
Towards An Open Trace-Based Mechanism
position paper

Paul Leger Éric Tanter
PLEIAD Laboratory

Computer Science Department (DCC)
University of Chile – Santiago, Chile

http://www.pleiad.cl

ABSTRACT
Real-world applications have to deal with issues related to security,
as well as errors and crosscutting concerns. Different trace-based
mechanisms with distinctive features have been proposed to solve
these particular issues. For example, PQL matches sequence of
unordered events, and tracematches match traces expressed with
regular expressions. Despite that applications present these issues
at the same time, there is not a single trace-based mechanism that
supports the distinctive features of current mechanisms. Besides,
lack of an expressive trace-based mechanism does not permit to
include new features, therefore, developers end up “code around”
these mechanisms to satisfy particular needs. In this position paper,
we compare and relate the specific characteristics of current trace-
based mechanisms. Finally, we present a model for an open trace-
based mechanism.

1. INTRODUCTION
Nowadays, real-world applications have to deal with issues re-

lated to security, as well as errors and crosscutting concerns. Trace-
based Mechanisms (TMs for short) have shown their usefulness to
solve some of these issues [1, 3, 5, 8, 10]. A TM observes the ex-
ecution of the software at runtime and (possibly) executes a code
fragment when the TM matches a specified trace of the execution.
The researchers have proposed specific TMs to resolve these par-
ticular issues. Unsurprisingly, applications present these issues at
the same time, therefore, they need to use different TMs at the same
time, because there is not a single TM that supports the distinctive
of current mechanisms. Besides, lack of an expressive TM does
not allow developers to include new features, therefore, they end
up “code around” these mechanism in contort ways. In this posi-
tion paper, we first describe an abstract operational model of TMs
(Section 2), which we then use to relate and compare the specific
characteristics of existing TMs (Section 3). Section 4 describes
the design of an open TM based on this abstract model. The open
model is formulated in a class-based object-oriented setting and
follows the design guidelines of open implementations [7]. We il-
lustrate the range of openness of the model by describing several
concrete extensions. For example:

• Express sequences using operators, which can enjoy all the
power of the base language to be defined.

• Manage expressively the granularity of the matching, from a
particular sequence to all sequences of a TM.

• Control expressively the multiplication of sequences of a TM.

2. AN OVERVIEW OF TMS
In this section, we describe an abstract operational model of

TMs. We divide this abstract model in two parts: first, we describe

Execution of
the software

events a,b

Environment

seq
sc

Sequence

sa sb

seq

seqEnv

Env

Env'
Env''

Inactive
sequence trace

Active
sequence trace

Selector

partial sequence 1 partial sequence 2 partial sequence 3

sb sc

sc

Operator Link

sa sb

seq

seqEnv

sc

sa sb

seq

seqEnv

sc

Figure 1: A sequence in action.

the abstract model necessary to match a specified trace of execu-
tion. Later, we extend this abstract model to manage and control
the matching of several traces of executions at the same time.

2.1 Matching a Trace
Figure 1 shows that the execution of the software has generated

the trace of events a b and that the sequence has matched these
two events. According to the figure, the sequence needs to match
the c event to finish the matching. When the sequence finishes the
matching, our model executes an extra piece of code similar to an
advice in AspectJ [6]. For space reasons, we only focus on the
matching of sequences in this paper.

A sequence matches a trace of execution, which in this case is the
trace composed of events: a b c. In addition, a sequence contains
a set of linked partial sequences. A partial sequence represents
the trace of execution that the sequence need to match. The first
partial sequence represents the whole sequence and the last repre-
sents the last event that the sequence needs to match. Only active
partial sequences are only evaluated and so can match events. The
set of partial sequences represents the history of the matching of
a sequence, which we then use to support the multiple matching
of sequences. A partial sequence is composed of an Abstract Se-
quence Tree (AST), like AST for source code of a programming
language, and an environment of bindings. In this AST, selectors
are the terms and operators are combinators. Selectors match sin-
gle events of the trace of execution and operators combine partial
sequences. The environment contains a set of bindings available for
a partial sequence and for the execution of the extra piece of code
when the sequence matches. Every time that a partial sequence
matches an event, the root operator of the AST creates a new par-

sa sc

seq

or

sa sd

seq

sc

or

sa sd

seq

sa sc

seq

or

sd

Env

Env1

Env2

Sequence

Figure 2: The non-deterministic effect of the Or operator.

