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ABSTRACT
Programs of a software product line can be synthesized by
composing features which implement some unit of program
functionality. In most product lines, only some combination
of features are meaningful; feature models express the high-
level domain constraints that govern feature compatibility.
Product line developers also face the problem of safe compo-
sition — whether every product allowed by a feature model
is type-safe when compiled and run. To study the problem
of safe composition, we present Lightweight Feature Java
(LFJ), an extension of Lightweight Java with support for
features. We define a constraint-based type system for LFJ
and prove its soundness using a full formalization of LFJ
in Coq. In LFJ, soundness means that any composition of
features that satisfies the typing constraints will generate
a well-formed LJ program. If the constraints of a feature
model imply these typing constraints then all programs al-
lowed by the feature model are type-safe.

Categories and Subject Descriptors
F.3.3 [Studies of Program Constructs]: Type structure

General Terms
Design, Languages

Keywords
Product lines, Type safety, Feature model

1. INTRODUCTION
Programs are typically developed over time by the accu-

mulation of new features. However, many programs break
away from this linear view of software development: remov-
ing a feature from a program when it is no longer useful, for
example. It is also common to create and maintain multiple
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feature Bank {
class Account

extends Object{
int balance = 0;
void update(int x) {

int newBal =
balance + x;

balance = newBal;
}}}

(a) Bank Feature

feature Sync {
refines class Account

extends Object{
static Lock lock

= new Lock();
refines void update(int x) {

lock.lock();
Super.update(x);
lock.unlock();

}}}

(b) Synchronized Feature

class Account extends Object {
int balance = 0;

static Lock lock = new Lock();
void update(int x) {

lock.lock();
int newBal = balance + x;
balance = newBal;

lock.unlock(); }}}

(c) A composed program: Sync•Bank

Figure 1: Account with synchronization feature

versions of a product with different sets of features. The
result is a product line, a family of related products.

The inclusion, exclusion, and composition of features in a
product line is easier if each feature is defined as a modular
unit. A given feature may involve configuration settings,
user interface changes, and control logic. As such, features
typically cut across the normal class boundaries of programs.
Modularizing a program into features, or feature modularity,
is quite difficult as a result.

There are many systems for feature modularity based on
Java, such as the AHEAD tool suite [4]. In these systems,
a feature is a collection of Java class definitions and refine-
ments. A class refinement is a modification to an existing
class, adding new fields, new methods, and wrapping exist-
ing methods. When a feature is applied to a program, it
introduces new classes to the program and its refinements
are applied to the existing classes.

Figure 1 is a simple example of a product line containing
two features, Bank and Sync. The Bank feature in Figure 1a
implements an elementary Account class with setBalance and
update methods. Feature Sync in Figure 1b implements a
synchronization feature so that accounts can be used in a
multi-threaded environment. Sync has a refinement of class
Account that modifies update to use a lock, which is intro-



duced as a static variable. Method refinement is accom-
plished by inheritance; Super.update(x) indicates a substitu-
tion of the prior definition of method update(x). Composing
the refinement of Figure 1b with the class of Figure 1a pro-
duces a class that is equivalent to that in Figure 1c. The
Bank feature can also be used on its own. While this ex-
ample is simple, it exemplifies a feature-oriented approach
to program synthesis: adding a feature means adding new
members to existing classes and modifying existing methods.
The following section presents a more complex example and
more details on feature composition.

Not all features are compatible, and there may be complex
dependencies among features. A feature model defines the
legal combinations of features in a product line. A feature
model can also represent user-level domain constraints that
define which combinations of features are useful.

In addition to domain constraints, there are low-level im-
plementation constraints that must also be satisfied. For
example, a feature can reference a class, variable, or method
that is defined in another feature. Safe composition guar-
antees that a program synthesized from a composition of
features is type-safe. While it is possible to check individual
programs by building them and then compiling them, this
is impractical. In a product line, there can be thousands of
programs; it is more desirable to ensure that all legal pro-
grams are type-safe without synthesizing the entire product
line. This requires a novel approach to type checking.

We formalize feature-based product lines using an object-
oriented kernel language extended with features, called
Lightweight Feature Java (LFJ). LFJ is based on Lightweight
Java [11], a subset of Java that includes a formalization in
the Coq proof assistant [6], using the Ott tool [10]. A pro-
gram in LFJ is a set of features containing classes and class
refinements. Multiple products can be constructed by se-
lecting and composing appropriate features according to a
product specification - a composition of features.

Features modules are separated by implicit interfaces that
govern their composition. One solution to type checking
these modules is to require explicit feature interfaces. We
instead infer the necessary feature interfaces from the con-
straints generated by a constraint-based type system for
LFJ. The type system and its safety are formalized in Coq.
We then show how to relate the constraints produced by the
type system to the constraints imposed by a feature model,
using a reduction to propositional logic. This reduction al-
lows us to statically verify that a feature model will only
allow type-safe programs without having to generate and
checking each product individually.

2. SAFE COMPOSITION
Feature refinements can make significant changes to classes.

Features can introduce new methods and fields to a class and
alter the class hierarchy by changing the declared parent of a
class. They can also refine existing methods by adding new
statements before and after a method’s body or by overwrit-
ing it altogether.

