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ABSTRACT
There is some consensus in the aspect-oriented community that
a notion of interface between joinpoints and advice may be nec-
essary for improved modularity of aspect-oriented programs, for
modular reasoning, and for overcoming pointcut fragility. Differ-
ent approaches for adding such interfaces, such as aspect-aware in-
terfaces, pointcut interfaces, crosscutting interfaces, explicit join-
points, quantified typed events, open modules, and joinpoint types
decouple aspects and base code, enhancing modularity. However,
existing work has not shown how one can write specifications for
such interfaces that will actually allow modular reasoning when as-
pects and base code evolve independently, and that are capable of
specifying control effects, such as when advice does not proceed.
The main contribution of this work is a specification technique that
allows programmers to write modular specification of such inter-
faces and that allows one to understand such control effects. We
show that such specifications allow typical interaction patterns, and
interesting control effects to be understood and enforced. We illus-
trate our techniques via an extension of Ptolemy, but we also show
that our ideas can be applied in a straightforward manner to other
notions of joinpoint interfaces, e.g. the crosscutting interfaces.

1. INTRODUCTION
In the past decade, the remarkable visibility and adoption of

aspect-orientation [28] in research and industrial settings only con-
firms our belief that new AOSD techniques provide software engi-
neers with valuable opportunities to separate conceptual concerns
in software system to enable their independent development and
evolution. This same decade of AOSD research has also witnessed
an intense debate surrounding two issues: pointcut fragility and
modular reasoning. The debate on pointcut fragility focuses on
the use of pattern matching as a quantification mechanism [48,50],
whereas that on modular reasoning focuses on the effect of AO
modularization on independent understandability and analyzability
of modularized concerns [1, 17, 26, 29]. Although the jury is still
out, in the later part of the last decade some consensus has begun
to emerge that a notion of interfaces may help address questions of
pointcut fragility and modular reasoning [1, 13, 20, 29, 41, 47, 49].
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1.1 The Problems and their Importance
Although these proposals differ significantly in their syntactic

forms and underlying philosophies, the permeating theme is that
they provide some notion of explicit interface that abstracts away
the details of the modules that are advised (typically referred to
as the “base modules”) thus hiding such details from modules that
advise them (typically referred to as the “crosscutting modules”
or “aspects”). Leaving the comparison and contrast of software
engineering properties of these proposals to empirical experts, in
this paper we focus on studying the effectiveness of such interfaces
towards enabling a design by contract methodology for AOSD 1.

Design by contract methodologies for AOSD have been explored
before [49, 55], however, existing work relies on behavioral con-
tracts. Such behavioral contracts specify, for each of the aspect’s
advice methods, the relationships between its inputs and outputs,
and treat the implementation of the aspect as a black box, hiding
all the aspect’s internal states from base modules and from other
aspects. To illustrate, consider the snippets shown in Figure 1 from
the canonical drawing editor example with functionality to draw
points, lines, and a display updating functionality.

Figure 1 uses a proposal for aspect interfaces2, promoted by our
previous work on the Ptolemy language [41]. In Ptolemy, program-
mers declare event types that are abstractions over concrete events
in the program. Lines 10–16 declare an event type that is an ab-
straction over program events that cause change in a figure. An
event type declaration may declare variables that make some con-
text available. For example, on line 11, the changing figure, named
fe, is made available. Concrete events of this type are created us-
ing announce expressions as shown on lines 5–7.

A significant advantage of such interfaces is that they provide
a syntactic location to specify contracts between the aspect and
the base code [49] that is independent of both. Following previ-
ous work [49, 55], we have added an example behavioral contract
to the interface (event type Changed) (lines 12-15). This behav-
ioral contract is written in a form similar to our proposal to make
comparisons easier. This contract states that any concrete event
announcement must ensure that the context variable fe is non null
and observers (e.g. the Update class on lines 17–26) for this event
must not modify fe.

The first problem with specifying aspect interfaces using behav-
ioral contracts is that they are insufficient to specify the control
effects of advice in full generality. For example, with just the be-

1This is not to be confused with DBC using AOP, where the advice
construct is used to represent contract of a method. Rather we speak
of the contract between aspects and the base code.
2The choice is more of preference than of necessity. Other propos-
als are equally suitable for this discussion. The reader is encour-
aged to consider alternatives discussed in Section 4.



1 class Fig { }
2 class Point extends Fig {
3 int x; int y;
4 Fig setX(int x){
5 announce Changed(this){
6 this.x = x; this
7 }
8 }
9 }

10 Fig event Changed {
11 Fig fe;
12 provides fe != null
13 requires {
14 fe == old(fe)
15 }
16 }

17 class Update {
18 Update init(){register(this)}
19 when Changed do update;
20 Display d;
21 Fig update(thunk Fig rest,
22 Fig fe){
23 d.update(fe);
24 invoke(rest)
25 }
26 }

Figure 1: A behavioral contract for aspect interfaces using Ptolemy [41] as the implementation language. See Section 2.1 for syntax.

havioral specification of the event type Changed, we cannot de-
termine whether the body of the method setX will always set the
current x coordinate to the argument. Such assertions are important
for reasoning, which depends on understanding the effect of com-
posing the aspect modules with the base code [44,49]. In Figure 1,
for example, the behavioral contract for Changed doesn’t serve
to alert us to an (inadvertently) missing invoke expression from
the Update code that would skip the evaluation of the expression
this.x = x in the method setX. In AspectJ terms this would
be equivalent to a missing proceed statement from an around
advice. Ideas from Zhao and Rinard’s Pipa language [55], if ap-
plied to AO interfaces help to some extent, however, as we discuss
in greater detail in Section 5, Pipa’s expressiveness beyond simple
control flow properties is limited.

