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ABSTRACT
In this paper we specify an operational run-time semantics
of Assignment Featherweight Java — a minimal subset of
Java with assignments — with around advice, using graph
transformations. We introduce a notion of correctness of
our specification with respect to an existing semantics and
claim a number of advantages over traditional mathematical
notations, that come forth from the executable nature of
graph-transformation-based semantics.
Using test programs as graphs during specification of the
semantics, simulation can help in verifying the correctness
of the rules simply by testing, increasing the rigorousness of
the specification process. Also, execution of the semantics
results in a state space that can be used for analysis and
verification, giving rise to an effective method for aspect
program verification.
As a criterion for correctness, we use a structural operational
semantics of this language from the so-called Common As-
pect Semantics Base.

Categories and Subject Descriptors
F.3.2 [Logics and Meaning of Programs]: Semantics of
Programming Languages—Operational semantics

General Terms
Languages, Verification

1. INTRODUCTION
Aspect-oriented programming (AOP) [6] is a popular para-
digm that allows for the modular specification of cross-cutting
concerns. However, aspect-oriented programs are not easy
to get right and even harder to test or debug. For this
reason, it is attractive to investigate formal verification for
aspectual programs. For the purpose of formal verification
of AOP languages and programs, it is essential to specify the
semantics of such languages formally and unambiguously.
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In this paper we propose a formal specification approach for
the run-time semantics of Assignment Featherweight Java
(AFJ). We illustrate an instruction based representation of
an AFJ program and define the semantics of a “machine”
running these instructions. This language is an extension
to Featherweight Java (FJ), a minimal subset of Java. This
simple language - although not suitable for industrial im-
plementations - is typically suitable for studying language
extensions. We study an extension of this language with
around advice, which can also be used to represent before
and after advice.
The specification method proposed in this paper is graph
transformations. Graph transformation is a formal spec-
ification technique that supports rule based specification
as well as an intuitive visual representation of states and
rules. As a matter of fact, we use Groove [8] for the defi-
nition of the rules and graphs. Using the GROOVE tool,
the graph transformation-based operational semantics di-
rectly provides an executable model; given a start graph
representing a program and the graph transformation based
operational semantics of the language, this system can be
simulated resulting in a state space, represented as a la-
belled transition system (LTS). We claim that graph trans-
formation has the following main advantages over tradi-
tional, more mathematical notations of operational seman-
tics.

• Specifying a semantics can be a complicated task; mis-
takes are easily made. The directly executable nature
increases ease and confidence of specification of a se-
mantics by giving the user a way to test the seman-
tics without having to write a interpreter first, which
may contain errors either copied from the semantics or
made during implementation.

• By giving the semantics in this way, the road is opened
towards applying existing verification methods, such as
the work we have presented in [1]. Also, the LTS lends
itself directly for model checking (see [5]).

In addition, we believe that the visual nature of the graph
transformation rules will appeal to many readers that are
not experts in mathematics.
To increase confidence in the correctness of our definitions,
we show that they coincide with a formal specification of
the AFJ language in a work called the Common Aspect Se-
mantics Base (CASB) [2]. The CASB is presented as a ref-
erence model for the run-time semantics of aspect-oriented
programming languages. It presents a structural operational



semantics (SOS) for the language at hand (AFJ with an as-
pectual extension).
In the next section we will explain details of Assignment
Featherweight Java with around advice and give an impres-
sion of the used execution mechanism. Section 3 provides a
background on graph transformations and the visual nota-
tion used in this paper, followed by brief intuition in Section
4 of the actual graphs and rules used in the graph trans-
formation based semantics. In Section 5 we briefly discuss
the reference semantics and formulate our notion of correct-
ness. Finally, in Section 6 we briefly mention essential re-
lated work, followed by our conclusions in Section 7.

2. ASSIGNMENT FEATHERWEIGHT JAVA
WITH AROUND ADVICE

In this paper, we specify an operational semantics of As-
signment Featherweight Java extended with the possibility
of declaring around advice. In this section, we describe the
required background.

