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ABSTRACT 
A framework for formal analysis of aspect-oriented software 
development (AOSD) is proposed. AOSD is treated as enriching 
formal models of programs by traceable refinements that produce 
their systemic interfaces. Category-theoretic construction of 
architecture school is employed to formalize this approach. 
Aspect weaving and separation of concerns are defined as 
universal constructions. Aspect-oriented scenario modeling is 
discussed as an example. 
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Verifying and Reasoning about Programs—Specification 
techniques 
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1. INTRODUCTION 
Aspect oriented software development (AOSD) [2] aims at 
explicit separating and composing concerns elaborated in 
response to particular requirements. Concerns are usually much 
tangled and scattered across software modules due to 
intermingling and conflicting nature of requirements. 
Modularizing them or at least keeping them clearly 
distinguishable throughout the development process can 
drastically improve software maintainability. However, AOSD 
has gained lower level of adoption in software production than 
modular design up to now. As argued in [15], although the 
community agrees on what AOSD is good for, there are no 
common paradox-free understanding of what AOSD actually is. 
This is partly caused by lack of a sound uniform metamodel 
capable to elucidate handling of aspects within modular software        
** 

development paradigms in a natural way. 

We present an attempt to create such metamodel. It is based on 
the concept of tracing development process steps, since 
traceability is most compromised by tangling. Concerns are 
treated as sources of traceable refinements that eventually 
produce software artifacts. Attaching these refinements to 
program models allows identifying, composing (weaving), and 
separating concerns in the course of the development process. In 
order to provide formal semantics of these operations that doesn’t 
rely on some specific development paradigm we employ category 
theory. It allows characterizing (mathematical) objects by their 
interrelations with other objects, avoiding appeal to their 
“interiors” (by which software artifacts created with different 
technologies much vary). Constructions in categories produce 
objects that satisfy extensional (“systemic”) criteria: universality 
(existence and uniqueness of interrelation with similar objects), 
naturality (independence of multistep interrelation on the way it is 
traced), and so on. Such objects are usually determined uniquely 
up to an isomorphism, viz. appropriate abstraction of inessential 
difference. Visual diagrammatic notation is routinely used to 
specify constructions. 

This motivates employing category theory as paradigm-
independent formal tool to reason on software design. The very 
notion of modularity (the Holy Grail of AOSD) is captured as a 
class of diagrams that satisfy certain structural properties. 
Augmenting it with concepts of an interface and of a refinement 
(expressed in category-theoretic terms) leads to fundamental 
notion of an architecture school that provides uniform general 
representation of software design (see [4]). In this setting, we 
formally present enhancing a design technology by aspects as 
natural labeling of school constituents by concerns. 

We employ scenario modeling as principal example of applying 
this construction to specific technology. On the one hand, it 
properly captures operational semantics of aspect-oriented 
programming that essentially consists in augmenting base 
program execution scenario with woven aspects. On the other 
hand, it is a widely used requirements engineering technique 
empowered with methods for transforming models to 
architectures, including those based on category theory [14]. 
Enhancing domain engineering of large-scale distributed systems 
with aspect-oriented capabilities facilitates rapid incremental non-
invasive development [9]. 

2. ARCHITECTURE SCHOOLS 
Category-theoretic approach to formalizing software systems 
design is being developed since 1970s. According to it, formal 
models (descriptions) of programs are represented as objects, and 

 



