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ABSTRACT
Aspect-oriented programming (AOP) fosters the coding of
tangled concerns in separated units that are then woven to-
gether in the executable system. Unfortunately, the oblivi-
ous nature of the weaving process makes difficult to figure
out the augmented system behavior. It is difficult, for ex-
ample, to understand the effect of a change just by reading
the source code. In this paper, we focus on detecting the
run time impact of the editing actions on a given set of test
cases. Our approach considers two versions of an AspectJ
program and a test case. Our tool, implemented on top
of the abc weaver and the AJANA framework is able to
map semantics changes to the atomic editing changes in the
source code.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques

General Terms
Language, Verification
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1. INTRODUCTION
Software maintenance of an evolving code base is a com-

plex problem. A major source of complexity is understand-
ing the effect of source code changes on the behavior of the
program. Even small changes can have non-local effects that
can make difficult to grasp the impact of the global prop-
erties of the system. In object-oriented programs polymor-
phism and dynamic binding may affect the behavior of vir-
tual method calls that are not lexically near the allocation
site. The problem is even critical in aspect-oriented soft-
ware, due to the intrinsic obliviousness [4] of join points.
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In fact, the woven aspect may change control and data de-
pendencies of the base code, and a change in the aspect
code can significantly affect the semantics of the whole sys-
tem. This is actually the very motivation of introducing an
aspect: in practice, however, especially when both aspects
and classes evolved separately, it is very easy to get unex-
pected results. We aim at supporting the programmer in
tracking down the causal chain from his/her changes to the
surprising effect, in order to ease the conception of a solu-
tion. An important contribution to this problem is offered
by change impact analysis [2], a collection of techniques for
determining the effects of a source code editing action on
the behavior of a set of test cases for a program. Recently,
many techniques have been proposed to support change im-
pact analysis of object-oriented software [9, 11] but very
little effort has been done to apply this technique to Aspect
Oriented Software

In this paper we present an application of change impact
analysis to AspectJ programs. Our approach considers two
versions of an AspectJ [6] program and captures their syn-
tactical differences, breaking them in atomic changes. Then
we observe the behavior of the program under a test case
that gives unexpected results. We build a representation of
the executed parts of the two versions and we compare them,
in order to understand how the semantics has changed and
how this maps to the atomic changes introduced. We im-
plemented our approach on the top of abc [1], an extensible
aspect compiler, and AJANA [16], a framework for AspectJ
analysis.

2. MOTIVATING EXAMPLE
We illustrate the need for change impact analysis with an

example for which we report the source code in Listings 1
2, and 3: it implements a simple system composed of two
Java classes and one AspectJ aspect. The class Point (see
Listing 1) has two fields, and the proper getters and setters
for those fields; moreover it exposes a setRectangular method,
which sets both fields. The class PointExt (see Listing 2)
should be considered an evolution of Point, in fact it is a
subclass of it that overrides two methods.

Listing 3 shows an aspect that is expected to be woven to
the above base system. This aspect declares some “intro-
ductions” to the base system, two pointcuts and six pieces
of advice. The evolution of the aspect consists in adding a
new field and modifying the advice marked as before2.

A test case for the system is listed in Listing‘4.
The code reported in the example implements an observer

pattern by using the aspect BoundPoint. The latter defines



Listing 1: Source code for Point class

public c lass Point {
// Y part omitted to save space
int x = 0 ;
public int getX ( ) { return x ; }
public void se tRectangu lar ( int newX, int newY)

throws Exception {
setX (newX ) ;
setY (newY ) ;

}
public void setX ( int newX)

throws Exception {
i f (newX < 0) throw new Exception ( ) ;
x = newX ;

}
}

Listing 2: Source code for PointExt class

public c lass PointExt extends Point {
//Overridden in modified vers ion
pub l i c void setRectangu lar ( i n t newX, i n t newY)

throws Exception {
setX (newX + 1 ) ;
setY (newY + 1 ) ;