The second problem with such behavioral contracts is that they
don’t help us in effectively reasoning about the effects of aspects
on each other. Consider another example concern, say Logging,
which logs the event Changed. For this concern different orders
of composition with the Update concern in Figure 1 could lead to
different results. In Ptolemy ordering between aspects can be spec-
ified using register expressions that activate an aspect. In As-
pectJ declare precedence serves the same purpose. In one
composition where Update runs first followed by Logging, the
evaluation of Loggingwill be skipped, whereas Loggingwould
work in the reverse order of composing these concerns. An aspect
developer may not, by just looking at the behavioral contract of the
aspect interface, reason about their aspect modules. Rather they
must be aware of the effects of all aspects that apply to that aspect
interface [1, 16, 17]. Furthermore, if any of these aspect modules
changes (i.e., if their effects change), one must reason about every
other aspect that applies to the same aspect interface.

Finally, even if programmers don’t use formal techniques to rea-
son about their programs, contracts for AO interfaces can serve as
the programming guidelines for imposing design rules [49,52]. Be-
havioral contracts for AO interfaces yield insufficiently specified
design rules that leave too much room for interpretation, which
may differ significantly from programmer to programmer. This
may cause inadvertent inconsistencies in AO program designs and
implementations, leading to hard to find errors.

1.2 Contributions to the State-of-the-art
The main contribution of this work is the notion of translucid

contracts for AO interfaces, which is based on grey box specifi-
cations [9–12]. A translucid contract for an AO interface can be
thought of as an abstract algorithm describing the behavior of as-
pects that apply to that AO interface. The algorithm is abstract in
the sense that it may suppress many actual implementation details,
only specifying their effects using specification statements. This
allows the specifier to decide to hide some details, while revealing
others. As in the refinement calculus, code satisfies an abstract al-
gorithm specification if the code refines the specification [2,36,37],
but we use a restricted form that requires structural similarity, to al-

low specification of control effects.
To illustrate, consider the translucid contract shown in Figure 2.

The classes Fig and Point in this example are the same as in
Figure 1. Contrary to the behavioral contract, internal states of the
handler methods that run when the event Changed is announced
are exposed. In particular, any occurrence of invoke expression
in the handler method must be made explicit in the translucid con-
tract. This in turn allows the developer of the class Point that an-
nounces the event Changed to understand the control effects of the
handler methods by just inspecting the specification of Changed.
For example, from lines 5–6 one may conclude that, irrespective
of the concrete handler method, the body for the method setX on
line 6 of Figure 1 will always be run. Such conclusions allow the
client of the setX to make more expressive assertions about its
control flow without considering every handler method that may
potentially run when the event Changed is announced.

1 Fig event Changed {
2 Fig fe;
3 provides fe != null
4 requires {
5 preserves fe == old(fe);
6 invoke(next)
7 }
8 }
9 class Update {

10 /* ... the same as before */
11 Fig update(thunk Fig rest, Fig fe){
12 refining preserves fe==old(fe){
13 d.update(fe);
14 } ;
15 invoke(rest)
16 }
17 }

Figure 2: A translucid contract for aspect interfaces

Making the invoke expression explicit also benefits other han-
dlers that may run when the event Changed is announced. For
example, consider the logging concern discussed earlier. Since
the contract of Changed describes the control flow effects of the
handlers, reasoning about the composition of the handler method
for logging and other handler methods becomes possible without
knowing about all explicit handler methods that may run when the
event Changed is announced. In this paper we explicitly focus
on the use of translucid contract for describing and understanding
control flow effects.

To soundly reap these benefits, the translucid contract for the
event type Changed must be refined by each conforming handler
method [2, 36, 37]. We borrow the idea of structural refinement
from JML’s model programs [45] and enhance it to support aspect-
oriented interfaces, which requires several adaptation that we dis-
cuss in the next section. Briefly the handler method update on
lines 11–16 in Figure 2 refines the contract on lines 5–6 because
line 15 matches line 6 and lines 12–14 claim to refine the spec-



ification expression on line 5. In summary, this work makes the
following contributions. It presents:

• A specification technique for writing contracts for AO inter-
faces;

• An analysis of the effectiveness of our contracts using Ri-
nard et al.’s work [44] on aspect classification that shows that
our technique works well for specifying all classes of aspects
(as well as others that Rinard et al. do not classify);

• A demonstration that besides the AO interface proposal by
the previous work of Rajan and Leavens [41], our technique
works quite well for crosscut interfaces [49] and Aldrich’s
Open Modules [1] and a discussion of the applicability of
our technique to Steimann et al.’s joinpoint types [47], Hoff-
man and Eugster’s explicit joinpoints [21], and Kiczales and
Mezini’s aspect-aware interface [29]; and

• A comparison and contrast of our specification and verifica-
tion approach with related ideas for AO contracts.

2. TRANSLUCID CONTRACTS
In this section, we describe our notion of translucid contracts and

present a syntax and refinement rules for checking these contracts.
We use our previous work on the Ptolemy language [41] for this
discussion.3 However, as we show in Section 4 our basic ideas
are applicable to other aspect-oriented programming models. We
first present Ptolemy’s programming features and then describe the
specification features.

2.1 Program Syntax
Ptolemy is an object-oriented (OO) programming language with

support for declaring, announcing, and registering with events
much like implicit-invocation (II) languages such as Rapide [34].
The registration in Ptolemy is, however, much more powerful com-
pared to II languages as it allows developers to quantify over all
subjects that announce an event without actually naming them.
This is similar to aspect-oriented languages such as AspectJ [27].
The formally defined OO subset of Ptolemy shares much in com-
mon with MiniMAO1 [15], a variant of Featherweight Java [22]
and Classic Java [18]. It has classes, objects, inheritance, and sub-
typing, but it does not have super, interfaces, exception handling,
built-in value types, privacy modifiers, or abstract methods.