The features in Figure 2 illustrate how these modifications
affect the Account class in the feature Bank. The Retiremen-
tAccount feature refines the Account class by updating its
parent to Lehman, introducing a new field for a 401k account
balance with an initial balance of 10000, and rewrites the
definition for the update method to add x to the 401k bal-
ance. InvestmentAccount also refines Account, updating its

feature InvestmentAccount {
refines class Account extends WaMu {

int 401kbalance = 0;
refines void update (int x) {

x = x/2; Super(); 401kbalance += x;
}}}

feature RetirementAccount {
refines class Account extends Lehman {

int 401kbalance = 10000;
int update (int x) {

401kbalance += x;
}}}

feature Investor {
class AccountHolder extends Object {

Account a = new Account();
void payday (int x; int bonus) {

a.401kbalance += bonus;
return a.update(x);

}}}

Figure 2: Definitions of InvestmentAccount, Investor, and
RetirementAccount features.

class Account extends Lehman{
int balance = 0;
int 401kbalance = 10000;
void update(int x) {

401kbalance += x;
}}

Figure 3: RetirementAccount•Bank

parent to WaMu and introducing a 401k field, but it refines
the update method to put half of x into a 401k before adding
the rest to the original account balance.

A software product line can be modelled as an algebra
that consists of a set of operations, where each operation
implements a feature. We write M = { Bank, RetirementAc-
count, InvestmentAccount, Investor} to mean model M has
the features (operations) Bank, RetirementAccount, Invest-
mentAccount, Investor declared above. One or more features
of a model are constants that build base programs through
a set of class introductions:

Bank a program with only the generic Account class
Investor a program with only the AccountHolder class

The remaining operations are unary functions on pro-
grams, and are program refinements or extensions:

InvestmentAccount•Bank builds an investment account
RetirementAccount•Bank builds a retirement account

where • denotes function application and B • A is read as
“feature B refines program A” or equivalently “feature B is
added to program A”. A refinement can extend the program
with new definitions or modify existing definitions. The de-
sign of a program is a composition of features: a product
specification.

P1 = RetirementAccount•Bank Fig. 3
P2 = InvestmentAccount•Bank Fig. 4
P3 = RetirementAccount•Investor•Bank Fig. 5

This model of software product lines is based on step-
wise development: one begins with a simple program (e.g.,
constant feature Bank) and builds more complex programs
by progressively adding features (e.g., adding feature Invest-
mentAccount to Bank).

A set of n features can be composed in an exponential



class Account extends WaMu{
int balance = 0;
int 401kbalance = 0;
void update(int x) {

x = x/2;
int newBal = balance + x;
balance = newBal;
401kbalance += x;

}}

Figure 4: InvestmentAccount•Bank

class Account extends Lehman{
int balance = 0;
int 401kbalance = 10000;
void update(int x) {

401kbalance += x;
}}

class AccountHolder extends Object {
Account a = new Account();
void payday (int x; int bonus) {

a.401kbalance += bonus;
return a.update(x);

}}

Figure 5: RetirementAccount•Investor•Bank

number of ways to build a set of order n! programs. A
product line is a subset of these programs described by a
feature model which constrains the ways in which features
can be composed. A composition of features might fail to
meet the dependencies of its constituent features, resulting
in a program that fails to type check. Only a subset of the
programs built from a set of features is well-typed. The
goal of safe composition is to ensure that the product line
described by a feature model is contained in this set, i.e.
that all the programs in the product line are well-typed.

The combinatorial nature of product lines presents a num-
ber of problems to statically determining safe composition.
The members and methods of a class referenced in a feature
might be introduced in several different features. Consider
the AccountHolder class introduced in the Investor feature:
this account holder is the employee of a company which
gives a small bonus with each paycheck which the employee
adds directly into the 401k balance in his account. In order
for a composition including the Investor feature to build a
well-typed Java program, it must be composed with a fea-
ture that introduces this field to the Account class, in this
case either InvestmentAccount or RetirementAccount. This
requirement could also be met by a feature which sets the
parent of Account to a different class from which it inherits
the 401kbalance field. Since a parent of a class can change
through refinement, the inherited fields and methods of the
classes in a feature are dependent on a specific product spec-
ification. Each feature has a set of type-safety constraints
which can be met by the combination of a number of dif-
ferent features, each with their own set of constraints. To
study the interaction of feature composition and type safety,
we first develop a model of Java with features.

3. LIGHTWEIGHT FEATURE JAVA
Lightweight Feature Java (LFJ) is a kernel language that

captures the key concepts of feature-based product lines of
Java programs. LFJ is based on Lightweight Java (LJ), a
minimal imperative subset of Java [11]. LJ supports classes,
mutable fields, constructors, single inheritance, methods and
dynamic method dispatch. LJ does not include local vari-
ables, field hiding, interfaces, inner classes, or generics. This
imperative kernel provides a minimal foundation for study-
ing a type system for feature-oriented programming. LJ is
more appropriate for this work than Featherweight Java [8]
because of its treatment of constructors. When compos-
ing features, it is important to be able to add new mem-
ber variables to a class during refinement. Featherweight
Java requires all member variables to be initialized in a sin-
gle constructor call. As a result, adding a new member
variable causes all previous constructor calls to be invalid.
Lightweight Java allows such refinements through its sup-
port of more flexible initialization of member variables. In
addition, Lightweight Java has a full formalization in Coq,
which we extended to prove the soundness of LFJ mechan-
ically. The proof scripts for the system are available at
http://www.cs.utexas.edu/~bendy/featurejava.php.

Product specification
PS ::= FD

Feature declarations
FD ::= feature F {cld; rcld}

Class refinement
rcld ::= refines class dcl extending cl{fd; md; rmd}

Method refinement
rmd ::= refines method ms {rmb}

Method refinement
rmb ::= s; Super(); s; return y

Figure 6: Modified Syntax of Lightweight Feature Java.

