
Semantic Aspect Interactions and Possibly Shared Join
Points

Emilia Katz Shmuel Katz
Computer Science Department

Technion – Israel Institute of Technologyn
emika, katz

o
@cs.technion.ac.il

ABSTRACT
When multiple aspects can share a join-point, they may,
but do not have to, semantically interfere. We present an in
depth analysis of aspect semantics and mutual influence of
aspects at a shared join-point, in order to enable program-
mers to distinguish between potential and actual interfer-
ence among aspects at shared join-points. An interactive
semi-automatic procedure for specification refinement is de-
scribed, that will help users define the intended aspect be-
havior more precisely. Such a refined specification enables
modular verification and interference detection among as-
pects even in the presence of shared join-points.

Keywords
Aspect interference, semantics, specification, shared join-
points

1. INTRODUCTION
Multiple aspects, when woven into the same base system,
might happen to have common join-points. This possibility
gives rise to many important questions and problems, from
understanding how the potentially applicable advice pieces
should be woven at such a common join-point (as they can-
not be applied all at the same time), to conflict detection
and resolution, since application of one advice might inter-
fere with the computation or even applicability of another.

In this paper we consider this question in depth, for as-
pects and systems modeled as state transition diagrams,
with specifications given as linear temporal logic (LTL) as-
sumptions and guarantees. As a solution to aid in under-
standing the implications of shared join-points, we describe
an easily automatizable interactive procedure that will help
users specify their intentions for aspect behavior in a spe-
cific system more precisely, and check whether there is ac-
tual interference with respect to this specification. Based
on the answers to a series of questions to the user, the LTL
specifications of the aspects are automatically augmented.
The state transition model is also modified to handle shared

join-points. Then the verification and automatic interfer-
ence checks from [10] can be used to detect subtle cases of
interference at shared join-points, or establish that there is
no such interference, using the augmented specifications.

Ways to detect shared join-points are described in [14, 15].
Several works study shared join-points as a source of possible
conflicts, some (e.g., [14]) even see common join-points as
the main source of interference among aspects. A language
independent technique [8] makes it possible to check whether
an undesired order of aspect application at a shared join-
point is possible, where the list of undesired orders has to
be explicitly provided by the user. It is implemented in the
“Secret” tool for Compose* [2, 13]. However, presenting
the undesired orders list requires a thorough analysis of the
system by the user, and also might not be able to reflect
all the intended behaviors, as at different states different
orders of application might be possible. In [1] another tool
for checking potential interference at common join-points is
described, applicable for the Compose* language. It checks
all the possible orders of aspect applications at a common
join-point, and declares a conflict if different orders result
in different resulting states. This method is fully automatic,
but may lead to many false positives (some of which are
described later in this paper). An additional tool for aspect
interference detection, performing dataflow checks to find
out whether one aspect affects variables used in another, is
presented in [17]. It can also be used to check interactions at
shared join-points, though its scope is broader. Interactions
found by this tool are also only potentially harmful.

Weaving techniques for conflict resolution at shared join-
points appear in [14, 6, 7]. In [14], a first analysis of types
of mutual influence of aspects applied at a shared join-point
appears. This analysis is extended in our paper, though
used for a different purpose.

The intended semantics of weaving several aspects at a com-
mon join-point in a pre-defined order is addressed in papers
on the semantics of aspects, such as [16, 4, 5].

However, as described in [12], not all the conflicts at shared
join-points can be resolved by a clever weaving. Thus it is
important for the user to be able to detect the conflicts and
differentiate between real problems and false alarms. Below
we show the possible influences of multiple aspects on each
other at a join-point, and classify them according to the way
they affect the specification of the aspect.

The paper is organized as follows: Our analysis of aspect se-
mantics and types of mutual influence at shared join-points
appears in Section 2. In Section 3 we show the questions
the answers to which can be automatically processed to add
appropriate predicates to a temporal logic specification. Sec-
tion 4 gives examples of applying the questions. We conclude
in Section 5.

2. SEMANTICS OF ASPECT BEHAVIOR AT
A COMMON JOIN POINT

In AspectJ, the aspects at a common join-point are applied
one after another, and each time before performing an ad-
vice the pointcut condition is re-checked. As a result of
such a semantics, when a base system arrives at a join-point
matched by an aspect A, it is not necessarily the case that
the advice of A is immediately executed. It might be the
case that other aspects are present in the system that also
match this join-point, and it might thus happen that some
other advices are executed before the advice of A, changing
the state of the system in which A will be applied. More-
over, A’s advice might not be executed at all, in case one
of the previously executed aspects left the system in a state
which is not a join-point of A any more.

Thus the execution of the woven system from the moment
it arrives at a join-point matched by some of its aspects is
determined not only by the set of matching aspects, but
also by the order of their application at this point. So if
this order of application is not explicitly prescribed by the
user, the non-determinism of aspect application may result
in different states.