The syntax of Ptolemy executable programs is shown in Figure 3
and explained below. A Ptolemy program consists of zero or more
declarations, and a “main” expression (see Figure 1). Declarations
are either class declarations or event type declarations.
Declarations. We do not allow nesting of decls. Each class has a
name (c) and names its superclass (d), and may declare finite num-
ber of fields (field*) and methods (meth*). Field declarations are
written with a class name, giving the field’s type, followed by a
field name. Methods also have a C++ or Java-like syntax, although
their body is an expression. A binding declaration associates a set
of events, described by an event type (p), to a method [41]. An
example is shown in Figure 1, which contains a binding on line 19.
This binding declaration tells Ptolemy to run the method update
whenever events of type Changed are executed. Implicit invoca-
tion terminology calls such methods handler methods.

An event type (event) declaration has a return type (c), a
name (p), zero or more context variable declarations (form*), and
3Our descriptions of Ptolemy’s syntax and semantics are adapted
from our previous work [41].

prog ::= decl* e
decl ::= class c extends d { field*meth* binding* }

| t event p { form* contract }
field ::= t f;
meth ::= t m (form*) { e } | t m (thunk t var, form*) { e }
form ::= t var, where var 6=this
binding ::= when p do m
e ::= n | var | null | new c() | e.m( e* ) | e.f | e.f = e

| if (ep) { e } else { e } | cast c e | form = e; e | e; e
| while (ep) { e }| register( e ) | invoke ( e )
|announce p ( e* ) { e }| refining spec { e }

ep ::= n | var | ep.f | ep != null | ep == n | ep < n | ! ep | ep && ep

where

n ∈ N , the set of numeric, integer literals
c, d ∈ C, a set of class names

t ∈ C ∪ {int}, a set of types
p ∈ P, a set of event type names
f ∈ F, a set of field names

m ∈ M, a set of method names
var ∈ {this} ∪ V,V is

a set of variable names

Figure 3: Ptolemy’s Syntax [41]. Note the new expression
refining and contracts in the syntax of event types.

a translucid contract (contract). These context declarations specify
the types and names of reflective information exposed by conform-
ing events [41]. An example is given in Figure 1 on lines 10–16. In
writing examples of event types, as in Figure 1, we show each for-
mal parameter declaration (form) as terminated by a semicolon (;).
In examples showing the declarations of methods and bindings, we
use commas to separate each form.
Expressions. The formal definition of Ptolemy is given as an ex-
pression language [41]. It includes several standard object-oriented
(OO) expressions and also some expressions that are specific to an-
nouncing events and registering handlers. The standard OO expres-
sions include object construction (new c()), variable dereference
(var, including this), field dereference (e.f ), null, cast (cast t
e), assignment to a field (e1.f = e2), a definition block (t var = e1;
e2), and sequencing (e1; e2). Their semantics and typing is fairly
standard [13, 15, 41] and we encourage the reader to consult [41].

There are also three expressions pertinent to events: register,
announce, and invoke. The expression register(e) eval-
uates e to an object o, registers o by putting it into the list of ac-
tive objects, and returns o. The list of active objects is used in
the semantics to track registered objects. Only objects in this list
are capable of advising events. For example line 18 of Figure 1
is a method that, when called, will register the method’s receiver
(this). The expression announce p (v1, . . . , vn) {e} declares
the expression e as an event of type p and runs any handler meth-
ods of registered objects (i.e., those in the list of active objects) that
are applicable to p [41]. The expression invoke(e) is similar to
AspectJ’s proceed. It evaluates e, which must denote an event
closure, and runs that event closure. This results in running the first
handler method in the chain of applicable handlers in the event clo-
sure. If there are no remaining handler methods, it runs the original
expression from the event. thunk t ensures that the value of e is
an event closure with t being the return type of event closure and
hence the type returned by invoke(e).

When called from an event, or from invoke, each handler
method is called with a registered object as its receiver. The call
passes an event closure as the first actual argument to the handler
method (named rest in Figure 1 line 21). Event closures may not
be explicitly constructed in programs, neither can they be stored in



fields. They are only constructed by the semantics and passed to
the handler methods.

There is one new program expression: refining. A refining
expression, of the form refining spec { e }, is used to imple-
ment Ptolemy’s translucid contracts (see below). It executes the
expression e, which is supposed to satisfy the contract spec.

2.2 Specification Features
The syntax for writing an event type’s contract in Ptolemy is

shown in Figure 4. In this figure, all nonterminals that are used but
not defined are the same as in Figure 3.

contract ::= provides sp requires { se }
spec ::= requires sp ensures sp
sp ::= n | var | sp.f | sp != null | sp == n

| sp == old(sp) | ! sp | sp && sp
| sp < n

se ::= sp | null | new c() | se.m( se* ) | se.f | se.f = se
| if (sp) { se } else { se } | cast c se | form = se; se
| while (sp) { se } | se; se | form = se; se | se; se
| register( se ) | invoke ( se ) | announce p ( e* ) { e }
| next | spec | either { se } or { se }

Figure 4: Syntax for writing translucid contracts

A contract is of the form provides sp requires { se }.
Here, sp is a specification predicate as defined in Figure 4 and the
body of the contract se is an expression that allows some extra
specification-only constructs (such as choice expressions).

As discussed previously, sp is the precondition for event an-
nouncement. The specification expression se is the abstract algo-
rithm describing conforming handler methods. If a method runs
when an event of type p is announced, then its implementation must
refine the contract se of the event type p. For example, in Figure 2
the method update (lines 11–16) must refine the contract of the
event type Changed (lines 5–6).

There are four new expression forms that only appear in con-
tracts: specification expressions, next expressions, abstract in-
voke expressions and choice expressions. A specification expres-
sion (spec) hides and thus abstracts from a piece of code in a con-
forming implementation [43,45]. The most general form of specifi-
cation expression is requires sp1 ensures sp2, where sp1 is a
precondition expression and sp2 is a postcondition. Such a specifi-
cation expression hides program details by specifying that a correct
implementation contains a refining expression whose body ex-
pression, when started in a state that satisfies sp1, will terminate in
a state that satisfies sp2 [43, 45]. In examples we use two sugared
forms of specification expression. The expression preserve sp
is sugar for requires sp ensures sp and establish sp is
sugar for requires 1 ensures sp [43]. Ptolemy uses 0 for
“false” and non-zero numbers, such as 1, for “true” in conditionals.