The syntax of LFJ extends LJ to support feature-oriented
programming is given in Figure 6. A feature definition FD
maps a feature name F to a list of class declarations cld
and a list of class refinements rcld . A class refinement rcld
includes a class name dcl , a set of LJ field and method in-
troductions, fd and md , a set of method refinements rmd ,
and the name of the updated parent class cl . A method re-
finement advises a method with signature ms with two lists
of LJ statements s and an updated return value y . When
applied to an existing method, a method refinement wraps
the existing method body with the advice. The parameters
of the original method are passed implicitly because the re-
finement has the same signature as the method it refines.
The set of features from which a product line can be built
is called the feature table. A product specification PS is a
sequence of distinct feature names.

3.1 Feature Composition
A LJ program can be modelled as a partial function from

class names to their definitions: CT : dcl → cld. In the
operational semantics of LJ, this function is concretely real-
ized as the function path : P → dcl → cld which looks up
a class definition in a given program. In this context, CT is
simply the path specialized on P : CT = pathP . Features
are themselves functions from LJ programs to LJ programs.
Composition of a feature feature FD {cld; rcld} with an
LJ program P produces a new mapping, CT ′:



CT ′(dcl) =

(
pathcld(dcl) dcl ∈ cld

rcld • CT (dcl) dcl 6∈ cld
(1)

In the case that FD introduces a class named dcl, CT ′

returns this class, ignoring any previous declarations and
refinements. Otherwise, CT ′ finds the definition of dcl in
the previous program using the original CT function and
returns the resulting class definition, cld, refined by rcld. If
a class refinement rcld in rcld is named dcl, the • operator
builds a refined class by first advising the methods of cld
with the method refinements in rcld. The fields and methods
introduced by rcld are then added to this class and its parent
is set to the superclass named in rcld. CT ′ is undefined if
cld lacks a method refined by rcld.

A product specification builds a LJ program by recur-
sively composing its features in this manner, starting with
the empty LJ program. Each LFJ feature table can con-
struct a family of programs through composition. The set of
class definitions in a program is determined by the sequence
of features which produced it. The class hierarchy is also
potentially different in each product: refinements can alter
the parent of a class, and two mutually exclusive features
can define the same class with a different parent.

3.2 Typechecking Feature Models
A feature model is safe if it only allows the creation of

well-formed LJ programs. For any particular product spec-
ification, this can be checked by composing its features and
then checking the type safety of the resulting program using
the standard LJ type system. A naive approach to checking
the safety of a feature model is simply to iterate over all
the programs it describes, type checking each individually.
This approach constructs a potentially exponential number
of programs, making it computationally expensive. Instead,
we propose a type system which allows us to statically verify
that all programs described by a feature model are type-safe
without having to synthesize the entire family of programs.

The key difficulty with this approach is that features are
typically program fragments which make use of class defi-
nitions made in other features; these external dependencies
can only be resolved during composition with other features.
Every LJ construct has two categories of requirements which
must be met in order for it to be well-formed in the LJ type
system. The first category consists of premises which only
depend on the structure of the construct, e.g. the require-
ment that the parameters of a well-formed method be dis-
tinct. The remaining premises access information from the
surrounding program through the CT function. For exam-
ple, CT is used to determine that the type of a variable y
is a subtype of the type of variable x when assigning y to
x in a method body. Intuitively, these premises define the
structure of the programs in which LJ constructs are well-
formed. In the standard LJ type system, the structure of
the surrounding program is known. In a software product
line, however, each feature can be included in a number of
programs, and the final makeup of the surrounding program
depends on the other features in a product specification.
Converting these kinds of premises into constraints provides
an explicit interface for an LJ construct with any surround-
ing program. A feature’s interface determines which features
must be included in a product specification in order for its
constructs to be well-formed in the final LJ program.

4. LFJ TYPE SYSTEM
In this section, we present a constraint-based type sys-

tem for LFJ based on a constraint-based type system we
have developed for LJ. The constraint-based systems retain
the premises that depend on the structure of the construct
being typed and convert those that rely on external infor-
mation into constraints. By using constraints, the external
typing requirements for each feature are made explicit, sep-
arating derivation of these requirements from their satisfac-
tion. Generating a set of constraints for a feature is sep-
arated from consideration of which product specifications
have a combination of features satisfying these constraints.

Composition Constraints
dcl introduces ms before F
dcl introduced before F

Uniqueness Constraints
cl f unique in dcl

cl m (vdk
k
) unique in dcl

Structural Constraints
cl1 ≺ cl2
cl2 ≺ ftype(cl1, f)
ftype(cl1, f) ≺ cl2

mtype(cl, m) ≺ clk
k → cl

defined(cl)
f 6∈ fields(parent(dcl))
pmtype(dcl, m) = τ

Figure 7: Syntax of Lightweight Feature Java typing con-
straints.

The constraints used by our type system are given in Fig-
ure 7 and are divided into three categories. The two com-
position constraints guarantee successful composition of a
feature F by requiring that refined classes and methods be
introduced by a feature in a product line before F . The two
uniqueness constraints ensure that member names are not
overloaded within the same class, a restriction in the LJ for-
malization. The structural constraints come from the stan-
dard LJ type system and determine the members of a class
and its inheritance hierarchy in the final program. The sub-
type constraint is particularly important because the class
hierarchy is malleable until composition; if it were static,
constraints that depend on subtyping could be reduced to
other constraints or eliminated entirely.