However, the fact that different orders of advice application
lead to different resulting states does not necessarily mean
that the aspects semantically interfere. Let us consider the
following example, presented in [1]: Several aspects are de-
fined for systems in which messages of type String are sent
between objects. Two of these aspects are Logging and En-
cryption. Both aspects are applied at the same join-points -
when a message is sent in the system - and different orders
of their application will result in different states of the sys-
tem. If Logging is executed before Encryption, the logged
message will be the original one, otherwise it will be the en-
crypted message produced by the Encryption aspect. In [1]
such a situation is considered interference between the two
aspects, but in fact the decision on whether it is interfer-
ence or not should depend on the aspects’ specifications. In
our example, the goal of the Encryption aspect is to en-
crypt every message before it is sent to the server. Consider
the following possible specifications of the Logging aspect,
described more formally in Section 4:

1. The log should record all the messages as they were
originally attempted to be sent by the user, so that
the user will be able to view the list of messages (s)he
sent.

2. The log should record all the messages as they were
actually sent to the server in order to compare the
sent messages to the received ones (as received) and
verify that no messages got lost or garbled.

3. The goal of the Logging aspect is to measure the net-

work activity of the system. Thus, though the contents
of the messages are written to the log, they are of no
importance to the user, and what matters is only the
number of messages sent and their frequency, e.g. the
times of the messages sent and the number of lines in
the log.

4. The logging records all the attempts to send a message,
even if they are aborted for whatever reason. It logs
each message as it was attempted to be sent by the
user.

All the cases above can happen in our example system, and
different order of application of the two aspects at their com-
mon join-point will lead to different resulting states, but
not in all the cases above do the aspects interfere. The re-
quirements from the Encrypting aspect are never violated
by Logging, no matter in what order they are executed, but
in variants (1), (2) and (4) the aspects may interfere: in vari-
ants (1) and (4), the goal of Logging will not be reached if
the Encrypting aspect is applied first, and in variant (2), ap-
plying Encrypting after Logging will cause a problem. How-
ever, in variant (3) applying the aspects in any order will
not violate the requirements from Logging or from Encrypt-
ing, thus there will be no interference. As will be shown
later, an Authorization aspect can also be applied, further
complicating the situation.

The above example shows the need to analyze possible se-
mantic effects of sharing a join-point more deeply. We con-
sider the AspectJ operational semantics, where first all the
places in the code of the base program that are matched
by the static part of some aspect’s pointcut, are identi-
fied. Such places are called shadow join-points. Note that a
shadow join-point is usually defined by a place in the code
of the program, but sometimes can contain additional infor-
mation. After shadow join-point identification, at each such
join-point the weaving order of the potentially applicable
aspects is defined (an aspect is considered potentially appli-
cable if the static part of its pointcut matches the current
shadow join-point). The weaving order does not have to be
defined statically, it can be determined upon arrival of the
computation at the join-point. At last, when a computation
arrives at a join-point, each of the potentially applicable as-
pects, one by one and in the previously defined order, is
checked for full applicability and immediately executed if
indeed applicable (i.e., if both static and dynamic parts of
the pointcut are matched by the current state). All the rest
of the paper refers to this semantics, and if a different se-
mantics is chosen, different reasoning might be needed. This
operational semantics shows the need to reason about the
part of computation between the first moment it arrives at
some shadow join-point and the moment it leaves this join-
point, which includes all the aspect applications performed
at the join-point. We need some new terminology to make
this reasoning easier. First of all, we need a name for the
period of interest:

Definition 1. A sequence of states s1, . . . , sk in a com-
putation of the woven system is called a pointcut occurrence
of aspect A if s1 is the state when a join-point of A is first
reached (that is, s1 is matched by the full pointcut descriptor

of A, and the previous state is not), and sk is the state when
the computation is about to leave the corresponding shadow
join-point, after application of all the appropriate aspect ad-
vices according to the current weaving policy (that is, sk is
matched by the static part of the pointcut descriptor of A,
and the next state is not).

Two aspects share a join-point if they have at least one over-
lapping pointcut occurrence. Note that overlapping pointcut
occurrences do not have to coincide, as it might be a case
that an execution arrives at a state s matched by the point-
cut descriptor of aspect B, and by the static part of pointcut
descriptor of A and B, but not matched by the dynamic part
of A’s pointcut descriptor, and only the execution of aspect
B at s will result in a state in which both static and dynamic
parts of A’s pointcut hold. In such a case the pointcut oc-
currence of A will be contained in the pointcut occurrence
of B, but not vice versa. For example, consider the case of
aspects A and B applied to a grades managing system. Let
aspect B be responsible for giving bonuses and factors to
grades, and let aspect A be in charge of enforcing a required
grades format, by rounding non-integer grades and replacing
all the grades above 100 by 100. Both aspects are applied
before the publication of the grades, so the static parts of
their pointcuts are the same. However, aspect A should be
applied only if the grade to be published is not an integer
or exceeds 100. Clearly, a computation might arrive at a
place before grade publishing with an integer grade below
100, thus matched by the dynamic part of B’s pointcut only
(and not of A’s), but as a result of B’s modifications, a non-
integer grade or a grade above 100 is obtained, bringing the
computation to a state that is matched by A’s pointcut as
well.