}
//Overridden in modified vers ion

pub l i c void setX ( i n t newX) throws Exception {
i f (newX < 0) throw new Exception ( ) ;
x = ( i n t )newX /2 ;

}
}

some pieces of advice woven into join points identified by the
calls to the method setX. These pieces of advice check the
parameter passed to the called method and keep a history
of the older values of the x field. We imagine to slightly
modify the initial version of the program by overriding two
methods in the class PointExt, which is a subclass of Point ;
moreover, we add a field in the aspect BoundPointand a line
in the before2 advice.

From the viewpoint of editing changes, the overriding of
the methods in PointExt can be decomposed in two actions:
a first step that brings a new method in the subclass, then
a second step that changes the method body of the added
method. Finally we also consider that the overriding brings
a change in the lookup table of the program: before the
change when a method setX was invoked on an object with
dynamic type PointExt the superclass method was invoked.
After the overriding the method that is actually invoked in
this case is the overridden one.
Finally in listings 4 we show a test case for the example pro-
gram. Of course the outcome of the test for the first and for
the modified version of the program will be different, but
not all the introduced changes could be responsible for the
result change.
The main purpose of our analysis is to help a developer un-
derstand which code edits originated the change and which
actions he should take to bring the program back into a state
in which it gave the previous output.

3. CHANGE IMPACT ANALYSIS FOR AOP
Our approach considers two versions v0 and v1 of the same

program and a set of test cases that should apply on both.
We aim at mapping source code changes to the semantic
differences induced by a test case t. In order to achieve this
goal, we proceed as follows:

Listing 3: Source code for BoundPoint aspect

public aspect BoundPoint {
//Added in modified vers ion
pr i va t e i n t prev iousValue ;

// a re ference to a Point ob j e c t
PropertyChangeSupport support =

new PropertyChangeSupport ( this ) ;
public void addPropertyChangeListener

( PropertyChangeListener l ){
support . addPropertyChangeListener ( l ) ;

}
void f i rePropertyChange ( Point p ,

S t r ing property ,
double o ldva l ,
double newval ) {

p . support . f i rePropertyChange ( property ,
new Double ( o ldva l ) ,new Double ( newval ) ) ;

}

// ====== pointcut s =======
pointcut se t te rX ( Point p ) :
ca l l ( public void Point +. setX (∗ ) ) && target (p ) ;

pointcut s e t t e rXon ly ( Point p ) :
s e t te rX (p) &&
! cflow (
execution (void Point +. se tRectangu lar ( int , int ) ) ) ;

// ====== advices ======
before ( Point p , int x ) throws Inva l idExcept ion :

se t te rX (p) && args ( x ) { // before1
i f ( x < 0) throw new Inva l idExcept ion ( ”bad” ) ;

}
void around ( Point p ) : s e t te rX (p) { // around1

int oldX = p . getX ( ) ; proceed (p ) ;
f i rePropertyChange (p , ” setX” , oldX , p . getX ( ) ) ;

}
void around ( Point p ) : s e t t e rXon ly (p) { // around2

int oldX = p . getX ( ) ; proceed (p ) ;
f i rePropertyChange (p , ” onlysetX ” , oldX , p . getX ( ) ) ;

}
before ( Point p ) : s e t te rX (p){ // before2

//added in modified vers ion
t h i s . prev iousValue = p . getX ( ) ;
System . out . p r i n t l n ( ” s t a r t s e t t i n g p . x” ) ;

}
after ( Point p) throwing ( Exception ex ) :

se t te rX (p) { // afterThrowing1
System . out . p r i n t l n ( ex ) ;

}
after ( Point p ) : s e t te rX (p){ // a f t e r1

System . out . p r i n t l n ( ”done s e t t i n g p . x” ) ;
}

}

1. we compare the source code of v0 and v1 and find the
textual changes between the two. The difference is de-
composed into atomic changes detailed in Section 3.1;

2. we build a control flow representation (AJIG) for each
version of the program and we mark the differences we
found between AJIG0 and AJIG1 as dangerous edges
(Section 3.2);

3. the two programs are instrumented and run whit the
test set, in order to collect dynamic pieces of informa-
tion that we use to decorate AJIG0 and AJIG1 by
marking the executed paths (Section 3.3);

4. for each test case t that gives different results when
applied to v0 and v1 we consider the decorated graphs
AJIG0 and AJIG1 and we finally map dangerous edges
to source code changes.