actions of integrating (models of) individual components into 
(models of) systems are represented as morphisms. Composition 
of morphisms represents multistep integration; identity 
morphisms represent trivial integrating descriptions into 
themselves by “doing nothing”. Resulting category of 
descriptions is denoted as c-DESC. An example can be found in 
the area of object-oriented design: classes (formally presented on 
UML) can be considered as objects in category-theoretic sense, 
with inheritance relations as morphisms. Another example, 
particularly pertaining to the topic of this paper, is modeling 
software systems by execution scenarios. The basic mathematical 
representation of a scenario is a partially ordered set (poset) [13]. 
Its elements are atomic events occurred during execution, 
partially ordered by causal dependence. Actions of scenarios 
integration are precisely homomorphisms of posets since neither 
events nor interactions shall be “forgotten” at integration. Hence 
category Pos of all posets and all their homomorphisms plays the 
role of c-DESC. 
A system built from multiple components is represented as a 
c-DESC-diagram that consists of the components and their 
interconnections. Recall that a diagram is a functor of the kind 
∆ : X → c-DESC, where X is a small category (called a schema of 
∆). A diagram can be “visualized” as a directed graph of a 
category X whose points are labeled by c-DESC-objects and 
arrows are labeled by c-DESC-morphisms. In order to facilitate 
category-theoretic reasoning on systems design decisions, we 
consider diagrams as objects of appropriate category (the 
(covariant) “super-comma category”, see [11]). First, recall that 
all diagrams with schema X comprise a category, denoted 
c-DESCX, whose morphisms are called natural transformations. 
Recall that a natural transformation from a diagram 
∆ : X → c-DESC to a diagram Σ : X → c-DESC is a map 
ε : Ob X → Mor c-DESC that satisfies the following naturality 
condition. For every X-objects A, B, and every X-morphism 
f : A → B the equality Σ(f) ◦ εA = εB ◦ ∆(f) holds (in particular, we 
have εA : ∆(A) → Σ(A) for every X-object A). A natural 
transformation ε can be visualized as a “prism” with graphs of ∆ 
and Σ as bases, and arrows εA, A ∈ Ob X, as lateral edges. 
Naturality condition ensures that composition induces minimal 
amount of auxiliary arrows that cross lateral faces of the prism, 
i.e. that component-wise integration of a system represented by ∆ 
into a system represented by Σ established by ε respects every 
interconnection. 
A notion of a natural transformation admits straightforward 
extension to diagrams with different schemas, by adding a functor 
that adjusts schemas. So a morphism from a diagram 
∆ : X → c-DESC to a diagram Σ : Y → c-DESC is a pair 〈ε, fd〉 
consisting of a functor fd : X → Y and a natural transformation 
ε : ∆ → Σ ◦ fd. If ε consists of identities (implying that ∆ = Σ ◦ fd) 
and fd is injective, then ∆ is called a subdiagram of Σ (graph of ∆ 
is a labeled subgraph of graph of Σ). 
Each object A forms a singleton diagram whose graph consists of 
the single point labeled by A. Morphisms between singleton 
c-DESC-diagrams are precisely c-DESC-morphisms between 
objects they constitute (in category theory it is said that c-DESC1, 
where 1 is a singleton category, is isomorphic to c-DESC). A 
morphism from an arbitrary diagram ∆ to a singleton diagram is 
called a cocone. It can be visualized as a diagram in form of a 
“pyramid” with base ∆ and edges directed from points of ∆ to the 

