter part of the trace is also
a latter part of π′++. 2