2.1 The Featherweight AspectJ Language
Featherweight Java (FJ) [3] is a subset of Java that con-
tains only five forms of expression: object creation, method
invocation, field access, casting, and variables. Assignment
Featherweight Java (AFJ) [7] has extended this language
with mutable field variables to bring it closer to the way
Java programs are usually written. The minimal syntax and
operational semantics make it a handy language for concep-
tual studies on the implications of language extensions. This
makes the language useful for trying AOP language features.
We actually study an extension of the AFJ language with
around advice. For the duration of this paper, we will refer
to the extended language as Featherweight AspectJ (FAJ).
The grammar of FAJ is as folows:

Prog ::= L; e; A

L ::= class T extends T {T f ; M}
M ::= T m(T x){e; }
e ::= x | e.f | e.m(e) | new T (e)

| e.f = e | (T )e

A ::= T around(Tx) : P {e′}
P ::= call(T ∗.m∗(T ∗))

e′ ::= e | e.proceed(e)

T ∗ ::= T | * | T+

m∗ ::= m | *

Throughout the paper we use the overbar notation for lists.
A program consists of a set of classes, a main expression,
and a set of advice declarations. Classes contain a list of
field names and types, and a list of methods. A method
consists of a return type, an identifier, a list of arguments
and a method body, which is an expression. Expressions
can be (from left to right) variables (e.g. a method parame-
ters), fields accesses, method invocations with a sequence of
expressions as arguments, object creations with a sequence
of expressions as parameter, castings, assignments, and pro-
ceed expressions (see below). Object creation is not handled
by an explicit constructor. Instead, the ordered list of argu-
ments is assigned to the ordered list of fields.
Aspects are represented as (global) declarations of an around

mcode(id, r) = S(mbody(id, r)); return

S(x) = varx

S(e.f) = S(e); getf

S(e0.f = e) = S(e); S(e0); setf

S(new T (e0, . . . , en)) = S(e0); . . . ; S(en); newT

S(e.m(e0, . . . , en)) = S(e0); . . . ; S(en); S(e); callm

S(e.proceed(e0, . . . , en)) = S(e0); . . . ; S(en); S(e); proceed

Figure 1: Sequentialisation

advice and a point-cut. Advices, depicted in the grammar
above by the letter A, are methods that can optionally con-
tain a proceed expression. As usual, we can use this also
to mimic before and after advice, by adding a proceed in-
struction after or before the instructions of the advice, re-
spectively. An advice declaration is combined with a point-
cut declaration (depicted by P in the grammar) that selects
certain expressions. In this language we have limited the
point-cut language to the selection of method calls. Such a
point-cut is specified as a call to a certain receiver type T ∗,
which can be a concrete type, a wildcard “*” standing for
an arbitrary type, or T+, selecting a type and all its sub-
types. The same is used for the parameters of the call. The
method identifier can be either a concrete method identifier,
or a wildcard “*” selecting an arbitrary identifier.

2.2 Run-time Semantics
The run-time semantics of this language is specified in terms
of sequences of instructions. That is, every expression in
the grammar can be sequentialised into a sequence of stack-
based instructions of the types: call, return, new, var,
get, set, and proceed. In this paper, we assume that ex-
pressions are pre-evaluated into such sequences; whenever
we represent an FAJ program, method-bodies consist of a
sequence of instructions instead of an expression. We define
this sequentialisation as a function mcode : Id× T → Instr
that returns a sequence of instructions given a method iden-
tifier. Given a function mbody : Id × T → Expr that finds
the body expression for a method identifier and a receiver
type. This is defined as show in Figure 1.
Thus, the mcode function will use the given identifier and
type to the mbody function, which looks up the method
and returns the body expression. This expression is broken
down into a sequence of instructions by function S. Finally,
a return instruction is added.
Run-time information is stored in both a heap and a number
of global stacks:

• A so-called continuation stack contains the currently
scheduled instructions, the top instruction being the
first to be executed. Execution terminates when the
continuation stack is empty.

• The results of evaluating an expression are placed on
a so-called value stack.

For executing around advice, the following concepts are re-
quired:



• a proceed stack is used for postponing an action that
triggers an advice; proceed instructions pop the top
of the proceed stack onto the continuation stack.