distinct point called the vertex. A colimit of ∆, denoted colim ∆, 
is a cocone that is universal in a sense that every cocone δ over ∆ 
factors through colim ∆ uniquely (i.e. there exists a unique 
c-DESC-morphism c, called a colimit arrow, such that 
δ = 〈c, 11〉 ◦ colim ∆). Obviously a colimit is determined uniquely 
up to an isomorphism. Its vertex (called a colimit object) can be 
thought of as the least “container” that encapsulates all objects of 
∆ via edges respecting structure of their interconnections. For 
example, a colimit of a discrete diagram (i.e. the one whose 
schema has no morphisms except identities) is precisely a 
coproduct of its objects, which includes all of them (preserving 
their identity) and nothing more. Even an empty diagram may 
have a colimit, whose object is precisely an initial object (there 
exists exactly one morphism from it to any other object). An 
initial object represents a “componentless” system that can be 
uniquely integrated into every system (for example, “pure” 
integration middleware). 
These considerations motivate employing a notion of a colimit as 
category-theoretic abstraction of system synthesis [10]. Existence 
of a colimit is a necessary condition for a c-DESC-diagram to 
represent a valid system. Clearly it is not sufficient, since various 
structural rules usually apply (e.g. type constraints in object-
oriented design). Diagrams that actually produce systems are 
called well-formed configurations, and constitute class denoted as 
Conf. In scenario modeling, although any Pos-diagram has a 
colimit, a configuration is considered as well-formed only if its 
target system scenario is included into it explicitly, without 
employing any structural computations beyond constructing a 
coproduct. Such situation is common at requirements engineering 
where the analyst haven’t yet collected enough information to 
establish powerful structural rules over requirement models. So 
the class CPos of all disjoint unions of Pos-cocones is used for 
Conf. Every discrete Pos-diagram is well-formed; it represents a 
disjoint union of parallel (non-interacting) scenarios. To see that 
“many” other diagrams are ill-formed, consider a pair of Pos-
morphisms {a < b} ← {a, b} → {a > b}, where arrows denote 
bijections a → a, b → b. This diagram exposes a and b as 
concurrent events, so it is impossible to include both conflicting 
orderings into the single scenario. In particular, the diagram’s 
colimit object, which is a singleton poset, fails to represent 
integration result (as well as any other poset). 
It is well known that integration capabilities of a component are 
completely determined by its specially devised “part” called an 
interface. Interfaces of formal models comprise a category 
denoted SIG; extracting an interface is expressed as a signature 
functor sig : c-DESC → SIG. Although it shouldn’t be injective 
(different components can have the same interface), it is required 
to be faithful, i.e. injective on each hom-set Mor(A, B) that 
consists of all c-DESC-morphisms with domain A and codomain 
B (otherwise it would fail to distinguish different ways to 
integrate a component A into a system B). Realizability of every 
interface is ensured via existence of a functor 
sig* : SIG → c-DESC that produces a “default” implementation of 
every interface I. Specifically, sig*(I) has I as an interface (i.e. 
sig ◦ sig* = 1SIG) and supports all integration capabilities of I (i.e. 
functor sig surjectively, hence bijectively, maps a hom-set 
Mor(sig*(I), A) to Mor(I, sig(A)) for every c-DESC-object A). In 
category-theoretic terms functor sig* is called left adjoint to sig. 



There exists a natural correlation between interfaces and 
configurations. First, conditions ∆ ∈ Conf and sig ◦ ∆ = sig ◦ Σ 
shall imply Σ ∈ Conf for any c-DESC-diagrams ∆, Σ. This 
requirement establishes a kind of logical non-contradiction law 
for interfaces: no interface integration schema can be produced by 
both systems and illegal conglomerates of components. Second, 
interface extraction shall be natural with regard to composing 
systems: every colimit of SIG-diagram sig ◦ ∆ equals to 
sig ◦ colim ∆ for each ∆ ∈ Conf. In other words, functor sig lifts 
colimits of diagrams from Conf. Naturality is actually two-fold: 
requirements enlisted above imply that functor sig preserves 
colimits of diagrams from Conf. 
In scenario modeling, an interface of a scenario is a set of 
occurred events obtained by forgetting their order. Indeed, in 
order to identify an execution scenario of a component in a 
scenario of a system, it is necessary and sufficient to identify all 
events occurred within the component. So the canonical forgetful 
functor |–| : Pos → Set, where Set is a category of all sets and all 
maps, is used for sig. It is easy to see that it satisfies all 
requirements above. In particular, default realization of an 
interface is represented by a functor |–|* : Set → Pos that turns a 
set S into a discretely ordered poset 〈S, =〉 that seamlessly 
integrates into any scenario. 
In addition to system composition, software development process 
contains steps of modeling individual components known as 
refinements. The process is commonly viewed as moving along 
two dimensions: horizontal structuring induced by “component-
of” relationships and vertical structuring induced by “refined-by” 
relationships [10]. All descriptions and all refinements comprise a 
category, denoted r-DESC, with the same class of objects as 
c-DESC. A (trivial) example of a refinement is an isomorphism, 
so a subcategory of c-DESC that contains of all descriptions and 
all c-DESC-isomorphisms is required to be a subcategory of 
r-DESC. The naturality of refinement with regard to composing 
systems is imposed in the form that a collection of refinements of 
components constituting a system shall induce a refinement of the 
system. This can be formally expressed in terms of natural 
r-DESC-transformations, given that every discrete c-DESC-
diagram is simultaneously an r-DESC-diagram. An arbitrary 
collection of refinements of objects of a c-DESC-diagram ∆ is 
precisely a natural r-DESC-transformation ϕ : |∆| → Σ, where |∆| 
is discrete diagram that consists of all objects from ∆, and Σ is a 
discrete diagram consisting of all refinements results. If ∆ ∈ Conf, 
then a diagram ∆ ⊕ ϕ ∈ Conf shall exist, that has Σ as a 
subdiagram (and possibly extra points and arrows), and an 
r-DESC-morphism from a colimit object of ∆ to a colimit object 
of ∆ ⊕ ϕ. 
In scenario modeling, refinement of a scenario consists in 
replacing atomic events with subscenarios in such a way that the 
order is fully inherited [5]. Formally, a refinement of a poset X to 
a poset A is identified with a surjective map f : A → X that 
satisfies the condition ∀x ∀y f(x) ≤ f(y) ⇔ (x ≤ y ∨ f(x) = f(y)). 
Notice the swap of source and destination: as we will see below, it 
is a key to smooth aspect orientation. We will denote the category 
of all posets and all scenario refinements by r-Pos. 