The typing rules for LFJ are found in Figure 8-10 and
rely on judgements of the form ` J | ξ, where J is a typ-
ing judgement from LFJ and ξ is a set of constraints, called
a signature. The signature ξ provides an explicit interface
which guarantees that J holds in any product specification
that satisfies ξ. Typing rules for statements, methods, and
classes are those from LJ augmented with signatures. Typ-
ing rules for class and method refinements in a feature F
are similar to those for the objects they refine, but require
that the refined class or method be introduced in a feature
that comes before the F in a product specification. Method
refinements do not have to check that the names of their
parameters are distinct and that their parameter types and
return type are well-formed: a method introduction with
these checks must precede the refinement in order for it to



Γ ` s | C Statement well-formed in context with signature

Γ ` sk | Ck
k

Γ ` {sk} |
S

k Ck
(WF-Block)

Γ(x) = τ1 Γ(var) = τ2

Γ ` var = x; | {τ1 ≺ τ2}
(WF-Var-Assign)

Γ(x) = τ1 Γ(var) = τ2

Γ ` var = x.f ; | {ftype(τ1, f) ≺ τ2}
(WF-Field-Read)

Γ(x) = τ1 Γ(y) = τ2

Γ ` x.f = y; | {τ2 ≺ ftype(τ1, f)}
(WF-Field-Write)

Γ(x) = τ1 Γ(y) = τ2

Γ ` s1 | C1 Γ ` s2 | C2

C3 = {τ2 ≺ τ1 ∨ τ1 ≺ τ2}
Γ ` if x == y then s1 else s2 | C1 ∪ C2 ∪ C3

(WF-If)

Γ(var) = τ1 type (cl) = τ2

Γ ` var = new cl() | {τ2 ≺ τ1}
(WF-New)

Γ(x) = τ Γ(var) = π Γ(yk) = πk
k

C = {mtype(τ, meth) ≺ πk
k → π}

Γ ` var = x.meth(yk
k) | C

(WF-MCall)

Figure 8: Typing Rules for LJ and LFJ statements.

be well-formed. The signature of a product specification PS
is the union of the constraints on each of the features in PS .

Once the signature of a product specification PS is gener-
ated according to the rules in Figure 10, we evaluate whether
it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees
about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to

` P | C Program well-formed with signature

` cldk | Ck
k

P = cldk
k

distinct names (P )

` P |
S

k Ck
(WF-Program)

` F | C Feature well-formed with signature

` cldk | Ck
k

`F rcld` | C`
`

` feature F {cldk
k
rcld`

`} |
S

k Ck ∪
S

` C`

(WF-Feature)

` PS | C Product specification well-formed with signature

` ∅ | ∅ (WF-Specification-Nil)

` F | C ` Fk
k | C′

` F, Fk
k | C ∪ C′

(WF-Specification)

Figure 10: Typing Rules for LFJ Programs and Features.

check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
soundness proofs that follow. For this reason, the following
sections elide many of the bookkeeping details, instead pre-
senting sketches of the major pieces of the soundness proofs.

Theorem 4.1 (Soundness of constraint-based LJ Type Sys-
tem). Let P be a LJ program with distinct class names and
an acyclic, well-founded class hierarchy. Let C be the set
of constraints generated by a class cld in P . cld is well-
formed if and only if P satisfies C: P ` cld ↔ P |= C where
` cld | C.

Proof. The two key pieces of this proof are: showing that
satisfaction of each of the constraints guarantees that the
corresponding judgement holds, and that there is a one-to-
one correspondence between the constraints generated by
the typing rules in Figure 9 and the premises used in the
declarative LJ type system. The former is straightforward
except for the subtyping constraint, which relies on the path
function to check for satisfaction. We can prove their equiva-
lence by induction on the derivation of the subtyping judge-
ment in one direction and induction on the length of the
path in the other. We can then show that the two type
systems are equivalent by examination of the structure of
P . At each level of the typing rules, the structural premises
are identical and each of the external premises of the rules
appears as a constraint in the signature. As a result of the
previous argument, satisfaction of the signature guarantees



`τ,F md | C Method well-formed in class with signature

distinct(vark
k) type(clk) = τk

k
type(cl) = τ ′

Γ = [vark 7→ τk
k][this 7→ τ ] Γ ` s` | C`

`
Γ(y) = τ ′′

`τ cl meth (clk vark
k
) {s`

` return y; } | {τ ′′ ≺ τ ′,defined clk
k} ∪

S
` C`

(WF-Method)

` cld | C Class well-formed with signature

distinct(fj) distinct(mk) dcl 6= cl type(dcl) = τ `τ clk methk (cl`,k var`,k
`
) mbk | Ck

k

ξ =
S

j{fj 6∈ fields(parent(dcl))} υ =
S

j{clj fj unique in dcl} υ′ =
S

k{clk methk (cl`,k var`,k
`
) unique in dcl}

ξ′ =
S

k{pmtype(dcl, methk) = cl`,k
` → clk}

` class dcl extends cl {clj fj
j
; clk methk (cl`,k var`,k

`,k
) mbk

k

} |
S

k Ck ∪ {defined cl,defined clj
j} ∪ ξ ∪ ξ′ ∪ υ ∪ υ′

(WF-Class)

`τ,F rmd | C Refined method well-formed in class of feature with signature

type(cl) = τ ′ Γ = [vark 7→ τk
k][this 7→ τ ]

Γ(y) = τ ′′ Γ ` sj | Cj
j

Γ ` s` | C`
`

C = {τ ′′ ≺ τ ′, τ introduces cl meth (clk vark
k
) before F} ∪

S
j Cj ∪

S
` C`

`τ,F refines method cl meth (clk vark
k
) {sj

j ; Super(); s`
`; return y; } | C

(WF-Refines-Method)