Previously, two kinds of join-points have been examined:
shadow join-points and actual join-points. A shadow join-
point of aspect A, as mentioned above, is a place in the
code of the base program that is matched by the static part
of A’s pointcut. An actual join-point of A is a state in
a computation of the system at which the advice of A is
actually applied. However, for the purpose of our analysis,
a third type, arrival join-points, is needed:

Definition 2. A state s in a computation of the woven
system is called an arrival join-point of aspect A if s is the
first state of a pointcut occurrence of A - the state when a
join-point is first reached in that occurrence.

Note that an arrival join-point differs from a shadow join-
point because it is matched also by the dynamic part of A’s
pointcut descriptor. It also differs from an actual join-point:
when the case of shared join-points was not possible, every
arrival join-point reachable in the woven system became an
actual join-point, but now it does not have to be so, because
other aspects can intervene.

Note also that the pointcut of A identifies states either be-
fore or after some events of interest, but the definitions above
are applicable for both cases. And if A is an around advice,
it either has a proceed, and then can be viewed as a com-
bination of two advice pieces - one before, and one after the
corresponding event, or A has no proceed, and then can be

viewed as a before advice, one of the effects of which is a
change in the program counter of the base system. If indeed
A’s advice changes the program counter of the base system,
the end of its execution is also the end of the current point-
cut occurrence - both according to our intuition and to the
definitions above.

Now let a state s be a join-point matched by aspect A,
that appears inside pointcut occurrence π. We distinguish
between four possible cases of other aspects’ behavior that
can influence the result of weaving A into a system:

1. Aspect B executed before A in π changes a value of
some variable used by A as an input to its computa-
tions.

2. Aspect C executed after A in π changes a value of some
variable updated by a computation of A.

3. Aspect D executed before A in π brings the system to
a state s′ which is not a join-point of A any more.

4. Aspect E executed after A in π invalidates the condi-
tion on which the join-point predicate depended, thus
removing a join-point of A after A has already been
executed at it.

The following analysis enables us to determine whether the
above described influences actually cause an interference:
Let the semantics of A be given by the assumption-guarantee
pair (PA, RA), where RA is the guarantee of A that must
hold in any woven system containing A, provided the system
into which A has been woven satisfied the assumption of A,
PA. Note that A can be woven into a system that does not
satisfy PA, but then RA is not guaranteed to hold in the
resulting system. We denote by Vin(A) a set of variables A
uses as input to its computations, and by Vout(A) - a set of
variables in which A stores the result of its computations.

Case 1. Change Before (CB). In case an aspect B executed
before A at s changes a value of a v ∈ Vin(A), the
result of A’s calculations might differ from the one we
would get if the value of v has not been changed from
the moment the computation arrived at s till the mo-
ment the advice of A was executed. If the guarantee
of A contains a requirement for A’s correctness, and
this requirement is formulated in terms of a specific
connection between the value of v when we arrive at a
join-point and the value of v after the computation of
A is finished, RA will be violated in this case. (This
can happen, for instance, in variant (1) of the Logging
and Encrypting example above: we anticipate that the
message string written to the log is the one created by
the user and readable by the user, but if Encrypting is
executed before Logging, what we actually get in the
log is the encrypted message, because the contents of
the message was changed by the Encrypting aspect.)
Note that if the requirement for correctness of A’s cal-
culations binds the values at the end of A’s execution
only to the values at the beginning of execution of A
(as in variants (2) and (3) of the Logging and Encrypt-
ing example, with Encryption before Logging), it will
not be violated in this case.

Case 2. Change After (CA). In case some aspect C executed
after A at s changes a value of a v ∈ Vout(A), the guar-
antee of A will be violated if it required preservation of
the result of A’s computation till some future point in
the execution where the value of v is used. (As in vari-
ant (2) of the example, when Logging occurs before
Encryption). Otherwise, as in variant (3) of the ex-
ample with Logging before Encryption, the guarantee
of A will not be influenced. If, indeed, a requirement
for preservation of the value of v till some state use v
is part of A’s guarantee, then part of A’s assumption
should be that in the base system the value of v is not
modified from the actual place of application of A’s
advice till arrival to the use v state.

Case 3. Invalidation Before (IB). In this case there is no
state in A’s pointcut occurrence at which A is exe-
cuted. Such a situation happens, for example, with
Logging and Authorization aspects from Section 4 when
the Authorization aspect is applied before Logging and
the authorization of the user fails, thus preventing mes-
sage sending, and removing the join-point of the Log-
ging aspect. In variant (4) of the Logging specification,
this leads to violation of the guarantee of Logging, as
a message was prepared for sending and should have
been logged, but the Logging aspect never has a chance
to be applied, because the authorization failure finishes
the pointcut occurrence.