A tuple 〈c-DESC, Conf, sig, r-DESC〉, that satisfies all conditions 
enlisted above, is called an architecture school, and various 
examples of schools are considered, in [4]. Of particular interest 

are schools “over” Set, in which c-DESC is a concrete category 
over Set in the following sense. Descriptions are sets equipped 
with some structure (e.g. algebraic structures, topological spaces, 
etc), integration actions are maps that respect the structure, and 
sig is canonical functor |–| that forgets the structure. Scenario 
modeling architecture school SM = 〈Pos, CPos, |–|, r-Pos〉 is an 
example of an architecture school over Set. 

3. ENHANCING DESIGN WITH ASPECTS 
Our model of AOSD rests upon representing emergence of 
aspects in a software design technology as formal transformation 
of architecture schools. Indeed, AOSD can be generally 
considered as equipping software artifacts with certain labeling 
conveniently identifying concerns handled by their constituents. 
Original motivation of AOSD creators [7] stems from the fact that 
programming languages are too concise to allow tracing 
intermingled fragments of source code to their ultimate “goals”. 
Different flavours of AOSD [2] greatly vary in labeling 
techniques (among which modularization is most welcome) but 
agree in pursuing transparent traceability, viz. ability to determine 
exactly what each fragment of a model is included into it for. 
A metamodel of traceability proposed in [16] formally 
demonstrates that tracing is routinely compromised by 
refinement. A refinement may change the very “nature” of a 
model, e. g. when implementing a specification by means of a 
programming language. On the contrary, system composition is 
able to provide at least partial tracing back to components; 
difficulties arise at tracing concerns that crosscut boundaries of 
modular architecture (such as security). So ability to trace result 
of a refinement to its source means that reversing its direction (i.e. 
category-theoretic dualization) produces a c-DESC-morphism, 
called its trace. In order to preserve traceability in subsequent 
integration of a result into a system, a trace shall have right 
inverse at the level of interfaces. Indeed, if a refinement r : X → A 
satisfies a condition sig(rop) ◦ s = 1sig(X) for some SIG-morphism 
s : sig(X) → sig(A), then SIG-morphism sig(f) ◦ s identifies sig(X) 
in sig(S) for every c-DESC-morphism f : A → S. 
Obvious example of traceable refinement is a c-DESC-
isomorphism (recall that a dual to an isomorphism is identified 
with its inverse which is an isomorphism as well). Non-trivial 
traceable refinements are obtained as r-DESC-morphisms that 
coherently behave as duals to c-DESC-morphisms. Denote by cr-
DESC the intersection of all such maximal common subcategories 
of c-DESC and r-DESCop that contain all c-DESC-isomorphisms. 