The next expression, the invoke expression and the choice
expression (either { se } or { se }) are place holders in the
specification that express the event closure passed to a handler, the
call of an event handler using invoke and a conditional expres-
sion in a conforming handler method. The choice expression hides
and thus abstracts from the concrete condition check in the handler
method. For a choice expression either { se1 } or { se2 } a
conforming handler method may contain an expression e1 that re-
fines se1, or an expression e2 that refines se2, or an expression if
( e0 ) { e1 } else { e2 }, where e0 is a side-effect free expres-
sion, e1 refines se1, and e2 refines se2.

3. ANALYSIS OF EXPRESSIVENESS
To analyze the expressiveness of translucid contracts, in this sec-

tion we illustrate their application to specify base-aspect interaction
patterns discussed by Rinard et al. in a previous work [44]. Rinard
et al. classify base-aspect interaction patterns into: direct and in-
direct interference. Direct interference is concerned about control
flow interactions whereas indirect interference refers to data flow
properties. Direct interference is concerned about calls to invoke,
which is the Ptolemy’s equivalent of AspectJ’s proceed. Direct
interference is further categorized into 4 classes of: augmentation,
narrowing, replacement and combination advices. We use the same
classification of base-advice interaction for subject-observer inter-
actions. An example, built upon the drawing editor example, is
shown for each category of direct interferences.

3.1 Direct Interference: Augmentation
Informally an augmentation handler is allowed to call invoke

exactly once. Augmentation handler can be an after or before han-
dler. In after augmentation, after the event body the handlers are
always executed. The handler logit in observer class Logging
in Figure 5 is an example of an after augmentation. The classes
Point and Fig are the same as in Figure 1. The requirement is
“to log the changes when figures are changed”. The handler logit
causes the event body (line 13) to be run first by calling invoke
and then logs the change in figure.

1 Fig event Changed {
2 Fig fe;
3 provides fe != null
4 requires {
5 invoke(next);
6 preserve fe==old(fe)
7 }
8 }
9 class Logging extends Object {

10 when Changed do logit;
11 Log l; /* ... */
12 Fig logit (thunk Fig rest, Fig fe){
13 invoke(rest);
14 refining preserve fe==old(fe) {
15 l.logChange(fe);fe
16 }
17 }
18 }

Figure 5: Specifying after augmentation

The interaction between subject and observer is documented ex-
plicitly in the event type specification (Changed) shown on lines
3-7. Notice that the invoke expressions appears exactly once in
the event type contract. Thus the base code developers for classes
that announce this event can assume that all handlers advising this
event would have exactly one call to invoke in their implementa-
tion and therefore these handlers would be augmentation handlers.
Furthermore, invoke is called at the beginning of the contract, re-
quiring event handlers to be run after the event body. This imposes
another restriction on the implementation of handlers and conveys
to the base code developers that not only the handlers are augmen-
tation handler, but also that they will be run after the event body.

Structural similarity is one criterion to be met by handler imple-
mentation to refine event specification. In this example structural
similarity mandates the handler implementation to have exactly one
call to invoke at its beginning. This ensures that all handlers ad-
vising the event type Changed are of type after augmentation.



3.2 Direct Interference: Narrowing
A narrowing handler calls invoke at most once, which implies

existence of a conditional statement guarding the calls to invoke.
To illustrate consider the listing in Figure 6, which shows an exam-
ple of narrowing handler for the drawing editor example. This han-
dler implements an additional requirement for the editor that “some
figures are fixed and thus they may not be changed or moved”. To
implement this additional constraint the field fixed is added to
the class Fig. For fixed figures the value of this field will be 1
and 0 otherwise. The code for the class Point is the same as in
Figure 1. To implement the constraint the handler Enforce skips
invoking the base code whenever the figure is fixed (checked by
accessing the field fixed).

1 class Fig extends Object{ int fixed; }
2 Fig event Changed {
3 Fig fe;
4 provides fe != null
5 requires {
6 if(fe.fixed == 0){
7 invoke(next)
8 preserve fe==old(fe)
9 } else {

10 preserve fe==old(fe)
11 }
12 }
13 }
14 class Enforce extends Object {
15 when Changed do check;
16 /* ... */
17 Fig check(thunk Fig rest, Fig fe){
18 if(fe.fixed == 0){
19 invoke(rest)
20 } else {
21 refining preserve fe==old(fe){
22 fe
23 }
24 }
25 }
26 }

Figure 6: Specifying narrowing with a translucid contract

The contract for the event type Changed documents the possi-
bility of a narrowing handler on lines 5–11. It does not, however,
reveal the actual code of the narrowing handler as long as the hid-
den code refines the specification on line 8 and 10.

All observer’s handler of the event type Changedmust refine its
specification. This means that the implementation of such handlers
must structurally match the contract on lines 6–11. The implemen-
tation of the handler Enforce structurally matches the contract
thus it structurally refines it. The true block of the if expression on
line 18–20 refines the true block of the if expression in the specifi-
cation on lines 6–9 because the empty expression trivially preserves
fe==old(fe). The false block of the if expression on line 20–
24 refines the false block of the if expression in the specification
on lines 9–11 because lines 21–23 claim to refine the specification.

3.3 Direct Interference: Replacement
A replacement handler omits the execution of the original event

body and instead only runs the handler body. In Ptolemy this can
be achieved by omitting the invoke expression in the handler,
equivalent to not calling proceed in an around advice in AspectJ.