Furthermore, a number of auxiliary instructions will be used:

• a do instruction is used for invoking advices;

• a pushp instruction pushes the top of the continuation
stack on top of the proceed stack;

• a popp instruction pops the top of the proceed stack;

When a call instruction is matched by any aspects, these
aspects are first scheduled (in a certain order) by placing a
do instruction on either the continuation stack (for the first
advice), or the proceed stack (for any other advices). The
pushp and popp instructions are added to achieve a uniform
handling of multiple around advice, all of which may contain
a proceed instruction. To prevent instructions from being
intercepted more then once, they are tagged the first time.

3. GRAPH TRANSFORMATIONS
Graph transformation is a systematic, rule-based transfor-
mation technique. It has a solid research foundation [9] and
applications in many areas of computer science.
A graph is a type (N, E) where N is a set of nodes and
E ⊆ N ×Lab×N a set of labelled edges. Nodes are graphi-
cally represented as black bordered boxes and edges as black
arrows. A graph production system (GPS) is a set of graph
production rules, each of which can transform a source graph
into a new graph called the target graph. The rule specifies
both the conditions under which it applies and the changes it
makes to the source graph. Technically, a graph production
rule consists of two partially overlapping graphs, a left hand
side and a right hand side, and a set of negative applica-
tion conditions, which are also (connected) graphs partially
overlapping with the left hand side.
Graph transformations provide an attractive visual repre-
sentation. In our visual representation of a rule used in this
paper (which is taken from the GROOVE tool [8]) we com-
bine all elements together in one graph, made up of four
types of elements:

• Readers: elements that are used for matching; are de-
picted as with black borders and arrows (see Figure
2.a);

• Erasers: elements that will be erased during the trans-
formation are depicted with thin dashed borders and
arrows (see Figure 2.b);

• Creators: elements that will be created during trans-
formation are depicted with thick light gray borders
and arrows (see Figure 2.c);

• Embargoes: elements that are not allowed to be present
in the graph when the rule is matched are depicted
with dashed, dark gray edges (see Figure 2.d)

4. SEMANTICS
We specify the run-time semantics of FAJ using graph trans-
formations. Due to the limited amount of space, we are

Figure 2: The graph production rule elements

Figure 3: Rule for the set instruction

merely able to give an intuition of the workings: the en-
coding of the graphs, and the actual rules that form the
semantics.
Graphs consists of a graph-based representation of an FAJ
specification, and the run-time state. This run-time state
consists of the stacks that we have introduced in Section 2,
and nodes representing Objects. In fact, no distinction is
made between memory locations and the actual instances.
Expressions (method-bodies and the main expression) have
already been process to sequences of instructions; the main
expression is placed on the continuation stack.
There are rules for each of the instructions discussed in Sec-
tion 2. To get a feeling of the proposed semantics, we de-
scribe the set instruction. The complete set of rules can be
found at http://www.cs.utwente.nl/˜staijen/faj/.
Figure 3 shows the rule for the set instruction, which orig-
inates from an expression of the kind e.f = e0. The rule
applies when a set instruction is popped from the contin-
uation stack, represented by a node labelled Stack, C. An
outgoing edge of this stack points to the top Cell of the
stack. A next edge points to the Cell underneath. The re-
ceiver object e and the new value e0 are on the value stack,
labelled with Stack, S. The variable to be updated is se-
lected, that has the same name as the name argument of
the set instruction. The value of the variable is replaced,
and the receiver is popped from the value stack. The new
value remains on the value stack, since it is also result of
e.f = e0.

5. CORRECTNESS
We now give an intuition of how we can show that our opera-
tional semantics is correct in the sense that it corresponds to
the prior semantics defined in SOS (Structural Operational
Semantics) style in [2]. For this purpose, we define a map-
ping from the configurations in the SOS semantics to graphs,
such that there is a one-to-one correspondence between SOS
derivations and (sequences of) graph derivations. (It should
be noted that our language is a slight adaptation of that in
[2]; the most important difference is that we only allow call
point-cuts, whereas they can define point-cuts for arbitrary
instructions; on the other hand, we include parameters into
the advice, which they do not. To establish correctness, we
use an accordingly modified version of the SOS semantics.)