Execution of
the software events a,a,b,c

Sequence
manager

sb

seq
sc

Sequence 1

sa

seq

seqEnv Env1'
Env1''

Env1'''

partial sequence 1

sb

seq
sc

Sequence 2

Env2'
Env2''

Env2'''

sc
sb

sc

sc

Match

Match

partial sequence 2

partial sequence 3partial sequence 2

partial sequence 3

Multiplexer

Figure 3: A TM in action.

tial sequence that is based and linked with the previous one. This
new partial sequence contains a modified environment and repre-
sents the remaining sub-sequence of the sequence. A sequence can
activate and deactivate its partial sequences. For example, when the
partial sequence 2 matched the b event, the partial sequence 3 was
created; and the sequence activated the partial sequence 3 and de-
activated the partial sequence 2. Although the whole sequence did
not match with the b event, this sequence advanced because now
this sequence only has to match the c event to match entirely.

Operators can create one or more partial sequence when an event
is matched. For example, Figure 2 shows a single sequence that
has a partial sequence with the or operator over two sequences: a
c and a d. When the a event occurs, two different histories can
happen: the first or second sequence advance in the matching. It
is so because the or operator is non-deterministic and so produces
two different histories of the matching of the same sequence.

2.2 Matching Several Traces
Now, we extend this abstract model to manage and control the

matching of several sequences inside a TM. Figure 3 shows a new
scenario and two new components of our model: sequence man-
ager and multiplexer. In the figure, the trace of execution has gen-
erated the events a a b c and the sequence manager has received
and sent these events to the two sequences, which has matched.

The sequence manager manages the matching of all sequences
inside a TM. For instance, this components permits to abort or reset
the matching of all or a specific group sequences. In this case, the
sequence manager only sends the events to sequences.

The multiplexer controls the multiplication of sequences. When
a sequence generate an equivalent partial sequence the multiplexer

decides if this equivalent partial sequence becomes in a new se-
quence. For example, Figure 3 shows that a sequence is multi-
plexed into two, which end up matching. This double matching is
due to four reasons: i) the trace of execution generates twice the
a event, ii) the sequence 1 always has the partial sequence 1 acti-
vated, iii) the multiplexer decides to create a new sequence when
the sequence 1 matches the second a event and creates an equiva-
lent partial sequence 2, iv) and when the trace of execution gener-
ates finally the events b and c, sequences 1 and 2 advance up to the
matching. In other words, when the execution of the software gen-
erates the second a event, the partial sequence 1, which is activate,
matches the event, therefore, creates a new partial sequence 2. As
there are two equivalent partial sequences, the multiplexer decides
to create another sequence with the second partial sequence 2.

It is important to note that the nondeterminism differs from the
multiplication of sequences because the first generates different his-
tories of the same sequence using the same event; instead the sec-
ond generates different histories in different sequences using dif-
ferent events.

In this section, we appreciate six components of TMs: envi-
ronments, selectors, operators, sequences, sequence managers, and
multiplexers. In next section, we will compare and relate the ex-
pressiveness of these components in existing TMs.

3. THE EXPRESSIVENESS OF TMS
TMs [1, 3, 5, 8, 10] vary in their expressiveness in terms of envi-

ronments, selectors, operators, sequences, sequence managers, and
multiplexers. In this section, we relate and compare the expressive-
ness of these components.