Figure 7 shows an example of such handler. The example uses
several standard sugars such as += and > for ease of presentation.
In this example, the method moveX causes a point to move along
the x-axis by amount d. The handler scaleit implements the
requirement that the “amount of movement should be scaled by a

1 class Point extends Fig {
2 int x; int y;
3 Fig moveX(int d){
4 announce Moved(this,d){
5 this.x += d; this
6 }
7 }
8 }
9 Fig event Moved {

10 Point p;
11 int d;
12 provides p!=null &&
13 d>0
14 requires {
15 preserve p!=null &&
16 p.y == old(p.y)
17 }
18 }
19 class Scale extends Object {
20 when Moved do scaleit;
21 int s; /*scale factor*/
22 Fig scaleit(thunk Fig rest,
23 Point p, int d){
24 refining preserve p!=null
25 && p.y == old(p.y) {
26 p.x += s * d ; p
27 }
28 }
29 }

Figure 7: Specifying replacement with a translucid contract

scaling factor s defined in class Scale”. Specification of event
type Moved documents that a replacement handler will be run
when this event is announced by omitting the calls to invoke in
its contract. The specification also documents the invariants main-
tained by the handlers that may run when the event is announced.

One requirement when writing translucid contracts is to reveal
all calls to invoke expression. Therefore, if an event type’s con-
tract has no invoke expression, none of the event type’s handlers
are allowed to have an invoke expression in their implementa-
tion. Otherwise the structural similarity criterion of refinement is
violated. The handler scaleit correctly refines Moved’s con-
tract because its body (line 24-27) matches the specification. There
are no invoke expressions and the invariant expected by the event
type’s contract (lines 15–16) and that maintained by the body (lines
24–25) are the same.

3.4 Direct Interference: Combination
Combination handlers can evaluate the invoke expression any

number of times. In AspectJ, this would be equivalent to one or
more calls to proceed in an around advice, guarded by some
condition or in a loop. A combination handler is typically useful
for implementing functionalities like fault tolerance. We show an
example of a combination handler in Figure 8. In this example, we
extend figures in the drawing editor to have colors. This is done
by adding a field color to class Fig and by providing a method
setColor for picking the color of the figure. The class Color is
not shown in the listing. It provides a method nextCol to get the
next available color.

To illustrate combination, let us consider the requirement that
“each figure should have a unique color”. To implement this re-
quirement, an event type ClChange is declared as an abstraction
of events representing colors changes. The method setColor
changes colors so it announces the event ClChange on lines 5–
7. The body of this announce expression contains the code to ob-
tain the next color (line 6). The handler Unique implements the
uniqueness requirement by storing already used colors in a hash



1 class Fig {
2 Color c;
3 int colorFixed;
4 Color setColor(){
5 announce ClChange(this){
6 this.c = c.nextCol()
7 }
8 }
9 }

10 Color event ClChange{
11 Fig fe;
12 provides fe!=null
13 requires {
14 while(fe.colorFixed==0){
15 invoke(next);
16 either{
17 preserve fe != null
18 } or {
19 preserve fe != null
20 }
21 }
22 }
23 }

24 class Unique {
25 HashMap colors;
26 when ClChange do check;
27 Color check(thunk Color rest,
28 Fig fe){
29 while(fe.colorFixed==0){
30 invoke(rest);
31 if(colors.get(fe.c)!=null){
32 refining preserve fe!=null{
33 colors.put(fe.c);
34 fe.colorFixed = 1;fe.c
35 }
36 }else{
37 refining preserve fe!=null{
38 fe.c
39 }
40 }
41 }
42 }
43 }

Figure 8: Specifying combination with a translucid contract

table (colors). The field colorFixed is also added to figure
class to show that a unique color has been chosen and fixed for the
figure. The initial value of this field is zero. When the handler
method check is run it checks colorFixed to see if a color has
been chosen for figure or not, if not it then invokes the event body
generating the next candidate color for the figure. If this color is al-
ready used, checked by looking it up in the hash table, event body
is invoked again to generate the next candidate color. Otherwise,
the current color is inserted in the hash table and colorFixed is
set to one.

The specification for the event type ClChange documents that a
combination handler will be run when this event is announced. This
specification makes use of our novel feature, the choice feature, on
line 16–20. To correctly refine this specification, a handler can ei-
ther have a corresponding if expression at the corresponding place
in its body or it may have an expression that runs unconditionally
and refines the either block or the or block in the specification.
By analyzing the specification, specially by while loop revealed in
the specification, the base code developers can understand that the
handlers that run when the event ClChange is announced may
run the original event body multiple times. They are, however,
not aware of the concrete details of such handlers, thus those de-
tails remain hidden. Since the handler Unique’s body structurally
matches the specification, it correctly refines the specification.

3.5 More Expressive Control Flow Properties
Rinard et al.’s control flow properties are only concerned about

calls to invoke. Their proposed analysis technique can decide
which class of interference and category of control effects each iso-
lated advice belongs to [44]. However, it could not be used to ana-
lyze possibility of two or more control flow paths each of which is
an augmentation, however, each path maintains a different invari-
ant. Figure 9 illustrates such an example. This example is adapted
from the work of Khatchadourian and Soundarajan [26].

The class Fig not shown here is the same as in Figure 1.
Khatchadourian and Soundarajan [26] implement an additional re-
quirement that “a point should always be visibly distinguished from
the origin”. To implement this requirement a scaling factor s is
added as a field to the class Point (line 2). This factor is initially
set to 1 (line 5). The additional requirement is implemented as the
class Scaling. The handler method scale in this class is run
when event Moved is announced. The handler method ensures that
if the point is close enough to the origin (vicinity condition) to vis-

1 class Point extends Fig{
2 int x; int y; int s;
3 Point init(int x,int y){
4 this.x=x; this.y=y;
5 this.s=1; this
6 }
7 int getX(){this.x*this.s}
8 int getY(){this.y*this.s}
9 Fig move(int x, int y){

10 announce Moved(this){
11 this.x=x;this.y=y; this
12 }
13 }
14 }
15 Fig event Moved{
16 Point p;
17 provides p!=null
18 requires{
19 invoke(next);
20 if(p.x<5&& p.y<5){
21 establish p.s==10
22 } else {
23 establish p.s==1
24 }
25 }
26 }
27 class Scaling extends Object{
28 when Moved do scale;
29 Fig scale(thunk Fig rest, Point p){
30 invoke(rest);
31 if(p.x<5 && p.y<5){
32 refining establish p.s==10{
33 p.s=10; p
34 }
35 } else {
36 refining establish p.s==1{
37 p.s == 1; p
38 }
39 }
40 }
41 }

Figure 9: Expressive Control Flow Properties Beyond [44]

ibly distinguish it from the origin the scaling factor is set to 10.
Thus the scaling factor only gets two values 1 or 10. The vicinity
condition is true if point’s x and y coordinates are less than 5.