`F rcld | C Class refinement well-formed in feature with signature

dcl 6= cl type(dcl) = τ `τ clk methk (cl`,k var`,k
`
) mbk | Ck

k

`τ,F rmdm | C′
m

m

ξ =
S

j{fj 6∈ fields(parent(dcl))} υ =
S

j{clj fj unique in dcl} υ′ =
S

k{clk methk (cl`,k var`,k
`
) unique in dcl}

ξ′ =
S

k{pmtype(dcl, methk) = cl`,k
` → clk}

`F refines class dcl extending cl {clj fj
j
;`τ clk methk (cl`,k var`,k

`,k
) mbk

k

; rmd`,k
`,k} |

S
k Ck ∪

S
m C′

m∪
{defined cl,defined clj

j
, dcl introduced before F, } ∪ ξ ∪ ξ′ ∪ υ ∪ υ′

(WF-Refines-Class)

Figure 9: Typing Rules for LFJ method and class refinements.

that premises of the typing rules hold for each structure in
P . Having shown the two type systems are equivalent, the
proofs of progress and preservation for the constraint-based
type system follow immediately.

Theorem 4.2 (Soundness of LFJ Type System). Let PS be
a LFJ product specification and C be a set of constraints such
that ` PS | C. If PS |= C and Object is in the path of every
class introduced by a feature in PS, then the composition of
the features in PS produces a valid, well-formed LJ program.

Proof. This proof is decomposed into three key lemmas, cor-
responding to the three kinds of typing constraints:

(i) Composition of the features in PS produces a valid LJ
program, P .

For each class or method refinement of a feature F in PS ,
a composition constraint is generated by the LFJ typing
rules. Each of these are satisfied according to the definition
in Figure 11, allowing us to conclude that a feature with

appropriate declarations appears before F in PS . Each of
these declarations will appear in the program generated by
the features preceding F , allowing us to conclude that the
composition succeeds for each feature in PS .

(ii) P is typeable in the constraint-based LJ type system
with constraints C′.

In essence, we must show that the premises of the constraint-
based LJ typing judgements hold. Our assumption that each
class in PS is a descendant of Object ensures that P has
an acyclic, well-founded class hierarchy. The premises for
the LJ methods and statements are identical, leaving class
typing rules for us to consider. The LJ typing rules require
that the method and field names for a class be distinct, but
these premises are removed by the LFJ typing rules, as the
members of a class are not finalized until after composi-
tion. This requirement is instead enforced by the unique-
ness constraints in Figure 11, which are satisfied only when
a method or field name is introduced by a single feature.
Since PS |= C, it follows that the premises of the LJ typing



ftype(P, τ1, f) = τ3 τ2 ∈ path(P, τ3)

P |= τ2 ≺ ftype(τ1, f)

ftype(P, τ1, f) = τ3 τ3 ∈ path(P, τ2)

P |= ftype(τ1, f) ≺ τ2

mtype(P, τ, m) = π′
k

k → π′ π′ ∈ path(P, π)

πk ∈ path(P, π′
k)

k

P |= mtype(τ, m) ≺ πk
k → π

type(cl) ∈ path(P, type(cl))

P |= defined(cl)

τ2 ∈ path(P, τ1)

P |= τ1 ≺ τ2

ftype(P,parent(dcl), f) = ⊥
P |= f 6∈ fields(parent(dcl))

mtype(P,parent(dcl), m) = ⊥ ∨
mtype(P,parent(dcl), m) = τ

P |= pmtype(dcl, m) = τ

FP = Ak
k
FB`

`
HCj

j

τ.ms ∈ H τ 6∈ introductions(B`
`
)

FP |= τ introduces ms before F

FP = Ak
k
FB`

`
HCj

j
dcl ∈ H

FP |= dcl introduced before F

type(dcl) = τ
∀A, B ∈ FP, τ.cl1 f ∈ A ∧ τ.cl2 f ∈ B → cl1 = cl2

FP |= cl f unique in dcl

type(dcl) = τ ms1 = cl m (vdk
k
)

ms2 = cl′ m (vd′
k

k
)

∀A, B ∈ FP, τ.ms1 ∈ Aτ.ms2 ∈ B → ms1 = ms2

FP |= cl m (vdk
k
) unique in dcl

Figure 11: Satisfaction of typing constraints.

rules hold for P and that there exists some set of constraints
C′ such that ` P | C′.

(iii) P satisfies the constraints in C′ and is thus a well-
formed LJ program.

We break this proof into two sublemmas:

(a) C′ ⊆ C.

The key observation for this proof is that every class, method,
and statement in P originated from some feature in PS .
The most interesting case is for the constraints generated
by method bodies: a statement contained in a method body
can come from either the initial introduction of that method
or advice added by a method refinement. In either case,
the statement was included in some feature in PS and thus
generated some set of constraints in C. Because method
signatures are fixed across refinement, the context used in
typing both kinds of statements is the same as that used for
the method in the final composition. This does not entail
that C = C′, however, as there could be some construct in-
troduced in PS that is overwritten by an introduction in a
subsequent feature.

(b) For any structural constraint K, if PS |= K, then P |=
K.

This reduces to showing that class declaration returned by
CT (dcl) is the same as the class with that identifier in P .
This follows from tracing the definition of the CT function
down to the final introduction of dcl in the product line.
From here, we know that this class appears in the program
synthesized from the product specification starting with this
feature. Further refinements of this class are reflected in the
• operator used recursively to build CT (dcl); each refine-
ment succeeds by (i) above. Since the two functions are the
same, the helper functions which call path in P (i.e. ftype,
mtype) and those that use CT in PS return the same val-
ues. We can thus conclude that the satisfaction judgements
for PS and P are equivalent.