Environment. An environment of bindings represents the contex-
tual information associated to the sequence. The expressiveness of
environments allows developers to match more precisely a trace of
execution and to provide more contextual information (values) to
the execution of the code fragment when the sequence matches. In
tracematches [1], the manipulation of environments is limited be-
cause it only permits to bind information related to the event and
compare implicitily this information using the equality operator.
Environments of Alpha [10] can only contain information related
to events. Halo [5] allows developers to contain contextual infor-
mation from any source (not only from the event), and then com-
paring this information explicitly.

Selector. A selector matches single events. The precision to match
events depends on the granularity of the event model of the base
language and the expressiveness to define selectors. Although this
expressiveness varies, most of current TMs [1, 3, 5, 8, 10] cannot
use the power of the base language to define selectors. For instance,
in tracematches and Halo, selectors are pointcuts defined in a dedi-
cated declarative language1. Selectors of Alpha are Prolog queries,
which differs from the base language (a Java subset). In PTQL [3],
selectors are fields of a register of a data base.

Operator. An operator relates selectors and/or operators, therefore,
it permits to define partial sequences. The expressiveness to define
operators varies according to TMs. For example, the expressive-
ness of selectors of Alpha is enough to express operators because
it can express sequences using Prolog queries2. In Halo, operators

1In tracematches, a selector is really a symbol that is composed of
a pointcut and a modifier of the event.
2To be more precise, the selectors are facts and the operators are
rules.

are Lisp functions defined by the def-rule construct. The opera-
tors of PTQL are SQL operators like or and and. Tracematches
match traces of execution using regular expression operators. For
example, if the alphabet is {sa,sb} and the regular expression of
the sequence is sa sa sa and the regular expression of the trace of
execution is sa sa sb sa, so tracematches do not match this trace
because the sb symbol of the execution is not in the regular expres-
sion of the sequence. In a nutshell, the regular expression of the
trace of execution must happen exactly as the sequence is defined.

Sequence. Although an environment and an AST of the sequence
define a partial sequence, they do not define entirely the process
of matching of a sequence. A sequence handles the set of partial
sequences to carry out the matching and the history of this match-
ing. Sadly, to the best of our knowledge, there is no TM that allows
developers to reason or reflect about of the matching of a particu-
lar sequence. Reasoning about a sequence permits, for example, to
abort or reset the matching of a particular sequence if some condi-
tion is satisfied. Concretely, consider the familiar example for AOP
community: autosave. A document is automatically saved if it is
edited a number of times (e.g. say three) without being saved. The
wanted sequence should match when the trace of execution gen-
erates three events of edition, but this sequence should abort if it
matches the sequence composed of the save event because the doc-
ument has already saved.

Sequence manager. The sequence manager manages the matching
of all sequences inside a TM. To the best of our knowledge, there
is no TM that permits to manage this component. Reason about
the matching of sequences permits, for example, to abort or reset
the matching of all sequences if some condition is satisfied. Con-
cretely, controlling the sequence manager can be useful in areas
like security. For instance, a sequence that represents a protocol of
light security could change to heavy security whenever another se-
quence matches. This example shows that controlling the sequence
manager permits to obtain behavior similar to morphing aspects [4]
in TMs.

Multiplexer. The multiplexer controls the multiple matching of se-
quences. In most of these mechanisms [3, 5, 8, 10], the sequence
are always multiplexed. Tracematches are a particular case be-
cause a sequence is only duplicated when two equivalent partial se-
quences have environments of bindings with different values. The
multiple matching is used, for example, in tracematches resolve to
the problem of the observer pattern [2] because this TM matches
multiple sequences that binds different values in the subject and
observer.

4. A MODEL FOR AN OPEN TM
This section presents the design of an open TM, which is based

on the abstract operational model presented in Section 2. The model
follows the design guidelines of the open implementations [7] be-
cause this model allows developers to control its implementation
strategy by the an expressive use of environments, selectors, oper-
ators, sequences, sequence managers, and multiplexers. In similar
way to Section 2, this model is split into two: partial sequence
and sequence manager. The first model permits define sequences
by the use of environments, selectors, and operators. The second
model permits to describe sequence managers, which are used to
manage and control the multiple matching of the sequences.