The idea is that only the statements on a dangerous path
solicited by the test case t can be responsible for the change



Listing 4: Source code for a test case for program in listings 1 2 3

public c lass Demo implements
PropertyChangeListener {

public void propertyChange
( PropertyChangeEvent arg0 ) { /∗ . . . ∗/ }

public stat ic void main ( St r ing [ ] a )
throws Exception {
Point p1 = new Point ( ) ;
p1 . addPropertyChangeListener (new Demo ( ) ) ;
p1 . se tRectangu lar ( 5 , 2 ) ;
i f ( p1 . x > 5) { p1 . setX ( 6 ) ;}
Point p2 = new PointExt ( ) ;
p2 . addPropertyChangeListener (new Demo ( ) ) ;
p2 . se tRectangu lar ( 5 , 2 ) ;
p2 . setX ( 5 ) ;

}
}

of results of t: we are thus interested in them when we are
trying to understand the impact of our source code editing.

3.1 Atomic changes
The first step in change impact analysis is to decompose

the difference between v0 and v1 into a set of atomic changes.
We consider the atomic changes as proposed by [10, 8] for the
base system, and, by [18] for the aspect part. A set of atomic
changes that is able to reproduce the difference between v0

and v1 is computed by comparing the abstract syntax trees
of the two versions of the program and by finding their dif-
ferences. Since an AspectJ program is composed by a plain
Java code base and some aspect-oriented code units, one can
apply the different catalogs of atomic changes separately.

In general, a given change may depend on some previous
one. Intuitively, an atomic change A1 is dependent on an-
other atomic change A2 if applying A1 to the original version
of the program without also applying A2 results in a syn-
tactically invalid program: in order to be possible to change
a method (CM), that method has to exist: if it was added
by the new version (AM), the atomic change CM depends
on the specific AM.

Three types of dependence can be considered: structural,
which captures the necessary sequences that occur when new
elements are added or deleted in a program; declarative,
which captures all the necessary element declarations that
are required to create a valid intermediate version; mapping,
which captures implicit dependencies introduced by chang-
ing the class hierarchy or overriding methods. An example
of dependencies between atomic changes is shown in Fig-
ure 1. Here we report the dependencies computed for the
example of Section 2. In the picture the arrows denotes the
interdependencies between changes. The overriding of the
methods in the class PointExt is broken into four atomic
changes: the addition of an empty method (AM) and the
corresponding modification of the method body (CM). The
latter is structurally dependent on the former. Moreover
we also have two changes for the virtual methods lookup:
let’s consider for example the overriding of the method setX.
Each time someone is going to call the method setX on a
reference statically typed as Point, if the runtime object will
be of type PointExt the call will reach the method defined
in the subclass. The same will happen if the reference has
as static type PointExt. These changes are represented as
lookup changes (LC) and the addition of the method setX in
PointExt has a mapping dependency on them. The changes
in the aspect BoundPoint are decomposed in an added field

(AF) and a changed advice body (CAB) changes. The latter
is declaration dependent on the former, because it uses the
field definition added by the AF change.