All constraints in C′ appear in C, so PS |= C′. By (b)
above, it follows that P |= C′. P must therefore be a well-
formed LJ program by Theorem 4.1.

5. FEATURE MODELS
A feature model represents the dependencies and constraints

between features that make up a product line. One common
representation for feature models is a feature diagram. A
feature diagram is a hierarchy of features where each node
in the tree corresponds to a feature. Annotations on the
tree represent constraints. Features required by a parent
are marked with a dot.

5.1 Feature Diagrams
Consider an elementary automotive product line that dif-

ferentiates cars by transmission type (automatic or manual),
engine type (electric or gasoline), and the option of cruise
control. Figure 12 shows the feature diagram of this prod-
uct line. A car has a body, engine, transmission, and op-
tionally a cruise control. A transmission is either automatic
or manual (choose one), and an engine is electric-powered,
gasoline-powered, or both.

Figure 12: Feature diagram

Besides hierarchical relationships, feature models also al-
low cross-tree constraints, although these are more difficult
to represent in a feature diagram. Such constraints are often
inclusion or exclusion statements of the form: if feature F is
included in a product, then features A and B must also be
included (or excluded). A cross-tree constraint is that cruise
control requires an automatic transmission.

Feature models are compact representations of proposi-
tional formulas [5]. We exploit this representation in relating
feature models to the constraint-based type system for LFJ.
A given program specification can be tested for inclusion in
a product line by checking if it satisfies the constraints ex-



τ1 ≺ τ2 ⇒ Styτ1,τ2
τ2 ≺ ftype(τ1, f) ⇒

W
{Styτ2,cl ∧ Styτ1,type(cld) ∧ FinalInname(cld),F | ∃cld ∈ clds(F ), ∃cl, cl f ∈ fds(cld)}∨W
{Styτ2,cl ∧ Styτ1,type(rcld) ∧ Finalname(rcld),F | ∃rcld ∈ rclds(F ), ∃cl, cl f ∈ fds(rcld)}

ftype(τ1, f) ≺ τ2 ⇒
W
{Stycl,τ2

∧ Styτ1,type(cld) ∧ FinalInname(cld),F | ∃cld ∈ clds(F )∃cl, cl f ∈ fds(cld)}∨W
{Stycl,τ2

∧ Styτ1,type(rcld) ∧ Finalname(rcld),F | ∃rcld ∈ rclds(F ), ∃cl, cl f ∈ fds(rcld)}
mtype(τ, m) ≺ πk

k → π ⇒
W
{Stycl,π ∧

V
k Styπk,clk

∧ FinalInname(cld),F | ∃cld ∈ clds(F ),

∃cl, clk
k
, vk

kcl m(clkvk
k
) ∈ mds(cld)}∨W

{Stycl,π ∧
V

k Styπk,clk
∧ Finalname(rcld),F | ∃rcld ∈ rclds(F ),

∃cl, clk
k
, vk

kcl m(clkvk
k
) ∈ mds(rcld)}

defined(cl) ⇒
W
{InF | ∃cld ∈ clds(F ),name(cld) = cl}

τ introduces ms before F⇒
W
{InG ∧PrecG,F∧

V
{InH → PrecF,H ∨PrecH,G | ∃cld′ ∈ clds(H)), type(name(cld′)) = τ}

| ∃cld ∈ clds(G), type(name(cld)) = τ ∧ms ∈ methods(mds(cld))}∨W
{InG ∧PrecG,F ∧

V
{InH → PrecF,H ∨PrecH,G | ∃cld′ ∈ clds(H)), type(name(cld′)) = τ}

| ∃rcld ∈ rclds(G), type(name(rcld)) = τ ∧ms ∈ methods(mds(rcld))}
dcl introduced before F ⇒

W
{InG ∧PrecG,F | ∃cld ∈ clds(F ),name(cld) = dcl}

cl f unique in dcl ⇒
V
{¬InF | ∃cld ∈ clds(F ),name(cld) = dcl ∧ ∃cl′, cl′f ∈ fds(cld) ∧ cl 6= cl′}∧V
{¬InF | ∃rcld ∈ rclds(F ),name(rcld) = dcl ∧ ∃cl′, cl′f ∈ fds(rcld) ∧ cl 6= cl′}

cl m (vdk
k
) unique in dcl ⇒

V
{¬InF | ∃cld ∈ clds(F ),name(cld) = dcl ∧ ∃cl′, vd′

k

k
, cl′m (vd′

k

k
) ∈ mds(cld) ∧ cl 6= cl′∨

(
W

k vdk 6= vd′
k)}∧V

{¬InF |∃rcld ∈ rclds(F ),name(rcld) = dcl ∧ ∃cl′, vd′
k

k
, cl′m (vd′

k

k
) ∈ mds(rcld) ∧ cl 6= cl′∨

(
W

k vdk 6= vd′
k)}

f 6∈ fields(parent(dcl)) ⇒
V
{InF ∧ FinalInname(cld),F → ¬Stytype(dcl),cl |
∃cld ∈ clds(F ),name(cld) = cl ∧ dcl 6= cl ∧ ∃cl′, cl′f ∈ fds(cld)}∧V
{InF ∧ Finalname(rcld),F → ¬Stytype(dcl),cl |
∃rcld ∈ rclds(F ),name(rcld) = cl ∧ dcl 6= cl ∧ ∃cl′, cl′f ∈ fds(rcld)}

pmtype(dcl, m) = τ ⇒
V
{InF ∧ FinalInname(cld),F → ¬Stytype(dcl),cl | ∃cld ∈ clds(F ),name(cld) = cl
∧dcl 6= cl ∧m ∈ methods(cld) ∧mtype(cld, m) 6= τV
{InF ∧ Finalname(cld),F → ¬Stytype(dcl),cl | ∃rcld ∈ rclds(F ),name(rcld) = cl
∧dcl 6= cl ∧m ∈ methods(rcld) ∧mtype(rcld, m) 6= τ

where
FinalIncl,F ↔ InF ∧

V
{InG → PrecG,F | cl ∈ names(clds(G)) ∧G 6= F}

Finalcl,F ↔ InF ∧
V
{InG → PrecG,F | cl ∈ names(clds(G))}

Figure 13: Translation of constraints to propositional formulas.