4.1 Defining a Partial Sequence
As mentioned in Section 2.1, a partial sequence represents the

PartialSequence

Selector Operator

Concat Choice Plus Star AnyOrder ...

+match(event)
+env()
+advanced()
+next()

+addNext(ps,env)

Concrete operators

Environment

+bind(id,value)
+get(id)

Figure 4: The class diagram of a partial sequence.

trace of execution that the sequence need to match. A partial se-
quence is a structure composed of an environment and an AST of
the sequence. This AST settles the relationships between selec-
tors and operators. The environment of bindings defines the set
of values available in a partial sequence. In this model, the ex-
pressiveness of selectors depends on the event model of the base
language, but the expressiveness of the operators depends on the
base language, which is generally Turing Complete.

Figure 4 shows the class diagram of a partial sequence. This
diagram uses the composite pattern [2] between PartialSequence,
Selector, and Operator. The Selector class represents selectors that
only match single events. The Operator class represents operators
that match compositions of partial sequences. This class is an ab-
stract class, which is used to implement sub-classes that provide
specific and diverse kinds of operators. For example, Figure 4
shows five operators: four to match regular expressions and one
to match traces in any order. The Environment class represents en-
vironments that permit to bind and get values.

The match method takes an event and returns true or false whether
it matches or not a single event (in the selector case) or a partial
sequence (in the operator case). The env method returns the en-
vironment that contains the bound values until this point of the
sequence. If a partial sequence does not match but advance (like
Figure 1), the advanced method returns true. The next method re-
turns the next partial sequence. Finally, the addNext method of the
Operator class adds the next partial sequence (ps) with the associ-
ated environment (env). This latter method determines which is the
next partial sequence in the process of matching of a sequence.

The protocol of use is the following: when a PartialSequence ob-
ject sets the next partial sequence with itself, we will say the match-
ing of the sequence did not advance. Instead, when a PartialSequence
object sets or adds the next partial sequences with different objects,
we will say the matching of the sequence advanced. As examples,
we present the implementation of the Concat and AnyOrder classes.

Figure 5 shows the Concat class, which represents the opera-
tor that matches the sequence of two traces, where both traces are
matched by the left and right partial sequences. The match method
adds right as the next partial sequence if left matches with the event.
However, if left does not match, it could have advanced in its match-
ing. In this case, match adds as next a new Concat object that con-
tains the left.next() as left and right as right. A new Concat object
is created to maintain the history of the matching of the sequence
through the two different partial sequences (before and after the
event).

It is important to note, the match method of Concat class always
returns false because the responsibility of the matching is delegated
to the right partial sequence.

The following code is useful if we want to match the sequence

class Concat extends Operator {
PartialSequence lef t , r ight ;
Seq(PartialSequence lef t ,PartialSequence right) { . . . }

boolean match(Event event) {
Env env = env() ;
l e f t .setEnv(env) ;
i f (l e f t .match(event)) { / / l e f t matched , continue with right

addNext(right , l e f t .env()) ;
}
else i f (l e f t .advanced()) { / / l e f t only advanced

addNext(new Seq(le f t . next () , r ight) , l e f t . next () .env())) ;
}
else {

addNext(this ,env) ;
}
return false ;

} } ;

Figure 5: The Concat class.

composed of a b c events, where events are calls to functions a, b,
and c:
Concat concat = new Concat(new Concat(sa,sb),sc);
The sa, sb, and sc objects are selectors that match the calls to afore-
mentioned functions. The concat object is a partial sequence that
represents the matching of the wanted sequence.

The anyOrder operator matches an unordered sequences of traces,
where these traces are matched by a set partial sequences. This op-
erator is non-deterministic like the or operator (Section 2) because
the two or more partial sequences can match or advance with the
same event, therefore, generating different histories of the match-
ing. Figure 6 shows the implementation of the AnyOrder class that
represents the AnyOrder operator. The match method, first, verifies
if there is only a partial sequence and tries to match this last partial
sequence. The match method returns true if the ps matches, but
returns false otherwise. However, if ps only advanced, the match
method adds ps.next() as next, which has the responsibility to finish
the matching of the unordered sequences of traces.