3.2 Control flow representation of the pro-
gram

To capture the differences in behavior we need to build a
representation of the program. To accurately model AspectJ
semantics, we use a control-flow representation, the AspectJ
Inter-module Graph (AJIG), presented in [15]. This repre-
sentation is an extension to aspect-oriented encapsulation
units of the Java Interclass Graph [5]. The main goal of this
graph is to make explicit the interactions between the base
system and the aspect part of an AspectJ program with par-
ticular regard to the weaving of multiple advice at the same
join point.
The AJIG is designed to represent precisely all interactions
involving the pieces of advice that are anonymous pieces of
code analogous to object-oriented methods that are executed
when a specific dynamic join point occurs: such interactions
are at therefore the core of aspect-oriented programming.
Unlike explicit method calls, an advice is invoked implic-
itly at the shadow of a certain join point. The execution of
the advised Java code is completely replaced by the com-
bination of pieces of advice and the join point shadow that
matches it. Before- and after- advice can be considered as
special cases of around-advices with an implicit proceed
statement. Thus, for each advised piece of Java code its
control-flow subgraph is replaced with the representation of
woven pieces of advice called Interaction Graph (IG).

To create an interaction graph we need to compute the
precedence the woven pieces of advice are executed with,
and to do this the AJIG uses an advice nesting tree, which
represents the run-time advice nesting relationships. Each
tree level contains at most one around-advice, which is the
root of all pieces of advice in the lower levels of the tree.
With each around-advice A the algorithm associates (1) a
possibly-empty set of before-pieces of advice and after-pieces
of advice, (2) zero or one around-pieces of advice, and possi-
bly (3) the actual call site that could be invoked by the call
to proceed in A. These pieces of advice and the call site
appear as if they were nested within A.

For example, a call to Point.setX gives the advice nest-
ing tree shown in Figure 2. The information captured by
the advice nesting tree is used to weave advice bodies at a
shadow and can be exploited to build the AspectJ Interac-
tion Graph. A condensed picture of the AJIG for Point.setX
is shown in Figure 3.

The AJIGs built for the two versions of the program are
then compared to find dangerous edges, i.e., edges that are
different in the two versions. The algorithm for comparing
AJIGs is a depth first traversal of the graphs that aims at
finding the differences between paths in the graphs and it
was proposed and described in detail in [15]. Basically, if an
edge is present in the first graph and is missing in the second
or if it was added in the second or if the edges of the path
changed their label, then they are marked as “dangerous”.
An example of a dangerous path is shown in Figure 4. The
example refers to the AJIG of Figure 3 and it corresponds
to the impact of adding a field and modifying the body
for advice before2 in BoundPoint aspect and overriding the
method setX in the class PointExt. There are two dangerous
edges (marked in red) in the figure. The first one is the one



Figure 1: Representation of atomic changes dependencies for the example

Figure 2: Advice nesting tree for
BoundPoint at shadow this.setX() in
the example presented in section 3.1

Figure 3: AspectJ Interaction Graph for the example presented in
section 3.1

starting from the before2 entry point and determined by the
addition of the statement this.previousValue = p.getX() in
Listing 3. The second one is determined by the addition of
the path going through the method PointExt.setX, overrid-
den in class PointExt.

3.3 Combining dynamic information
Dangerous edges are only a potential cause of an unwanted

effect. However, the execution of a test case that gives unex-
pected results can be explained in terms of dangerous path
traversals. In other words, we use the information gathered
from the instrumentation of the program to consider only
dangerous paths executed by a test case and we map these
paths on the atomic changes computed earlier. The mapping
takes place by considering that nodes in the paths interested
by dangerous edges represent instructions in the program,
so we perform the mapping considering their line numbers in
the compilation units they come from. At this point we have
a set of atomic changes, representing syntactical changes in
the source code of the program, mapped on a set of danger-

ous edges in the program control flow representation, which
represents changes of behavior of a test case. This gives
the causal chain between the editing and the unexpected
result: the set of changes mapped onto the traversed dan-
gerous edges are responsible for the observed behavior. In
fact, undoing the atomic changes set will produce a version
of the program that will not show anymore the altered test
result. Moreover, by removing the set of changes, we would
have a syntactically correct intermediate program version,
since atomic changes interdependencies consider syntactical
dependencies between changes. Atomic changes not mapped
on dangerous edges for a given test are not responsible for
the change of that test result and can be left in the mod-
ified version of the program. Finally we can consider that
changes not mapped on any test case dangerous edges are
not stressed at all by the test suite.