The static structure of a given FAJ program is captured by
three partial functions:

• FDecl : T → (Ident × T )∗, yielding for each class type
the sequence of field declarations (where Ident is the
universe of identifiers);

• MDecl : (T × Ident) ⇀ (Ident×T )∗×T ×Expr , yield-
ing for each class type the corresponding method dec-
larations. A method declaration consists of a list of
parameters (pairs of identifiers and types), a return
type and a method body.

• ADecl : (T×Ident)→ P((Ident×T )∗×Expr), yielding
for each pair of class and method identifier the set of
aspects that statically match calls of that method.

For every program, this triple of functions together with the
initial expression plays exactly the same role as the initial
graph. , except that there all expressions (i.e., the initial
expression and the bodies of all methods and advices) have
been sequentialised as discussed in Sect. 2.2. In fact, there
is a straightforward translation from each valid combination
(FDecl , MDecl , ADecl , Expr) to an aspect program graph.
For lack of space we omit the definition here, but below
we use Instr, Ident and Class to denote the sets of nodes
corresponding to Instr , Ident and T in the program.
The dynamic structure, i.e., the states of the program, are
encoded in the SOS semantics as configurations (S, C, Σ, P )
consisting of the same stacks and store as in our graph-based
semantics:

• C ∈ (Instr × Bool)∗ is the continuation stack, con-
taining the instructions to be executed, combined with
booleans indicating whether the instruction has al-
ready been adviced.;

• S ∈ Object∗ is the value stack, containing intermediate
results; Object means location or heap address here;

• Σ : Object → T × (Ident ⇀ Object) is the heap, con-
taining the run-time type and field values of all objects;

• P ⊆ (Instr × Bool)∗ is the proceed stack, containing
the (tagged or untagged) advices scheduled to be exe-
cuted.

On the basis of these configurations, the SOS semantics con-
sists of two types of rules: first, rules to sequentialise expres-
sions to their corresponding instructions; and second, rules
modelling the the execution of the instructions. In our se-
mantics we have chosen to do sequentialisation as part of
the pre-processing in Section 2.2; for the purpose of showing
correctness in this section, we assume the same has hap-
pened on the SOS semantics side; that is, we assume that
all expressions are already transformed into sequences of in-
structions.
The execution rule of instruction instr always has the form

side conditions

(instr : C, S, Σ, P )→ (C′, S′, Σ′, P ′)

meaning that, if the side conditions are fulfilled, a configura-
tion in which the first instruction on the continuation stack
is instr can perform a step, changing into the configuration
on the right hand side. For instance, the rules for set, call
and return are:

set
Σ(v0) = (T, F )

(setf : C, v0 : v : S, Σ, P )
→b (C, v : S, Σ[v0 7→ (T, F [f 7→ v])], P )

call
Σ(v0) = (T, F ) MDecl(m, T ) = ((x1, . . . , xn), e)
(callm : C, v0 : v1 : . . . : vn : S, Σ, P )
→b (e[x1/v1, . . . , xn/vn], this/v0 : C, S, Σ, P )

return
(return : C, S, Σ, P ) →b (C, S, Σ, P )

Note that in these rules, the continuation stack elements are
given as plain instructions rather than pairs of instructions
and booleans; this is to indicate that we do not care about
the instruction tags here.
The P -stack is only used for advice execution. Two example
rules are given below: the around-rule to schedule advice
execution, and the rule for executing proceed. Notice that
in these rules, we do care about tags.

around

Σ(this) = (T, Fd) Ψ(T, m) = {aq . . . an}
((callm, ff) : C, S, Σ, P )→

(doa1 : popp : C, S, Σ,
doa2 : . . . : doan : (callm, tt) : P )

proceed (proceed : C, S, Σ, i : P )
→ (i : pushppi : C, S, Σ, P )

5.1 From Configurations to Graphs
The translation of SOS configurations to graphs is defined
by

Tra : (C, S, Σ, P ) 7→ [[C]] ∪ [[S]] ∪ [[Σ]] ∪ [[P ]]

where [[C]], [[P ]] etc. are the graphs corresponding to the in-
dividual data structures; the combined graph is the union of
these. The individual graphs in turn are defined as follows:

• For each of the stacks, we introduce a single special
Stack-node that stands for the stack as a whole, and
Cell-nodes that stand for the stack positions. As rep-
resentatives we can use integer numbers:

Stack = {−1}
Cell = {0, . . . , n} where n is the stack size

The nodes are linked with top-, next- and value-edges
in accordance with the generated graphs. Using |C| to
denote the size of C and Ci to denote the value at
position i (where the first position is numbered 0 and
the last |C| − 1), the formal definition is:

[[C]] = (Stack ∪ Cell ∪ Instr, EC) where

EC = {(−1, top, 0)} ∪
{(i, next, i + 1) | 0 ≤ i < |C|} ∪
{(i, value, x) | 0 ≤ i < |C|, Ci = (x, b)} ∪
{(i, tag, i) | 0 ≤ i < |C|, Ci = (x, tt)}

Note that stacks always contain a spurious Cell-node
for the sake of uniformity, so that even the empty stack
has a top-edge.

The P -stack is encoded in the same way; so is the S-
stack, except that the value-edges point to Objects,
and no tag-edges are required.

• For the store, we assume a set of nodes Object cor-
responding to the objects in dom(Σ), that is, those



objects that are actually allocated on the heap. We
also need auxiliary nodes to represent the object fields;
these will be encoded as pairs (o, f) where o ∈ Object

and f is a field declared for o’s type:

Var = {(o, id) | Σ(o) = (t, Fd), id ∈ dom(Fd)}

Using this set of nodes, the graph for Σ is defined by

[[Σ]] = (Class ∪ Object ∪ Ident ∪ Var, EΣ) where

EΣ = {(v, name, id) | v = (o, id)} ∪
{(o, var, v) | v = (o, id)} ∪
{(v, value, o) | v = (o′, id), Fd(o′) = o} ∪
{(o, type, t) | Σ(o) = (t, Fd)}

On the basis of these definitions, the correctness criterion
is that the following correspondence must hold between the
graph semantics and the SOS semantics:

(C, S, Σ, P ) (C′, S′, Σ′, P ′)

G G′

SOS derivation

Tra

graph derivation sequence

Tra

This picture can be read top-down or bottom-up: for all
single SOS derivations, there is a corresponding sequence of
graph derivations, and for all sequences of graph derivations
between non-intermediate graphs there is a corresponding
SOS derivation — where a graph is intermediate if it is in
between of a number of graph derivations that together cor-
respond to the SOS derivation, i.e. when a SOS rule is spec-
ified using more then one graph transformation rule. The
corresponding derivations are defined as a bisimulation. We
are currently working on this final step.

6. RELATED WORK
The idea of the work reported here arose from [4], where a
full graph transformation-based semantics is given for a cus-
tom defined object-oriented language. Also based on that
work is the graph transformation-based semantics of a the
Composition Filters language mentioned in [1], which how-
ever does not include a base language semantics and can
therefore merely execute subsequent advices at a single join
point. Both models use a different run-time state represen-
tation that is more suitable for object-oriented “machines”.
As mentioned before as our correctness criterion, Douence
et al. [2] give an operational semantics of two base lan-
guages — a simple functional language and AFJ — and a
large number of features of aspect-oriented language. The
notation used is semi-formal yet mathematical and it does
not provide means for execution.

7. CONCLUSION
In this paper we have propose a graph transformation-based
semantics for a simple object-oriented language with around
advice. The specified language, Assignment Featherweight
Java, leans itself very well for studying language extensions.
We have extended this language with around advice bound
to point-cuts that select certain instructions.
We have illustrated that a graph transformation based oper-
ational semantics is a formal specification technique and can

be complete with respect to a certain reference semantics.
We have introduced a notion of correctness and illustrated
how to prove this correctness. A graph tranformation based
semantics is directly executable. This can help in finding
bugs and testing the semantics. Due to its executable na-
ture, the graph transformation-based specification has led to
the discovery of oversights in the specification that is used as
a correctness criterion; we see these errors as an unfortunate
consequence of a purely formal notation.
The executable semantics allows simulation of program writ-
ten in the specified language, if this program is represented
as a graph as described in this paper. This gives a sim-
ple view on the execution of the program, and opens the
road towards applying existing verification methods such as
analysis based on model checking.
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