Definition 1. A cr-DESC-morphism t is called a trace provided 
that sig(t) is a retraction (i.e. has right inverse). A sig-image of a 
trace is called a labeling. A dual to a trace is called a traceable 
refinement. □ 
In an architecture school over Set every labeling is a surjective 
map, so a traceable refinement r : X → A is a total antifunctional 
binary relation that is conservative with regard to structure. Its 
action can be described as expansion of points of |X| to sets that 
comprise partitioning of |A|, projecting structural constraints 
defined on points of |X| to some (possibly none) members of their 
expansion results. A point of |X| can be considered as a concern 
that is elaborated by expansion, in accordance with intuitive 
notion of refinement. For example, in scenario modeling school 
SM r-Posop is a subcategory of Pos; every refinement is traceable, 
and literally determines a labeling of its target by points of its 



source. Moreover, refinements allow tracing inclusions of 
components, viz. integration actions that leave inner structures of 
components intact. Inclusions are represented by regular Pos-
monomorphisms; capability to trace them means that for every r-
Pos-morphism r : X → A and inclusion i : M → X there exists an 
inclusion i' : M → A such that rop ◦ i' = i. 
Observe that traceable refinements particularly tolerate 
configurations. Consider a diagram, called a push of ∆ by ϕ, that 
consists of a diagram ∆ ∈ Conf and a family ϕ of arrows directed 
from distinct points outside of ∆ to points of ∆. Obviously a push 
has a colimit with the same object as ∆. Comprising ϕ from traces 
(so that ϕop is a natural r-DESC-transformation from |∆| to a 
discrete subdiagram of a push), we see that traceable refinements 
are non-invasive with respect to system composition: if a push 
belongs to Conf, then it can be taken for ∆ ⊕ ϕop, and appropriate 
isomorphism for a refinement of colimit objects. Non-invasive 
refinements are much appreciated within the context of AOSD. 
For example, this is obviously the case for scenario modeling 
school. 
These considerations suggest that the AOSD objective can be 
achieved by equipping descriptions with traceable refinements 
that produce them, at least at the interface level. Such equipping 
is precisely the desired aspect labeling. We employ the construct 
of comma category (see [11]) to formalize it. We will work in 
specific comma category denoted as sig ↓ SIG. Recall that its 
objects are pairs 〈A, a : sig(A) → X〉, where A ∈ Ob c-DESC and 
a ∈ Mor SIG. A morphism from an object 〈A1, a1〉 to an object 
〈A2, a2〉 is such pair 〈f : A1 → A2, b : codom a1 → codom a2〉 that 
b ◦ a1 = a2 ◦ sig(f). Denote by AO full subcategory of sig ↓ SIG 
whose objects are all pairs 〈A, a〉 in which a is a labeling. 

In an architecture school over Set aspect labeling a : |A| → X of a 
description A consists in assigning each point of |A| a point of set 
X that denotes the “name” of the aspect it belongs to. The labeling 
is essentially (up to an AO-isomorphism) an equivalence relation 
on |A|, equivalence classes representing individual aspects. Every 
such relation turns A into a valid aspect-oriented model, so 
aspects needn’t respect its “modular” structure in any way. AO-
morphisms are precisely such c-DESC-morphisms that preserve 
this additional equivalence relation. As we will see below, there 
exists a functor that turns AO into a concrete category over Set. 
Objects of various categories that comprise AO can serve as 
interfaces of AO-descriptions, contributing to turning AO into 
full-scale architecture school. Specifically, the software designer 
have freedom to choose interfaces of aspect-oriented models to be 
either: 
- original non-aspect-oriented models, obtained by functor 

mod that takes an AO-object 〈A, a〉 to a c-DESC-object A, for 
modular design tasks; 

- aspect labelings, obtained by functor asp that takes 〈A, a〉 to 
a, for design and analysis of aspect structure; 

- original model interfaces, obtained by functor 
int = sig ◦ mod, for specification purposes. 