Case 4. Invalidation After (IA). In this case A is executed
at some point at which it shouldn’t have been applied,
because when arriving to the point of interest, the
weaver “does not know” that the reason for A’s ap-
plication will be removed by one of the aspects com-
ing after A. If the specification of A requires that it
is applied only if followed by some event in the fu-
ture, and this following event is removed by another
aspect, then the specification of A is violated. This is
the case, for example, in variants (1), (2) and (3) if
the Authorization aspect is applied after Logging and
the authorization of the user fails. Note that in variant
(4), on the other hand, the guarantee of Logging is not
violated if Logging precedes Authorization.

3. SPECIFICATION OF ASPECTS WITH POS-
SIBLY SHARED JOIN-POINTS

3.1 Guided Specification Construction
In order to be able to detect situations in which application
of other aspects at a common join-point may contradict the
specification of the examined aspect, the specification of the
aspect must be expressive enough. The LTL specifications
include:

• “G ϕ” (“Globally”) - meaning that the formula ϕ is
true from the current state on.

• “F ϕ” (“Finally”) - from the current state a state in
which ϕ holds can be reached.

• “O ϕ” (“Once”) - dual to “Finally”: a state satisfying
ϕ occurred earlier in the computation.

• “ϕ U ψ” (“Until”) - a state in which ψ holds is reached
later in the computation, and until then ϕ holds.

• “ϕ W ψ” (“Weak Until”) - almost like “Until”, but a
state in which ψ holds does not have to be reached. In
this case ϕ holds from now on forever.

We say that a computation satisfies an LTL formula if this
formula holds in its first state. From the analysis in Section 2
the need for the following predicates arises:

• at(ptc): assuming that ptc is the predicate defining A’s
pointcut, the predicate at(ptc) means that the compu-
tation has just arrived at a join-point of A. It is useful
for reasoning about what happened in the computa-
tion after the moment it arrived at a possibly shared
join-point. In fact, this is the predicate marking the
arrival join-points of A.

• after prev asp(A): this predicate becomes true at the
moment the weaver has applied all the aspects that
preceded A at the current shadow join-point, accord-
ing to the algorithm of the current weaver. The usage
of this predicate is twofold: First, the user has to refine
the definition of A’s pointcut by taking into considera-
tion the new predicate, after prev asp(A), because now
A should only be applied at states satisfying both ptc
and after prev asp(A), so the pointcut of A becomes
ptc∧after prev asp(A) (which matches the definition
of the set of all the actual join-points of A). Second, the
predicate is used in assumptions added to A’s speci-
fication when the cases of “change before”, “change
after” and “invalidation before” presented in Section 2
are possible, to be able to reason about the behavior
of the base system from the moment its computation
arrives at a join-point of A till the moment A’s advice
is actually executed.

• promise ful(A): this flag is used by the weaver in order
to give each of the aspects sharing a shadow join-point
exactly one chance to be applied at it, as is explained
later in Section 3.2. The flag promise ful(A) is false
when the computation arrives at a shadow join-point,
becomes true at the moment the execution of A’s ad-
vice begins, and remains true until the computation
leaves this shadow join-point.

• asp ret(A): this predicate describes the possible return
states of the aspect. This is needed for some of the
cases below. Typically, the aspect return state has the
same control location as the join-point state (the val-
ues can change, but not the program counter of the
join-point). For the Logging aspect, for example, the
base state is actually not changed, and only the log
(local to the aspect) is modified. However, it does
not have to be so in general. Thus in order to define
the asp ret(A) predicate, the user is proposed a de-
fault predicate, automatically constructed by the sys-
tem as described in [11]. The idea of construction is to
create a system containing representations of all the
possible computations of an aspect from all its pos-
sible initial states, without actually applying the as-
pect to any specific base system (this is done using the
MAVEN tool [9] and some built-in functionality of the
NuSMV [3] model-checker), and then to build a predi-
cate describing all the states of this system that satisfy

the return conditions of the aspect. This default pred-
icate can then be manually modified.

Using the above predicates, all the requirements mentioned
in Section 2 can be expressed, though not all the predicates
are needed for all the cases of specification : sometimes some
of them can be abstracted out without loss of precision of
modeling and of subsequent verification. Below we present
a way to express each of the additional requirements.

The construction of the refined specification can be auto-
matic, but user-guided: several guiding questions will be
presented to the user, and the answers to these questions
will determine the new requirements. The construction pro-
cess will thus be as follows:

Step 1. Here we will treat the dependency of our aspect,
A, on its input variables, in order to find out whether the
values of the input variables need to be preserved between
the arrival and the actual join-points of A (in order to be
able to treat the “change before” case from Section 2). The
user is asked the following question:

Q. 1: Are there any input variables of A for which the advice
of A depends on the value as it is at the arrival join-
point and not as it is when the advice of A actually
starts its execution?