The assertions we want to validate in this example are as follows:
(i) all of the handlers are after augmentation handlers, (ii) the value
of scaling factor s is either 1 or 10, and (iii) the scaling factor s it
is set to 10 if and only if the vicinity condition holds. Rinard et
al.’s proposal could be used to verify (i) and a behavioral contract
can specify (ii) but none of them could specify (iii), whereas our
approach can. On lines 19–24 is a specification that conveys to the
developers of the class Point that a conforming handler method
will satisfy all three assertions above.

In summary, in this section we have shown that translucid con-
tracts allow us to specify control flow interference between subject
and observers. Specified interference patterns are enforced auto-
matically through refinement. We are able to specify and enforce
control interference properties proposed by Rinard et al.. There are
more sophisticated control flow interplay patterns which could not
be enforced by the previous work on design by contract for aspects
whereas it could be specified as translucid contracts.

4. APPLICABILITY TO OTHER
APPROACHES FOR AO INTERFACES

In this section, we discuss the applicability of our technique
to other approaches for AO interfaces. As discussed previously,
there are several competing and often complementary proposals



for AO interfaces. For example, Kiczales and Mezini’s aspect-
aware interfaces (AAI) [29], Gudmundson and Kizales pointcut in-
terfaces [20], Sullivan et al.’s crosscutting interfaces (XPIs) [49],
Aldrich’s Open Modules [1], Steimann et al.’s joinpoint types [47],
and Rajan and Leavens’s event types [41]. We have tried out
several of these ideas and our approach works beautifully. Since
Steimann et al.’s joinpoint types [47] and Hoffman and Eugster’s
explicit joinpoints (EJP) are similar in spirit to Rajan and Leavens’s
event types [41], which we have already discussed in previous sec-
tions, we do not present our adaptation to these ideas here. Rather
we focus on the AspectJ implementation of the XPI approach [52]
and Aldrich’s Open Modules [1] that are substantially distinct from
event types [41, Fig. 10].

4.1 Translucid Contracts for XPIs and AAIs
Sullivan et al. [49] proposed a methodology, that they call cross-

cut programming interface (XPI) for aspect-oriented design based
on design rules. The key idea is to establish a design rule inter-
face which serves to decouple the base design and the aspect de-
sign. These design rules govern exposure of execution phenomena
as joinpoints, how they are exposed through the joinpoint model of
the given language, and constraints on behavior across joinpoints
(e.g. provides and requires conditions [52]). XPIs prescribe rules
for joinpoint exposure, but do not provide a compliance mecha-
nism. Griswold et al. have shown that at least some design rules
can be enforced automatically using AspectJ’s features [52]. Cur-
rent proposals for XPIs, however, all use behavioral contracts [49].
As shown previously, use of behavioral contracts, limits the expres-
siveness of the assertions which could be made using XPI. Behav-
ioral contracts could not reveal implementation details which might
be needed for some assertions [12].

1 class Fig extends Object{ int fixed; }
2 aspect XChanged {
3 pointcut joinpoint(Fig fe): target(fe)
4 && call(void Fig+.set*(..));
5 provides fe != null
6 requires {
7 if(fe.fixed == 0){
8 proceed();
9 preserve fe==old(fe)

10 } else {
11 preserve fe==old(fe)
12 }
13 }
14 }
15 aspect Enforce {
16 Fig around (Fig fe):
17 XChanged.joinpoint(fe){
18 if(fe.fixed == 0){
19 proceed()
20 } else {
21 refining preserve fe==old(fe){
22 fe
23 }
24 }
25 }
26 }

Figure 10: Applying translucid contract to an XPI

In this section, we show that translucid contracts can also be
applied to enable expressive assertions about aspect-oriented pro-
grams that use the XPI approach. We also discuss changes in the
refinement rules that is needed to verify such programs. To illus-
trate consider the example from Section 3.2, where constraint on
movement of figures is implemented as an XPI and an aspect. An
XPI typically also contains a description of scope, which we omit

here. In the context of XPIs, the language for expressing translucid
contract is slightly adapted to use proceed instead of invoke on
line 8. Other than this change, our syntax for translucid contracts
works right out-of-the-box.

Unlike translucid contracts for event types in Ptolemy, where the
contract is thought to be attached to the type, in the AspectJ’s ver-
sion of XPI contracts are thought to be attached to the pointcut
declaration, e.g. the contract on lines 5–13 is attached to the point-
cut on lines 3–4. The variables that can be named in the contract
are those exposed by the pointcut. For example, the contract can
only use fe.

Our proposal for verifying refinement also needs only minor
changes. Unlike Ptolemy, where the event types of interest are
specified in the binding declarations, in AspectJ’s version of XPI,
aspects reuse the pointcut declarations from the XPI in the advice
declaration (lines 16–17). Our refinement rules could be added here
in the AO type system. So for an advice declaration to be well-
formed, its pointcut declaration must be well-formed, the advice
body must be well-formed, and the advice body must refine the
translucid contract of the pointcut declaration. This strategy works
for basic pointcuts, for compound pointcuts constructed using rules
such as (pcd and pcd’ or pcd or pcd’), where both pcd
and pcd’ are reused from different XPIs and thus may have inde-
pendent contracts more complex refinement rules will be needed,
which we have not explored in this paper.