Other options that refine (i.e. can be naturally transmuted to) 
original interfaces may be available in particular schools. 
Refinements and well-formed configurations of aspect-oriented 
models are constructed by appropriate enrichment of modular 

“material”. Let tr-AO be the subcategory of AO that consists of all 
AO-objects and all such AO-morphisms f that mod(f) is a trace. 
Further, denote by str functor that takes 〈A, a〉 to codom a. Notice 
that, given an AO-diagram ∆, a diagram |asp ◦ ∆| that consists of 
labelings of all objects of ∆ can be viewed as a natural 
transformation of int ◦ ∆ to str ◦ ∆, i.e. γ ◦ 〈|asp ◦ ∆|, 1dom ∆〉 is a 
cocone over int ◦ ∆ for each cocone γ over str ◦ ∆. Bearing this in 
mind, we will call a class I-Dia of SIG-diagrams aspect-closed if 
for any Σ ∈ I-Dia an AO-diagram ∆ satisfies the following 
conditions provided that int ◦ ∆ = Σ: 

- mod ◦ ∆ ∈ Conf; 

- SIG-diagram str ◦ ∆ has a colimit; 

- every colimit arrow c∆, such that 
colim (str ◦ ∆) ◦ 〈|asp ◦ ∆|, 1dom ∆〉 = 〈c∆, 11〉 ◦ colim (int ◦ ∆), 
is a labeling; 

- for every natural tr-AO-transformation ϕ : Σ → |∆| there 
exists an AO-diagram ∆ ⊕ ϕ, such that Σ is its subdiagram, 
int ◦ (∆ ⊕ ϕ) ∈ I-Dia, and there exists a tr-AO-morphism 
t : 〈C⊕, c∆ ⊕ ϕ〉 → 〈C, c∆〉,  where C⊕ is a colimit object of 
mod ◦ (∆ ⊕ ϕ) and C is a colimit object of mod ◦ ∆. 

Denote by AO-Int the union of all aspect-closed classes of SIG-
diagrams. It allows determining all configurations that retain 
modularization when constituent components gain labeling by 
aspects. 

Definition 2. Given an architecture school AR = 〈c-DESC, Conf, 
sig, r-DESC〉, functor ai is said to generate an aspect-oriented 
architecture school (AO-school) from AR, if a tuple 

AOai(AR) = 〈AO, {∆ | int ◦ ∆ ∈ AO-Int}, ai, tr-AOop〉 
is an architecture school, and there exists such functor si that 
si ◦ ai = int. □ 
Theorem 3. Functors 1AO, mod, asp, int generate AO-schools. □ 
The proof of the theorem consists in checking that AOai(AR) 
satisfies all conditions for an architecture school whenever one of 
enlisted functors is taken for ai. In particular, functor mod*, 
which is left adjoint to mod and defines inclusion of c-DESC into 
AO, takes a c-DESC-object A to an AO-object 〈A, 1sig(A)〉. It 
represents the first step in enhancing a modular design technology 
by aspects: seed aspect structure coincides with an integration 
interface. AO-descriptions with non-trivial aspect structures 
emerge upon refining them in the course of AOSD process. 
In scenario modeling school SM, aspects appear to be precisely 
labels that, being attached to elements, turn posets into 
pomsets [13]. Labels can be considered as event “names” 
denoting  concerns  they  handle.  Class  AO-Int  coincides  with 
|–| ◦ CPos, which means that all configurations admit aspect 
orientation. Since every refinement is traceable, all of them are 
used at constructing tr-AOop. Functor mod* endows the discrete 
labeling on a scenario, equipping each event with a unique label 
(actually itself). 

4. WEAVING AND SEPARATING 
ASPECTS 
Elementary building blocks of aspect-oriented models are known 
as aspects. In an architecture school over Set, an aspect is 
precisely an AO-object whose str-image is a singleton set, i.e. a 