• If yes, the user should provide a list of variables for
which such a dependency exists.

• For each variable v in the list, we add the following CB
(for “Change Before”) statement to the assumption of
A:

CB(v) = G[(at(ptc) ∧ v = V) →
((v = V W (after prev asp(A) ∧ v = V))]

where V is a logical variable keeping the value of v as
it was at the arrival to the join-point.

• If there are no variables in the list, nothing is added
to the specification of A at this step.

Step 2. Here we treat the case when part of the effect of
the aspect is modification of some state variables, and this
effect should be preserved till some point in the future of
the computation. This is important for the “change after”
case from Section 2. The questions asked here are:

Q. 2: Are there any state variables of the system into which
A is woven the value of which should be preserved af-
ter A’s execution is finished? (For example, variables
modified by A, or variables that are semantically con-
nected to A’s local variables.)

• If yes, the user is asked to fill in a table with two
columns: the first column is the name of the variable,
v, and the second is a state predicate use v describing
the state of the woven system until which the value of

v should be preserved. For example, for variant 2 of
the Logging aspect, that logs messages as they are sent
to the server, the message should not change between
the moment it has been logged and the moment it is
actually sent. Thus the use v predicate will describe
the moment of actual sending of the message (see Sec-
tion 4 for more details). After the table is filled out,
for each variable v with state predicate use v in the
table, we add the following CA (for “Change After”)
statement to the assumption of A:

CA(v) = G[(asp ret(A) ∧ v = V) →
(v = V W (use v ∧ v = V))]

where V is a logical variable keeping the value of v as
it was at the end of the execution of A’s advice.

• If there are no variables in the list, nothing is added
to the specification of A at this step.

Step 3. In this step we construct requirements correspond-
ing to the “invalidation before” case in Section 2. Before
the problem of common join-points in modular verification
was considered, there existed an implicit assumption that all
the arrival join-points of an aspect are its actual join-points.
But when a join-point might be shared, this is not neces-
sarily so, because the join-point can be invalidated; thus an
additional explicit assumption of this possibility is needed.
The user is asked the following question:

Q. 3: Does it have to be that each time an arrival join-point
of A is reached, A is eventually executed at it? That is,
is it an error if previously executed aspects invalidate
the condition for A’s application?

• If no, nothing is added to the assumption of A in this
step.

• If the answer was “yes”, the following IB (for “Invali-
dation Before”) statement is added to the assumption
of A:

IB , G[at(ptc) → (ptc W (after prev asp(A) ∧ ptc))]

Step 4. The goal of this step is to enable the verification
process to treat the case of “invalidation after” from Sec-
tion 2. We ask the user the following questions:

Q. 4.1: Does the reason for a state to be A’s join-point lie
in the future of the computation? That is, does A’s
pointcut descriptor refer to any event following the
join-point? For example, is the advice of A a “before”
advice?

• If no, nothing is added to the assumption of A in this
step.

• If the answer was “yes”, the next question is asked:

Q. 4.2: Is it an error if the advice of A is performed, but the
presumably-following event does not follow? (For ex-
ample, because the future computation was changed
by other aspects)

• If the answer is “no”, nothing is added to A’s assump-
tion in this step.

• If the answer is “yes”, the user is required to pro-
vide a state predicate, foll event, meaning that the
desired following event has just occurred. The user
is then prompted to provide some optional restric-
tions on the values immediately after A’s execution,
the values at the moment the desired event occurs,
and the connections between them (including, for ex-
ample, value preservation). The restrictions should be
given in the form of two predicates: vals after asp and
vals at foll event. The default value for both predi-
cates is true.

• The following IA (for “Invalidation After”) statement
is then added to the assumption of A:

IA , G[(asp ret(A) ∧ vals after asp)

→ F (foll event ∧ vals at foll event)]

After the above automatic modifications, the specification
constructed both captures the requirements of the user re-
garding the desired effect of aspect application, and contains
sufficient assumptions to make the modular verification re-
sults applicable to systems with aspects sharing join-points.

3.2 Influence on aspect modeling
For the purpose of automatic modular verification of aspects
([9, 11]) and interference detection ([10]), the following
corrections to the modeling process are performed in order
to obtain a correct weaving of advice models into the generic
representations of suitable base systems:

• As follows from the discussion in Step 3 of Section 3.1
(treating the case of “invalidation before”), the point-
cut definition of A should be refined to be ptc′ = ptc∧
after prev asp(A), so that ptc′ marks actual and not
arrival join-points of A, because only at these points
the advice of A is now executed. This change of the
aspect model is done automatically.

• In order to model an aspect with possibly shared join-
points, we need to be able to model returning of the ad-
vice to the join-point from which its execution started,
so that the same advice will not be applied again at
this point, but the other aspects will be able to ex-
ecute. When several aspects can share a join-point,
the weaver has to give them all exactly one chance
to be applied at it. This can be viewed as fulfilling
a promise to each one of these aspects. Thus a flag
promise ful(A) is added to the variables of the weaver
for each aspect A.