When there are two or more partial sequences in the pss ar-
ray, the match method tries to match every partial sequence (ps)
of the pss array. The method adds a new AnyOrder object with
the same pss array without ps if it matched; instead match adds a
new AnyOrder object with the same pss array, but exchanges ps for
ps.next() if ps only advanced.

The following code is useful if we want to match the unordered
sequence composed of the events a, b, and c:
AnyOrder anyOrder = new AnyOrder(new PartialSequence[]{sa,sb,sc});
The anyOrder object is a partial sequence that represents the match-
ing of the disorderly aforementioned events.

4.2 Defining a Sequence Manager
The previous section showed how to build partial sequences. In

this section, we describe our sequence manager model, which takes
a partial sequence to manage and control the matching and the mul-
tiplication of sequences generated from this partial sequence.

Figure 7 shows the class diagram of our sequence manager. In
this diagram, three classes are the core: Sequence, Multiplexer,
and SequenceManager. The Sequence class represents a sequence,
which contains a set of (active and inactive) partial sequences. The
Multiplexer class controls the multiplication of sequences. Finally,
the SequenceManager class manages the matching of sequences.

4.2.1 Sequence
A sequence can be declared using the following code:

Sequence s = new Sequence(ips,as);

class AnyOrder extends Operator {
PartialSequence [] pss;
AnyOrder(PartialSequence [] pss) { . . . }

boolean match(Event event) {
Env env = env() ;
i f (pss. length == 1) { / / only one part ial sequence remains

PartialSequence ps = pss[0] ;
ps.setEnv(env) ;
i f (ps.match(event)) { / / las t part ial sequence matched

setEnv(ps.env()) ;
return true ;

} else i f (ps.advanced()) { / / delegate the matching to ps . next ()
addNext(ps.next () ,ps.next () .env()) ;
return false ;

} }

for (in t i = 0; i < pss. length ; ++i) {
PartialSequence ps = pss[i] ;
ps.setEnv(env) ;
i f (ps.match(event)) { / / ps[i] matched

addNext(new AnyOrder(pss.remove(i)) ,ps.env()) ;
} else i f (ps.advanced()) { / / ps[i] advanced

addNext(new AnyOrder(pss. set (i ,ps.next ()) ,ps.next () .env()) ;
} }

i f (!advanced()) { / / no part ial sequence matched nor advanced
addNext(this ,env) ;

}

return false ;
} } ;

Figure 6: The AnyOrder class.

where ips is the initial partial sequence of the sequence and as is an
ActivationStrategy object that represents the activation strategy of
partial sequences. Every ActivationStrategy object has the activate
method that is parameterized by a ps partial sequence. This method
returns true if ps must active, otherwise the method returns false.
We provide three default strategies:

Object Strategy It permits to ...
FIRSTANDLAST First and last partial se-

quences are only active.
begin more than
one sequence at the
same time.

LAST Last partial sequence is
only active.

begin only one se-
quence at the same
time.

ALL all partial sequences are
active.

multiplex sequences
at any time.

4.2.2 Multiplexer
The multiplexer controls the multiplication of the sequences. The

class diagram of Figure 7 shows the Multiplexer abstract class. This
class is used to implement sub-classes that provide specific strate-
gies of multiplication of sequences. In this paper, we provide two
sub-classes: Multiple and Tracematch. The objects of Multiple class
always multiplexes a sequence when it finds an equivalent partial
sequence. A case more refined is the Tracematch class because it
emulates the behavior found in tracematches [1].

The multiplex method takes a s sequence and a pss array of equiv-
alent partial sequences found in s. The goal of this method is to
decide which partial sequences of pss become sequences, which
are returned in an ArrayList object. As examples, we present the
implementation of the Multiple and Tracematch classes.

Figure 8 shows the Multiple class. The multiplex method creates
new sequences of all equivalent partial sequences of pss with ALL
object as activation strategy.