terminal Set-object (there exists exactly one map from any other 
set to it). For example, an aspect in scenario modeling is precisely 
a pomset with all elements labeled with the same label. In order to 
generalize to arbitrary AO-school, observe that every morphism 
directed from a terminal object has left inverse (that typically is a 
trace, so aspects particularly tolerate tracing). 
Definition 4. An AO-description A is called an aspect if str(f) has 
left inverse for every AO-morphism f : A → X. □ 
Proposition 5. If c-DESC has a terminal object 1, then A is an 
aspect iff str(A) = sig(1). □ 
Aspect-oriented program synthesis and decomposition techniques 
can be formalized as universal constructs in category AO. For 
example, weaving an AO-object W (advice) into an AO-object B 
(base) is represented as follows. Weaving rules determine join 
points in base B at which W is called through appropriate entry 
points. For example, a program written on an aspect-oriented 
extension of an object-oriented language, such as AspectJ [3], can 
be weaved to the base before/after method calls, access operations 
to fields, exception handlers, etc. In order to specify weaving 
rules, auxiliary AO-object C, called connector, is employed 
(see [12]) in a way that matching between entry points and join 
points is described as a pair of AO-morphisms j : B ← C → W : e. 
Observe that morphism j is usually called a pointcut 
descriptor [3]. Weaver at first (virtually) produces enough copies 
of W, one for each join point, with appropriate entry point marked 
at each copy. Then binding entry points to matching join points 
establishes the weaving provided that it respects aspect structures 
of both models. In an architecture school over Set the first step of 
weaving can be formalized as constructing a product C × W; 
subsequent binding of points is represented as appropriate 
pushout. These operations admit straightforward generalization to 
arbitrary school. Recall that a pushout is a colimit of a diagram 
that has a form of a pair of arrows with the same source. It is used 
in category theory to generalize set-theoretic operation of 
identifying “the same” elements in different sets. 

Definition 6. An aspect weaving of a pair of AO-morphisms 
j : B ← C → W : e, where B is called base description, W is called 
description being weaved, and C is called connector, is a pushout 
of pair j : B ← C → C × W : 〈1C, e〉 provided that it exists 
(implying that product C × W exists as well) and is preserved by 
functor str. □ 
This definition captures intuitive properties of weaving. For 
example, if B consists solely of join points (i.e. j is an 
isomorphism), then weaving produces a product B × W. Labeled 
scenarios (i.e. objects of a category AO constructed from 
constituents of scenario modeling school SM) are friendly to 
weaving. In particular, weaving exists iff the connector 
“tolerates” concurrency in a sense that it doesn’t impose specific 
order of executing different aspects of the advice bound to the 
same join point. Formally, for every x, y ∈ mod(C) conditions 
mod(j)(x) = mod(j)(y) and x ≤ y shall imply that 
asp(W)(v) = asp(W)(x) for every such v ∈ mod(W) that 
mod(e)(x) ≤ v ≤ mod(e)(y). This holds for weavers with implicit 
connectors, such as AspectJ. 
The construction of weaving suggests how to extract individual 
aspects from multiaspect program. The category-theoretic 
construction of a pullback (dual to a pushout) is employed there. 
Recall that a pullback is a limit (dual to a colimit) of a diagram 

that has a form of two arrows with the same destination. A 
pullback is used to generalize set-theoretic notion of a preimage 
of a subset: given a diagram s : S → A ← B : f, where s identifies 
a subobject S in A, and its pullback p : S ← P → B : q, morphism 
q identifies a “preimage” f –1(S). Similarly, a subaspect of an AO-
object A is essentially a preimage of its aspect structure along a 
traceable refinement represented by asp(A). 
Sound notion of a subaspect allows formal evaluation of 
modularizing crosscutting concerns, viz. separating them into 
modular design units. The first step towards modularization 
consists in explicating aspect structure of an AO-object as a 
traceable refinement. Although it may be impossible or 
ambiguous due to tangling, each nonempty AO-school contains 
models that allow naturally explicating their aspect structures as 
well as integration actions. 
Definition 7. An explication (of aspect structure) of an AO-
description S is an r-DESC-morphism s : X → mod(S) that is dual 
to a sig-trace and satisfies equality sig(sop) = asp(S). An 
explication s is called universal provided that for every AO-
morphism f : S → R and every explication r of aspect structure of 
R there exists a c-DESC-morphism q, called explication of f along 
r, such that q ◦ sop = rop ◦ mod(f). An (aspectual) core of an AO-
school is full subcategory of AO that consists of all descriptions 
that have a universal explication. □ 
Obviously a universal explication is unique up to an isomorphism. 
Moreover, observe that the explication equality resembles the 
definition of a natural transformation. This is not a mere 
coincidence: explicating an AO-morphism is actually a functor, 
and universal explications comprise natural transformation of 
functor mod (reduced on the core) to it. An example of a core AO-
object is a pair 〈A, 1sig(A)〉 obtained from a c-DESC-object A by 
functor mod*. 
Once an aspect structure of an AO-description is explicated as a 
refinement, individual aspects need to be extracted from it for 
subsequent modular development. Partitioning complex models to 
extractable aspects is known as separation of concerns. A key to 
separation is obtaining AO-morphisms with pullbacks as 
explications. 