3.3 Full Specification and Verification Process
Given a library of aspects, two things are important for its
usage: correctness of each aspect alone with respect to its
assume-guarantee specification, and interference detection
among the aspects. The question of possibly shared join-
points is already important when the specification of indi-
vidual aspects is defined. At this stage one of the tools for
detection of potential interference at common join-points

detection can be run, e.g. [1], and only if a potential inter-
ference is detected the specification refinement described in
Section 3.1 has to be performed for the potentially interfer-
ing aspects. (If no tool for potential interference detection is
run, all the aspect specifications should undergo the process
from Section 3.1, to ensure the soundness of the verification
process.)

After all the aspects in the library are specified and aug-
mented as described above, existing tools for modular aspect
verification ([9, 11]) and interference detection ([10]) should
be run. Modularity of verification here means that the cor-
rectness of the individual aspects and of their combinations
is verified independently of any concrete base system, thus
dividing the whole verification process into two independent
parts: whenever an aspect, or a collection of aspects, are to
be actually woven into a base system, one part of verification
is to check that the base system satisfies the assumptions of
all the aspects given, and the other part is to ensure that all
the aspects are correct w.r.t. their assume-guarantee spec-
ifications, and do not interfere. Such a modularity enables
us to check the correctness and interference-freedom of the
library of aspects off-line and once and for all, and not each
time some aspects are actually woven into a given base sys-
tem, thus the verification effort is very much reduced. An-
other advantage of modular verification is that the models
verified are smaller, as we never need to actually examine a
woven system, and this enhances the model-checking process
(and sometimes even makes it possible).

4. EXAMPLES
We illustrate our analysis and verification approach on a
collection of aspects that can be a part of a communication-
aspects library. The aspects presented here are applicable
for systems with message-passing, and they are variants of
the aspects used as an example in [1]. They are also men-
tioned in Section 2.

Logging aspect (L) logs the message - sending in the sys-
tem. As described earlier, there are four variants of the
logging aspect in the library:

L1: Logging all the sent messages as the user originally
attempted to send them.

L2: Logging all the messages that were actually sent to the
server (the message is logged as it was sent).

L3: Logging the frequency of message sending.

L4: Logging all the attempts to send a message (the mes-
sage is logged as it was originally attempted to be sent
by the user).

Now we need to construct the specifications for the above
variants of Logging aspect. The following predicates and
variables definitions will be used in the construction:

• msg to send : a predicate which is true when a message
is about to be sent, that is, when message sending is
attempted. That is the moment before the message-
sending procedure is actually called, and the parame-
ters to the method call are represented by the variables

msg c and msg t, containing the two parts of the mes-
sage to be sent: the contents and the creation time,
respectively.

• msg send : a predicate which is true at the moment a
message (with contents msg c and creation time msg t)
is sent.

• in log (< str >) : a predicate that is true if the string
”str” appears in the log.

The pointcut of all the variants of the aspect is the moment
before the message-sending procedure is called. More for-
mally, ptc = msg to send. The guarantees of the aspects
emerge in the usual way from the purpose of each of them,
and are written more formally below. If there would be no
possibility of sharing join-points, the assumption of all the
logging aspect variants would be that if a message is sent,
there indeed was an attempt to send this message (i.e., this
very same message has been passed as a parameter to the
message-sending procedure). More formally,

PL , G([msg send ∧msg c = C ∧msg t = T]

→ O[msg to send ∧msg c = C ∧msg t = T])

However, we are aware of the possibility of each of the as-
pects to share a join-point with other aspects, such as En-
cryption and Authorizatoin, thus additional assumptions for
the aspects are constructed according to the procedure from
Section 3.1.

Specification for L1:. A possible guarantee for L1 is:

RL1 , G([at(msg to send) ∧msg c = C∧
msg t = T ∧ F (msg send)]

↔ [F(in log(< X, T >))])

meaning that messages that appear in the log are all the
sent messages, but as they were first attempted to be sent
by the user. (Note that the fact that each message is accom-
panied by creation time information ensures a one-to-one
correspondence between messages and lines in the log.)

The answers for the assumption-construction questions for
L1 are as follows:

Q.1: “Yes”. The aspect depends on the contents and time
information of the message as they were at the join-
point, thus the values of the variables msg c and msg t
should be preserved. Thus, substituting into the tem-
plate CB(v), the following statements are added to the
assumption of L1:

CB(c) = G[(at(msg to send) ∧msg c = C) →
((msg c = C)

W (after prev asp(L1) ∧msg c = C))]

and

CB(t) = G[(at(msg to send) ∧msg t = T) →
((msg t = T)

W (after prev asp(L1) ∧msg t = T))]

Q.2: “Yes”. The time information of the message should
be kept intact till the moment the message is actually
sent. There is one entry in the table: the variable
msg t, matched by the msg send predicate. Thus the
addition to the aspect assumption at this stage is:

CA(t) = G[(asp ret(L1) ∧msg t = T) →
((msg t = T) W (msg send ∧msg t = T))]

Q.3: “No”. If the message will not be sent, it should not
appear in the log, thus the advice of L1 should not be
applied for it. Nothing is added to the assumption of
L1 at this stage.