Joinpoint interfaces like XPI could be computed from the im-
plementation rather than being explicitly specified given whole-
program information. Kiczales and Mezini [29] follow this ap-
proach to extract aspect-aware interfaces (AAI). A detailed dis-
cussion of the trade-offs of such interfaces is the subject of pre-
vious work [42, 49]. However, an important property of AAIs is
that advised joinpoints contain the details of the advice. An ex-
ample based on the example in Figure 10 is shown in Figure 11.
The extracted AAI for the method setX is shown on lines 3-4. An
adaptation of this extraction to include translucid contracts will be
to carry over the contract from the pointcut to the joinpoint shadow
as shown on lines 5–13.

1 Point extends Fig {
2 int x; int y;
3 Fig setX(int x): Update -
4 after returning Update.joinpoint(Fig fe)
5 provides fe != null
6 requires {
7 if(fe.fixed == 0){
8 proceed();
9 preserve fe==old(fe)

10 } else {
11 preserve fe==old(fe)
12 }
13 }
14 /* body of setX */
15 }

Figure 11: Applying translucid contract to an AAI

The syntax and refinement rules similar to XPI are applicable
here. Like AAI annotations that provide developers of Point
with information about potentially advising aspects, added contract
would provide developers of Point with richer abstraction over
the aspect’s behavior. Similar ideas can also be applied to aspect-
oriented development environments such as AJDT, which provide
AAI-like information at joinpoint shadows in an AO program.

4.2 Translucid Contracts for Open Modules



Aldrich’s proposal on Open Modules [1] is closely related to
Ptolemy’s quantified, typed events [41]. Open modules allows a
class developer to explicitly expose pointcuts for behavioral modi-
fications by aspects, which is similar to signaling events using the
announce expressions in Ptolemy. The implementations of these
pointcuts remain hidden from the aspects. As a result, the impact
of base code changes on the aspect is reduced. However, quantifi-
cation in Ptolemy is more expressive compared to Open Modules.
In open modules, each explicitly declared pointcut has to be enu-
merated by the aspect for advising. On the other hand, Ptolemy’s
quantified, typed events significantly simplify quantification. In-
stead of manually enumerating the joinpoints of interest, one can
use the name of the event type for implicit non-syntactic selection
of joinpoints. This affects applicability of translucid contracts to
Open Modules.

1 module FigModule {
2 class Fig;
3 friend Enforce;
4 expose: target(fe) &&
5 call(void Fig+.set*(..));
6 provides fe != null
7 requires{
8 if(fe.fixed == 0){
9 proceed();

10 preserves fe == old(fe)
11 } else {
12 preserves fe == old(fe)
13 }
14 }
15 }
16 aspect Enforce {
17 Fig around (Fig fe): target(fe) &&
18 call(void Fig+.set*(...)){
19 if(fe.fixed == 0){
20 proceed()
21 } else {
22 refining preserve fe==old(fe){
23 fe
24 }
25 }
26 }
27 }

Figure 12: Applying translucid contract to Open Modules [39]

To show the applicability of translucid contracts to Open Mod-
ules, we revisit the narrowing example from Section 3.2. Figure 12
shows the implementation of the same scenario using Open Mod-
ules. In implementing the example, we use the syntax from the
work of Ongkingco et al. [39] to retain similarity with other ex-
amples in this work. In the listing constraints on the movement
of figure is encapsulated in the module Enforce. Open mod-
ule FigModule exposes a pointcut of class Fig on lines 4–
5, marked by the keyword expose. Exposed pointcut is advis-
able only by the friend aspect Enforce. Transcluid contract
on lines 6–14 states the behavior of interaction between specified
friend aspect and the exposed pointcut. The adaptations in the syn-
tax of contracts are the same as in the case of XPI discussed in
Section 4.1.

Like contracts in XPI, contracts in Open Modules are attached to
a pointcut declaration, e.g. the contract on lines 6–14 is attached to
the exposed pointcut defined on lines 4–5. The variables that can
be named in the contract are those exposed by the pointcut. For
example, the contract on lines 6–14 can only use the variable fe.

Proposed verifying refinement rules need to be modified slightly
as well. In Ptolemy, event type of interest is specified in the binding
declaration whereas in AspectJ’s version of Open Modules, aspects
could not reuse pointcuts exposed by an Open Module and need to

enumerate the pointcut in the advice declaration again (lines 17–
18). Our refinement rules could be added here in AO type system.
Well-formedness of basic and compound pointcuts follow the same
rules laid out in Section 4.1.

This example illustrates how our approach might be used as a
specification and verification technique for Open Modules. The
only challenge that we saw in this process was to match an as-
pect’s pointcut definition with the open module’s pointcut defini-
tion to import its contract for checking refinement. Like translucid
contracts for Ptolemy, in the case of Open Modules specification
serves as a more expressive documentation of the interface between
aspects and classes.

5. RELATED IDEAS
There is a rich and extensive body of ideas that are related to

ours. Here, we discuss those that are closely related under three
categories: contracts for aspects, proposals for modular reasoning,
and verification approaches based on grey box specifications.
Contracts for Aspects. This work is closest in spirit to the
work on crosscut programming interfaces (XPIs) [23, 52]. XPIs
also allow contracts to be written as part of the interfaces as
provides and requires clauses. Similar to translucid con-
tracts, the provides clause establishes a contract on the code
that announces events, whereas the requires clauses specifies
obligations of the code that handles events. However, the contracts
specified by these works are mostly informal and cannot be au-
tomatically checked. Furthermore, these works do not describe a
verification technique and contracts could be bypassed.