The semantic of multiplication of tracematches always permits to

Multiplexer

+multiplex(s,pss)

SequenceManager
+ips

+manage(event)

Dependent
+anotherSM

SwitchNoneIf

Multiple Tracematch

Concrete classes

Concrete classes

PartialSequence

Sequence

+Sequence(ips,as)

. . .

. . .

Figure 7: The class diagram of a sequence manager.

class Multiple extends Multiplexer {

ArrayList multiplex (Sequence s,PartialSequence [] pss) {
ArrayList ss = new ArrayList () ;
for (in t i = 0; i < pss. length ; ++i)

ss.add(new Sequence(pss[i] , ActivationStrategies .ALL)) ;
return ss;

} }

Figure 8: The Multiple class.

begin a new sequence, and this semantics multiplexes a sequence if
two equivalent partial sequences differ in the values of their envi-
ronments. Figure 9 shows the TraceMatch class. The compareEnvs
method verifies if two environments have the same set of values.
The getEquivalents method gets all equivalent partial sequences of
ps in s. The previousIsFirstOfSeq method verifies if pss[i] is linked
to the first partial sequence of the sequence. The multiplex method
represents the same semantic of tracematches. The method gets all
equivalents partial sequences of every element of pss, and for every
equivalent pair, multiplex creates a new sequence if both equivalent
partial sequences have different set of values in their environments.
A new sequence is also created if pss[i] represents the initial partial
sequence of the sequence.

4.2.3 Sequence Manager
The SequenceManager class defines how to manage the match-

ing of all sequences inside a TM. In Figure 7, we can see that
SequenceManager has the instance variable ips, which represents
the initial partial sequence of the sequence. In addition, this vari-
able is used as a seed to create sequences that begin from the outset.
The manage method manages the matching of all sequences. This
method takes an event and returns an ArrayList object with the envi-
ronments of the matched sequences. This class has the Dependent
abstract class, which refines the behavior of the manage method
for that depending on a specified trace of execution. Besides, this
abstract class is used to implement sub-classes that provide spe-
cific strategies to manage matching of sequences. For example, the
NoneIf class removes all sequences if it matches another trace of
execution, or the Switch class that removes all sequences and uses
a different initial partial sequence as a seed if it matches another
trace of execution. As example, we explain the NoneIf class.

Figure 10 shows the NoneIf class. The manage method, first,

class Tracematch extends Multiplexer {
boolean compareEnvs(Env env1,Env env2) { . . . }
PartialSequence [] getEquivalents(Sequence s,PartialSequence pt) { . . . }
boolean previousIsFirstOfSeq(PartialSequence ps) { . . . }

ArrayList multiplex (Sequence s, PartialSequence [] pss) {
ArrayList ss = new ArrayList () ;
for (in t i = 0; i < pss. length ; ++i) {

PartialSequence [] epss = getEquivalents(t ,pss[i]) ;
for (in t j = 0; j < epss. length ; ++j)

i f (!compareEnvs(epss[j] .env() ,pss[i] .env()) | |
previousIsFirstOfSeq(pss[i]))
ss .add(new Sequence(pss[i] , ActivationStrategies .ALL)) ;

}
return ss;

} } ;

Figure 9: The Tracematch class.

class NoneIf extends Dependent {

ArrayList manage(Event event) {
ArrayList envs = new ArrayList () ;
ArrayList ss = getSequences() ;
i f (!anotherSM.match(event))

return super .manage(event) ;

ss . removeAll () ;
ss .add(new Sequence(ipt , . . .)) ;
return new ArrayList () ;

} } ;

Figure 10: The NoneIf class.

verifies whether anotherSM matches or not with the event. In the
case that anotherSM matches, the manage method removes all se-
quences and create a new sequence from ips. If anotherSM does not
matches, this method calls the manage method of the super class.