Q.4.1: “Yes”. The advice of L1 is a “before” advice.

Q.4.2: “Yes”. It is an error if a message that is not sent
and will not be sent appears in the log. The desired
following event is the event of sending the message (de-
fined by its creation time only, as that is what matters
for the purpose of L1). Thus foll event = msg send,
vals after asp = (msg t = T) and vals at foll event =
(msg t = T). Substituting into the IA template, we
obtain the following addition to L1’s assumption:

IA = G[(asp ret(L1) ∧msg t = T) →
F (msg send ∧msg t = T)]

Specification for L2:. A possible guarantee for L2 is:

RL2 , G([F(msg send ∧msg t = T ∧msg c = C)] ↔
[F(in log(< C, T >))])

meaning that a message appears in the log if and only if it
has been, or will be, sent.

The construction of the assumption for L2 is performed sim-
ilarly to that of L1, with only two differences: An additional
variable, msg c, should be preserved after the aspect finishes
its computation (affecting the CA(v) and IA statements),
and no values from arrival join-point should be kept (mak-
ing CB(v) true). Together we obtain that the addition to
the assumption of L2 as a result of the guided specification
construction procedure consists of the following statements:

CA(c) = G[(asp ret(L2) ∧msg c = C) →
((msg c = C) W (msg send ∧msg c = C))]

CA(t) = G[(asp ret(L2) ∧msg t = T) →
((msg t = T) W (msg send ∧msg t = T))]

and

IA = G[(asp ret(L2) ∧
msg c = C ∧msg t = T) →
F (msg send ∧msg c = C ∧msg t = T)]

Specification for L3:. A possible guarantee for L3 is:

RL3 = G([F(msg send ∧msg t = T)] ↔
[F(in log(< T >))])

meaning that the log contains all the creation-times of the
sent messages.

The construction of the assumption for L3 is almost the
same as for L2, except for the fact that the value of msg ts c
need not be preserved after the aspect finishes its computa-
tion (thus giving the same CA(t) and IA statements as for
L1). Thus the addition to the assumption of L3 is

CA(t) = G[(asp ret(L3) ∧msg t = T) →
((msg t = T) W (msg send ∧msg t = T))]

and

IA = G[(asp ret(L3) ∧msg t = T) →
F (msg send ∧msg t = T)]

Specification for L4:. A possible guarantee for L4 is:

RL4 , G([at(msg to send) ∧msg c = C ∧msg t = T]

↔ [F(in log(< C, T >))])

meaning that the log contains exactly the messages attempted
to be sent by the user.

The construction of the assumption for L4 is almost the
same as for L1, with the following differences only:

• The answers to Question 2.1 and Question 4.1 are neg-
ative, as the logged message does not have to be sent,
so CA = true and IA = true in this case.

• The answer to Question 3 is positive, as all the message
sending attempts should be logged, including those
aborted because of authorization failure.

Thus the additions to the assumption of L4 are:

CB(c) = G[(at(msg to send) ∧msg c = C) →
((msg c = C) W

(after prev asp(L4) ∧msg c = C))]

CB(t) = G[(at(msg to send) ∧msg t = T) →
((msg t = T) W

(after prev asp(L4) ∧msg t = T))]

and

IB = G[at(msg to send) → (msg to send W

(after prev asp(L4) ∧msg to send))]

Encrypting aspect (E) is responsible for encrypting mes-
sages before sending. E should guarantee that each time a
message is sent, it is encrypted. In fact, there is more to E:
each time a message is received, it is decrypted. But this
part is irrelevant to our example, so we’ll ignore it here. E’s
guarantee can be written as:

RE , G(msg send → encrypted(msg c))

where the predicate encrypted(msg c) means that the con-
tents of the sent message are encrypted. The assumption

of E, constructed by the procedure in Section 3.1, emerges
from the fact that the encrypted message value should be
preserved till (and if) it is actually sent:

PE = CA(msg c) = G[(asp ret(E) ∧msg c = C) →
(msg c = C W (msg send ∧msg c = C))]

Authorization aspect (A) ensures that a message is sent
to the server only if the current user has the needed permis-
sions to communicate with the server. A’s guarantee can
be

RA , G(msg send → permit usr send)

where the predicate permit usr send means that the user has
enough permissions to send the message. When constructing
the assumption of A, all the answers to the questions asked
happen to be negative, thus A does not need to assume
anything about the base system, and we can take

PA , true

After the aspects are specified as above, if the usual verifi-
cation procedure is applied, several cases of interference will
be detected, as shown in Figure 1. A cell in the table cor-
responding to aspects pair < M ; N > can have one of the
following values:

• “—” means that there is no interference when weaving
first M and then N into any appropriate system;

• “X” - if the check is irrelevant, for example, we do not
check interference among the aspect and itself. In our
case we also do not check interference between different
variants of the logging aspect, because we assume that
only one of these aspects is woven into a system each
time.