4. IMPLEMENTATION
For the implementation of our solution we relied on the

abc compiler [1] and on AJANA framework [16].
The abc compiler is an extensible compiler for AspectJ based
on Soot [12]. abc gave us the possibility to manipulate the
abstract syntax trees of the programs we analyzed and to
find atomic changes. Moreover it provided us with an easy to
analyze intermediate representation of the program, Jimple,
which we used to build our AJIG. Finally abc performs a two
phases weaving process. In the first phase it computes the
pointcuts shadows in the system code but keeps the weav-
ing information separated from the system bytecode, then
it performs some optimizations and finally produces code
to insert pieces of advice at the proper shadow. The possi-
bility to keep weaving information separated from the code
gave us way to build our AJIG witout considering the extra
code that AspectJ compiler generates to weave an advice at
a shadow. In this way we could produce a more accurate
representation of the program control flow.
AJANA is a general framework for ApectJ analysis. It pro-
vided us the AJIG representation. We had to slightly modify
this representation to implement our change impact analy-
sis, in order to keep track of some pieces of information
originally not needed for AJIG construction.

5. RELATED WORK
Change impact analysis for object-oriented programs was

introduced by Ryder et al. in [10]. In their paper they
proposed a technique for Java software and in [9, 8] they



Figure 4: Dangerous edges determined by modification of before2 advice body in class BoundPoint and overriding of method setX in PointExt
class

extended the applicability of the technique and provided
tool support.

The problem of change impact analysis for AspectJ soft-
ware was previously treated in [18]. This paper presents a
lightweight approach to change impact analysis based on a
static program representation. We based our approach on a
dynamic representation of the program which captures the
actually executed paths in the control flow. Since from our
previous work [3] we noticed that for AspectJ static repre-
sentations introduces a considerable quantity of dependen-
cies that are not to be considered at run time we think that
our approach could lead to an increased precision in the
analysis.

Change impact analysis is related with regression testing
and debugging. We based our work on a framework de-
veloped for a regression test selection technique [15]. Many
other techniques were proposed for aspect oriented programs
regression testing. In [13] an approach based on a wrap-
per class synthesis technique and a framework for generat-
ing test inputs for AspectJ programs are presented; in [14]
the authors propose an approach to generate regression test
cases starting from a specification of the program. All these
approaches can be considered as complementary to ours,
since they focus on discovering if a failure was introduced
by changes while we want to unwind the relation between
source code changes and failures found in the program.

Delta debugging was originally introduced by Zeller in
[17]. This technique allows to create intermediate versions of
the program by adding or removing a set of atomic changes
from the program source. Change impact analysis for Java
programs was successfully integrated with delta debugging
in [9], we plan to do the same in our future work.

6. CONCLUSION AND FUTURE WORK
In this work we developed a prototype to perform change

impact analysis on AspectJ programs. Our prototype can
relate changes in the source code of an AspectJ program to
changes in its behavior. The tool is based on a modified ver-
sion of the abc aspect weaver and the AJANA framework.
We tested our prototype on simple examples of evolving As-
pectJ programs that advise call and execution join points.
Since our first results are promising, we plan to extend our
experimentation to real world programs. Moreover, we think
that the level of abstraction of atomic changes is too low in
most cases, even if it worked well in our toy examples. In
fact, Ryder et al. report in [11] that Java change impact
analysis based only on a syntactical classification produces
changes sets that are difficult to be interpreted by humans.
Thus, we plan to study some higher level view to give to the
programmer a more effective means of understanding his or
her changes.
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