5. CONCLUSION
In this position paper, we described an abstract operational model

of TMs and use this abstract model to relate and compare the spe-
cific characteristics of existing TMs like PQL, PTQL, Halo, and
Alpha. Later, we presented the design of an open TM based on
this abstract model. The open model is formulated in a class-based
object-oriented setting and follows the design guidelines of open
implementations. This model is split into partial sequence and se-
quence manager model. The first model defines sequences and the
second model, taking a partial sequence, defines how to manage
and control the matching and multiplication sequences. Both mod-
els allows developers to specific strategies of implementation. We
showed the openness of our model through concrete and expressive
extensions.

Our model has different kinds of challenges. Some challenges
are related to its practical adoption. For this reason, as future work,
we plan to extend AspectScript [11], an AOP extension of JavaScript,
to develop real-world applications that need our model to solve dif-
ferent the issues mentioned in the introduction. Other challenges
are related to the understanding of relationships between sequences,
multiplexers, and sequence managers. For example, there is a cou-
pling between multiplexers and sequences because a multiplexer
needs that sequences uses certain activation strategies to multiplex.
Finally, some challenges are related to the static analysis of the
sequences due to the highly dynamicity of their operators, e.g. con-
sider the random operator that always returns a random partial se-
quence as next.

6. REFERENCES
[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensen,

Laurie Hendren, Sascha Kuzins, Ondrej Lhoták, Oege
de Moor, Damien Sereni, Ganesh Sittampalam, and Julian
Tibble. Adding trace matching with free variables to
AspectJ. In OOPSLA 2005 [9], pages 345–364. ACM
SIGPLAN Notices, 40(11).

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing Series.
Addison-Wesley, October 1994.

[3] Simon F. Goldsmith, Robert O’Callahan, and Alex Aiken.
Relational queries over program traces. In OOPSLA 2005
[9], pages 385–402. ACM SIGPLAN Notices, 40(11).

[4] Stefan Hanenberg, Robert Hirschfeld, and Rainer Unland.
Morphing aspects: incompletely woven aspects and
continuous weaving. In Karl Lieberherr, editor, Proceedings
of the 3rd ACM International Conference on
Aspect-Oriented Software Development (AOSD 2004), pages
46–55, Lancaster, UK, March 2004. ACM Press.

[5] Charlotte Herzeel, Kris Gybels, and Pascal Costanza. A
temporal logic language for context awareness in pointcuts.
In Dave Thomas, editor, Workshop on Revival of Dynamic
Languages, number 4067 in Lecture Notes in Computer
Science, Nantes, France, July 2006. Springer-Verlag.

[6] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William Griswold. An overview of
AspectJ. In Jorgen L. Knudsen, editor, Proceedings of the
15th European Conference on Object-Oriented
Programming (ECOOP 2001), number 2072 in Lecture
Notes in Computer Science, pages 327–353, Budapest,
Hungary, June 2001. Springer-Verlag.

[7] Gregor Kiczales, John Lamping, Cristina V. Lopes, Chris
Maeda, Anurag Mendhekar, and Gail Murphy. Open
implementation design guidelines. In Proceedings of the 19th
International Conference on Software Engineering (ICSE
97), pages 481–490, Boston, Massachusetts, USA, 1997.
ACM Press.

[8] Michael Martin, Benjamin Livshits, and Monica S. Lam.
Finding application errors and security flaws using PQL: a
program query language. In OOPSLA 2005 [9], pages
365–383. ACM SIGPLAN Notices, 40(11).

[9] Proceedings of the 20th ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 2005), San Diego, California, USA,
October 2005. ACM Press. ACM SIGPLAN Notices, 40(11).

[10] Klaus Ostermann, Mira Mezini, and Christoph Bockisch.
Expressive pointcuts for increased modularity. In Andrew P.
Black, editor, Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), volume 3586 of
LNCS, pages 214–240. Springer-Verlag, 2005.

[11] Rodolfo Toledo, Paul Leger, and Éric Tanter. AspectScript:
Expressive aspects for the Web. In Proceedings of the 9th
ACM International Conference on Aspect-Oriented Software
Development (AOSD 2010), Rennes and Saint Malo, France,
March 2010. ACM Press. To Appear.