• Otherwise, there is interference among the two aspects
if M is woven before N, and the cause of the interfer-
ence is written in the cell, according to the classifica-
tion from Section 2: “CB” stands for Change Before,
“CA” - for Change After, “IB” - for Invalidation Be-
fore, and “IA” - for Invalidation After.

 second

first

E A L1 L2 L3 L4

E X --- CB --- --- CB
A --- X --- --- --- IB
L1 --- IA X X X X
L2 CA IA X X X X
L3 --- IA X X X X
L4 --- --- X X X X

Figure 1: Interference checks summary.

For example, the cell < E, L1 > is marked by CB, mean-
ing that the Encryption aspect, if woven first, invalidates
the assumption of the first variant of Logging, and that the
violated part of the assumption is related to the “change
before” case from Section 2: changing parameter values be-
tween arrival and actual join-points of L1. And the cell

< L1, A > is marked by IA as the Authorization aspect,
when woven after the first variant of Logging, invalidates
the part of Logging specification related to the “Invalida-
tion After” case from Section 2: removing a join-point of
the aspect after its advice has already been applied.

5. CONCLUSIONS
This paper has concentrated on a problematic issue of as-
pect semantics: the possible interference that can arise from
shared join-points. As an aid to programmers, an inter-
active semi-automatic augmentation of the specification is
suggested. The questions asked and the results of formal
verification should help the user understand the fine points
of such interactions, and how they could affect the correct-
ness of their aspect systems.

6. REFERENCES
[1] M. Akşit, A. Rensink, and T. Staijen. A

graph-transformation-based simulation approach for
analysing aspect interference on shared join points. In
AOSD, pages 39–50, 2009.

[2] L. Bergmans. Towards detection of semantic conflicts
between crosscutting concerns. In AAOS Workshop at
ECOOP’03, 2003.

[3] A. Cimatti, E.M. Clarke, F. Giunchiglia, and
M. Roveri. NuSMV: a new Symbolic Model Verifier.
In CAV’99, LNCS 1633, pages 495–499. Springer,
1999. http://nusmv.itc.it.

[4] Curtis Clifton and Gary T. Leavens. MiniMao1:
Investigating the semantics of proceed. Science of
Computer Programming, 63(3):321374, 2006.

[5] Simplice Djoko Djoko, Rémi Douence, and Pascal
Fradet. Aspects preserving properties. In PEPM,
pages 135–145, 2008.

[6] R. Douence, P. Fradet, and M. Sudholt. Composition,
reuse, and interaction analysis of stateful aspects. In
Proc. of 3th Intl. Conf. on Aspect-Oriented Software
Development (AOSD’04), pages 141–150. ACM Press,
2004.

[7] Rémi Douence, Pascal Fradet, and Mario Südholt. A
framework for the detection and resolution of aspect
interactions. In GPCE, pages 173–188, 2002.

[8] Pascal Durr, Lodewijk Bergmans, and Mehmet Aksit.
Reasoning about semantic conflicts between aspects.
In ADI’06, pages 10–18, 2006.

[9] M. Goldman and S. Katz. MAVEN: Modular aspect
verification. In Proc. of TACAS 2007, volume 4424 of
LNCS, pages 308–322, 2007.

[10] E. Katz and S. Katz. Incremental analysis of
interference among aspects. In FOAL ’08, pages
29–38. ACM, 2008.

[11] E. Katz and S. Katz. Modular verification of strongly
invasive aspects. In Languages: From Formal to
Natural, volume 5533 of LNCS, pages 128–147.
Springer, 2009.

[12] Günter Kniesel. Detection and resolution of weaving
interactions. T. Aspect-Oriented Software
Development, 5:135–186, 2009.

[13] I. Nagy, L. Bergmans, and M. Aksit. Declarative
aspect composition. In Software Engineering
Properties of Languages and Aspect Technologies
(SPLAT) Workshop, 2004.

[14] István Nagy, Lodewijk Bergmans, and Mehmet Aksit.
Composing aspects at shared join points. In
NODe/GSEM, pages 19–38, 2005.

[15] Dong Ha Nguyen and Mario Südholt. VPA-based
aspects: Better support for aop over protocols. In 4th
IEEE International Conference on Software
Engineering and Formal Methods (SEFM’06), pages
167–176, 2006.

[16] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. T. on Programming Languages and
Systems, 26(5):890–910, 2004.

[17] N. Weston, F. Taiani, and A. Rashid. Interaction
analysis for fault-tolerance in aspect-oriented
programming. In MeMoT’07, pages 95–102, 2007.