pressed in a feature model. For example, the feature model
Auto of the automotive product line is:

(Body ∧ (Automatic ∨ Manual) ∧
(Electric ∨ Gasoline) ∧ (Automatic ↔ ¬ Manual))

where Body is the lone constant.

6. SAFETY OF FEATURE MODELS
By the soundness of the LFJ type system, if a product

specification satisfies the signature of every feature included
in it, its composition is a well-formed LJ program. The
signature of a feature F provides an interface with other
feature modules. This interface can be translated into a
propositional formula describing the minimal structural re-
quirements that any product specification built from a fea-
ture table FT which includes F must satisfy in order for the
constructs in F to be well-formed. The conjunction of these
formulas builds a formula φsafe which any product specifica-
tion must satisfy in order to produce a well-formed program.
The safety of a feature model can then be statically verified
by using a SAT solver to check that its propositional repre-
sentation implies this minimal formula.

The propositional variables of φsafe have three basic forms,
described in Figure 14. Note that a satisfying assignment
to the In and Prec variables which obeys the properties
of the precedence relation describes a unique product spec-

InA : Feature A is included.
PrecA,B : Feature A precedes Feature B.
Styτ1,τ2

: τ1 is a subtype of τ2.

Figure 14: Description of propositional variables.

ification. The propositional constraints that impose these
properties are given in Figure 15. The first three formulas
enforce that a precedence relation is total on all features in-
cluded in a product specification, that it is asymmetric, and
that it is irreflexive. The next four ensure that each product
specification dictates an assignment to the Sty variables cor-
responding to its class hierarchy. In effect, the Sty Total
rule builds the transitive closure of the subtyping relation,
starting with the parent/child relationships established by
the last definition of a class in a product specification. A
satisfying assignment to WFSpec , the conjunction of all these
constraints, represents a unique product specification.

The makeup of the program built from a product spec-
ification depends upon the ordering of features and their
introductions and refinements. The rules in Figure 13 gen-
erate a propositional formula for each kind of typing con-
straint. A satisfying assignment to a formula in Figure 13
which also satisfies WFSpec represents a product specifica-



tion which satisfies the associated constraint. The Final and
FinalIn abbreviations ensure that introductions and refine-
ments in features appearing before the feature with the final
introduction are ignored. The composition and uniqueness
constraints have straightforward propositional representa-
tions that govern the valid orderings and makeup of product
lines. The translations of the structural constraints rely on
the mutability of the class hierarchy: any class cl1 that has
a required field or method could ultimately satisfy a con-
straint on the members of another class, cl2, if cl2 ≺ cl1 in
the final product specification.

Let φF be the conjunction of the formulas built from each
constraint in the signature of a feature F according to the
rules in Figure 13. φF describes the structure of all product
specifications in which F is well-formed. φsafe is constructed
by first building a clause for each feature F stating its inclu-
sion implies φF : InF → φF . The propositional constraints
generated by Sty WF in Figure 15 are then added to this
formula to ensure that the class hierarchy of a product spec-
ification is acyclic by requiring that each class included in a
product specification be a subtype of Object.

The representation of a feature model in propositional
logic, FM , describes the assignments that represent legit-
imate specifications of a product line, defining the family of
programs it contains. It is possible to build FM using the
variables in Figure 14. By construction, a satisfying assign-
ment to φsafe which sets InF to true also satisfies φF . It
follows that any satisfying assignment to WFSpec → φsafe

represents a product specification which satisfies the signa-
tures of each of the features it includes. By Theorem 4.2,
such a product specification produces a well-formed LJ pro-
gram. Since FM and the minimal well-formedness formula
share the same variables, a SAT solver can check whether
FM ∧ WFSpec → φsafe is valid. If so, the set of programs
described by the feature model is a subset of those allowed
by φsafe . Thus, the composition of any product specification
allowed by such a feature model is well-formed.

6.1 Feasibility of Our Approach
While checking the validity of FM ∧ WFSpec → φsafe is

co-NP-complete, the SAT instances generated by our ap-
proach are highly structured, making them amenable to fast
analysis by modern SAT solvers. We have previously imple-
mented a system based on this approach for checking safe
composition of AHEAD software product lines [12]. The size
statistics for the four product lines analyzed are presented
in Table 1. The tools identified several errors in the existing
feature models of these product lines. It took less than 30
seconds to analyze the code, generate the SAT formula, and
run the SAT solver for JPL, the largest product line. This
is less than the time it took to generate and compile a single
program in the product line.

Product # of # of Code Base Program
Line Features Prog. Jak/Java Jak/Java

LOC LOC

PPL 7 20 2000/2000 1K/1K
BPL 17 8 12K/16K 8K/12K
GPL 18 80 1800/1800 700/700
JPL 70 56 34K/48K 22K/35K

Table 1: Product Line Statistics from [12].