Skotiniotis and Lorenz [33, 46] propose contracts for both ob-
jects and aspects in their tool Cona. Rinard et al. [44] classify
the interaction of advice and method into direct and indirect inter-
actions. Direct interactions focus on control flow elements while
indirect interactions are concerned about data elements. Each of
direct and indirect interactions are further categorized into differ-
ent classes of interactions. They have developed an analysis sys-
tem that categorizes aspects and method interactions. Their clas-
sification and analysis system serves reasoning purposes. As an
analysis system, it expect developers to enforce desired properties
by informing them about classes that each aspect-method interac-
tion belongs to. There is no specification/enforcement mechanism
supported in their approach. Zhao and Rinard [55] propose Pipa
as a behavioral specification language for AspectJ. Pipa supports
specification inheritance and specification crosscutting. It relies on
textual copying of specifications for specification inheritance and
syntactical weaving of specification for specification crosscutting.
Annotated AspectJ program with JML-like Pipa’s specifications is
transformed to JML and Java code. JML-based verification tool
could be used later to enforce specified behavioral constraints. All
of these ideas use behavioral contracts and thus may not be used to
reason about control effects of advice.
Modular Reasoning. There is a large body of work on modu-
lar reasoning about AO programs on new language designs [1, 14,
17, 21, 25], design methods [23, 30, 32, 52], and verification tech-
niques [3, 24, 31, 40]. Our work complements ideas in the first and
the second category and can use ideas in the third category for im-
proved expressiveness. Compared to work on reasoning about im-
plicit invocation [4, 8, 19, 54], our approach based on structural re-
finement is significantly lightweight. Furthermore, it accounts for
quantification that these ideas do not.

Oliveira et al. [38] introduce a non-oblivious core language with
explicit advice points and explicit advice composition requiring ef-
fects modeled as monads to be part of the component interfaces.
Their statically typed model could enforce control and data flow in-



terference properties. Their work shares commonalities with ours
in terms of explicit interfaces having more expressive contracts to
state and enforce the behavior of interactions. However, it is diffi-
cult to adapt their ideas built upon their non-AO core language, to
II, AO, and Ptolemy as they do not support quantification.

Hoffman and Eugster Explicit Joint Points [21] and Steimann
et al.’s Joint Point Types [47] share similar spirit with Rajan and
Leavan’s event types [41]. Although Steimann et al. proposed in-
formal behavioral specification, but there is no explicit notion of
formally expressed and enforced contracts, stating interactions be-
havior, in any of these approaches.
Grey Box Specification and Verification. This work builds
upon previous research on grey box specification and verifica-
tion [12]. Among others, Barnett and Schulte [6, 7] have consid-
ered using grey box specifications written in AsmL [5] for veri-
fying contracts for .NET framework, Wasserman and Blum [53]
also use a restricted form of grey box specifications for verifica-
tion, Tyler and Soundarajan [51] and most recently Shaner, Leav-
ens, and Naumann [45] have used grey box specifications for verifi-
cation of methods that make mandatory calls to other dynamically-
dispatched methods. Rajan et al. have used grey box specifications
to enable expressive assertions about web-services [43]. Compared
to these ideas, our work is the first to consider grey box specifi-
cations as a mechanism to enable modular reasoning about code
that announces events from the code that handles events, which is
a common idiom in AO and II languages.

6. FUTURE WORK
Having laid out the basic ideas behind translucid contracts we

now turn to the remaining work necessary to incorporate translu-
cid contracts in Ptolemy and other AO languages. First task would
be to define a precise formalization of when translucid contracts
are refined by the handler body and second would be give defini-
tion of how reasoning about announce expressions proceeds. We
discuss our ideas to solve these problems in some detail below.

6.1 Checking Contract Refinement
In Ptolemy a module announcing an event of type p may as-

sume that all handler methods that run when p is announced re-
fine the translucid contract of p. Each such handler method then
in turn must guarantee that it correctly refines the contract. In-
formally, showing refinement between a contract and a handler
method builds on the notion of structural refinement from the work
of Shaner et al. [45]. New ideas will be in the refinement of
invoke and either {..} or {..} expressions. The con-
tract may include specification notations (se) whereas implemen-
tations can only contain executable code, built solely from the pro-
gram constructs (e) described in Figure 3. A handler method’s im-
plementation refines a translucid contract if it meets two criteria:
first, that the code shares its structure with that given in the speci-
fication and second, that the body of every refining expression
obeys the specification it is refining.

6.2 Reasoning about Announce Expressions
A technique for verification of the code that announces events

is an important future work. The basic plan is to use the copy rule
[35] substituting the abstract program that is the specification of the
event type for the announce expression. This will be sound, due to
structural refinement.

The technical difficulty is that handlers are essentially mutually
recursive, since they can use invoke expressions to proceed to
the next handler that applies to the event. Thus in the verification,
it will be difficult to know, statically, how many times to substitute

(unfold) the abstract program for invoke when reasoning about
an announce expression. One possibility is to use predicates that
describe the state of the active object list, so that in the verification
one can do a case split, based on what handlers actually do apply
to a particular announce expression at that point in the program.

7. CONCLUSION
Many recent proposals for aspect-oriented interfaces [1, 20, 21,

29, 41, 47, 49] show promise towards improving modularity of AO
programs. An important benefit of these proposals is that they pro-
vide a syntactic location to specify contracts between the advised
and the advising code. However, behavioral contracts [49, 55] are
largely insufficient to reason about potentially important control-
flow related properties of the advising code.

We show that translucid contracts that are based on grey box
specifications [10, 11] are useful for understanding and enforcing
such properties for Ptolemy programs. A handler method conforms
with such contract, if its body refines the contract. All handler
methods for an event type p are required to conform with the con-
tract for p. We show how verification proceeds for code announcing
events. Checking the handlers and the announce expressions only
require module-level analysis. We also demonstrate the applicabil-
ity of translucid contracts to other type of AO interfaces.

Besides direction already discussed in Section 6, adding translu-
cid contracts to other AO compilers, integrating it with rich speci-
fication features in JML, and trying out larger examples would also
be part of the future activities.
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