Definition 8. An AO-morphism m : A → S is called a subaspect of 
a core AO-description S if it satisfies the following conditions: 
- A is a core aspect; 
- explication m' of m is right inverse to a trace; 
- explication equality m' ◦ aop = sop ◦ mod(m), where a and s 

are universal explications of A and S, respectively, 
determines a c-DESC-pullback. □ 

In an architecture school over Set, explication of aspect structure 
of an AO-description S consists in equipping set str(S) with 
enough “modular” structure to turn map asp(S) into actual trace 
directed from mod(S). If such equipping is possible, then a 
candidate subaspect in S can be identified, like in Set, by pulling 
back a (weak) element (i.e. a morphism whose domain rests upon 
a singleton set) along this trace. An underlying set of the pullback 
object is precisely an equivalence class of aspect structure 
equivalence relation. In order for it to form a genuine subaspect, 
both it and the codomain of the identifying element should be 
produced from the element’s domain by traceable refinements. 



Every core labeled scenario can be partitioned to subaspects. 
However, the core is rather “small”: for example, two linearly 
ordered aspects executed in interleaving mode cannot be 
separated from each other. Weaving cannot directly produce 
interleaving as well. This fact illustrates difficulties encountered 
at developing even simple client-server distributed systems. Yet 
every scenario can be labeled by linearly ordered extractable 
aspects. Their number can be either maximized by applying the 
functor mod*, or minimized by identifying so-called sequential 
subsystems [8]. This fact justifies developing aspect-oriented 
extensions to traditional programming languages that allow 
creating only sequential programs. 
As an example application of aspect-oriented scenario modeling, 
consider a distributed measurement system (DMS). As shown 
in [9], its main execution scenario consists in reiterating the 
following linearly ordered sequence of data processing 
(functional) concerns: 

           measure → store → validate → compute → display. 
During system development, each of them is refined to a complex 
aspect, yet they remain separable. However, infrastructure 
aspects, such as metadata model, monitoring, and security, are 
woven to each of them, undermining separation of concerns. So in 
order to execute different data processing functions on different 
computers, the infrastructure has to be somehow replicated among 
them. It is this replication that makes a DMS considerably more 
challenging to develop than an isolated measurement device. 
A glance on results of this section reveals that major contribution 
of AOSD into software design (in its category-theoretic 
treatment) consists in employing various kinds of limits 
(constructions dual to colimits), including a terminal object, 
products, and pullbacks. Contrast this with traditional modular 
design that, as presented in Section 2, is based solely on colimits. 
The root reason of limits to appear is of course the duality 
between integration actions and traceable refinements, as imposed 
by Definition 1. 

5. CONCLUSION 
Our work belongs to the mainstream of applications of category 
theory to computer science. Their success is due to ability of 
category-theoretic notions to formally express basic mental 
patterns of systems analysis, which is the crucial software design 
activity. In particular, fundamental results were achieved in the 
area of “categorizing” modular design. However, to the best of 
our knowledge there are no comparably powerful frameworks 
suitable to construct and analyze aspect-oriented development 
technologies. Existing AOSD methods are represented in terms of 
concrete formal devices difficult to apply beyond specific 
software development paradigms. Formalisms employed to 
express aspect-oriented concepts include process algebras [1], 
model checking [6], architecture description languages [12], 
graph transformations [17], and so on. In contrast to them, our 
approach aims at producing aspect-oriented methods suitable for 
any particular designers’ needs by formal transformation of a 
given modular architecture. 
So far presented metamodel is too abstract to be directly applied 
in software development. Its instances pertaining to major 
existing design technologies need to be developed and generously 
illustrated with examples. Such kind of development is a 

promising area of further research. Much work also has to be done 
in discovering capabilities and limitations of AO-schools, creating 
abstract yet powerful aspect weaving and separating techniques. 
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