7. RELATED WORK
Our strategy of representing feature models as proposi-

tional formulas in order to verify their consistency was first
proposed in [5]. The authors checked the feature models
against a set of user-provided feature dependences of the
form F → A ∨ B for features F , A, and B. This approach
was adopted by Czarnecki and Pietroszek [7] to verify soft-
ware product lines modelled as feature-based model tem-
plates. The product line is represented as an UML spec-
ification whose elements are tagged with boolean expres-
sions representing their presence in an instantiation. These
boolean expressions correspond to the inclusion of a feature
in a product specification. These templates typically have a
set of well-formedness constraints which each instantiation
should satisfy. In the spirit of [5], these constraints are con-
verted to a propositional formula; feature models are then
checked against this formula to make sure that they do not
allow ill-formed template instantiations.

The previous two approaches relied on user-provided con-
straints when validating feature models. The genesis of our
current approach was a system developed by Thaker et al.
[12] which generated the implementation constraints of an
AHEAD product line of Java programs by examining field,
method, and class references in feature definitions. Analysis
of existing product lines using this system detected previ-
ously unknown errors in their feature models. This system
relied on a set of rules for generating these constraints with
no formal proof showing they were necessary and sufficient
for well-formedness, which we have addressed here.

If features are thought of as modules, the feature model
used to describe a product line is a module interconnection
language [9]. Normally, the typing requirements for a mod-
ule would be explicitly listed by a “requires-and-provides
interface” for each module. We instead infer a module’s “re-
quires” interface automatically by considering the minimum
structural requirements imposed by the the type system.
We verify that these interface constraints are satisfied by
the implicit “provides” interface for each feature module in
a product specification. If composition is a linking process,
we are guaranteeing that there will be no linking errors. The
difference with normal linking is that we check all combina-
tions of linkings allowed by the feature model.

A similar type system was proposed by Anacona et al.
to type check, compile, and link source code fragments [1].
Like features, the source code fragments they considered
could reference external class definitions, requiring other
fragments to be included in order to build a well-typed pro-
gram. These code fragments were compiled into bytecode
fragments augmented with typing constraints that ranged
over type variables, similar to the constraints used in the
LFJ typing rules. The two approaches use these constraints
for different purposes, however. Anacona et al. solve these
constraints during a linking phase which combines individu-
ally compiled bytecode fragments. If all the constraints are
resolved during linking, the resulting code is the same as if
all the pieces had been globally compiled. Our system uses
these constraints to type check a family of programs which
can be built from a known set of features.

The existing work on type checking feature-oriented lan-
guages has focused on checking a single product specifica-
tion, as opposed to checking an entire product line. Apel
et al. [3] propose a type system for a model of feature-
oriented programming based on Featherweight Java [8] and



Prec Total: ∀A, B, A 6= B, InA ∧ InB ↔ (PrecA,B ∨PrecB,A)
Prec ASym: ∀A, B,PrecA,B → ¬PrecB,A

Prec Irrefl: ∀A,¬PrecA,A

Sty Refl: ∀τ,Styτ,τ ↔
W
{InF | cld ∈ clds(F ) ∧ type(name(cld)) = τ}

Sty Obj: StyObject,Object

Sty ASym: ∀τ1, τ2,Styτ1,τ2
→ ¬Styτ2,τ1

Sty Total: ∀τ1, τ2, τ3,Styτ1,τ2
↔((Styτ1,τ3

∧ Styτ3,τ2
)∨W

{InF | ∃cld ∈ clds(F ), type(name(cld)) = τ1 ∧ type(parent(cld)) = τ2}∧V
{InG → PrecG,F | G 6= F ∧ ∃cld ∈ clds(G), type(name(cld)) = τ1}∧V
{InG → PrecG,F | G 6= F ∧ ∃rcld ∈ rclds(G), type(name(rcld)) = τ1}∨W
{InF | ∃rcld ∈ rclds(F ), type(name(rcld)) = τ1 ∧ type(parent(cld)) = τ2 ∧

name(rcld) 6∈ names(clds(F ))}∧V
{InG → PrecG,F | G 6= F ∧ ∃cld ∈ clds(G), type(name(cld)) = τ1}∧V
{InG → PrecG,F | G 6= F ∧ ∃rcld ∈ rclds(G), type(name(rcld)) = τ1} )

Sty WF: ∀A, ∀c ∈ clds(A), InA → Styty(name(c)),Object

Figure 15: Constraints on the precedence and subtyping relations.

prove soundness for it and some further extensions of the
model. gdeep [2] is a language-independent calculus de-
signed to capture the core ideas of feature refinement. The
type system for gdeep transfers information across feature
boundaries and is combined with the type system for an
underlying language to type feature compositions.

8. CONCLUSION
A feature model is a set of constraints describing how a

set of features may be composed to build the family of pro-
grams in a product line. This feature model is safe if it only
allows the construction of well-formed programs. Simply it-
erating all the programs described by the feature model is
computationally expensive and impractical for large prod-
uct lines. In order to statically verify that a product line
is safe, we have developed a calculus for studying feature
composition in Java and a constraint-based type system for
this language. The constraints generated by the typing rules
provide an interface for each feature. We have shown that
the set of constraints generated by our type system is sound
with respect to LJ’s type system. We verify the type safety
of a product line by constructing SAT-instances for the in-
terfaces of each feature. The satisfaction of the formula built
from these SAT-instances ensures the product specification
corresponding to the satisfying assignment will generate a
well-typed LJ program. Using the feature model to guide
the SAT solver, we are able to type check all the members
of a product line, guaranteeing safe composition for all pro-
grams described by that feature model.
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