
Redundancy-free Residual Dispatch

Using Ordered Binary Decision Diagrams for Efficient Dispatch

Andreas Sewe Christoph Bockisch Mira Mezini

Technische Universität Darmstadt
Hochschulstr. 10, 64289 Darmstadt, Germany

{sewe, bockisch, mezini}@st.informatik.tu-darmstadt.de

ABSTRACT

State-of-the-art implementations of common aspect-oriented
languages weave residual dispatching logic for advice whose
applicability cannot be determined at compile-time. But
being derived from the residue’s formula representation the
woven code often implements an evaluation strategy which
mandates redundant evaluations of atomic pointcuts. In or-
der to improve upon the average-case run-time cost, this pa-
per presents an alternative representation which enables effi-
cient residual dispatch, namely ordered binary decision dia-
grams. In particular, this representation facilitates the com-
plete elimination of redundant evaluations across all point-
cuts sharing a join point shadow.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features; D.3.4 [Programming Languages]: Proces-
sors—Code Generation, Optimization; F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs

General Terms

Languages, Performance

Keywords

Advice, aspect-oriented programming, dispatch functions,
ordered binary decision diagrams, pointcuts, residual dis-
patch

1. INTRODUCTION
This paper presents an approach for optimizing dispatch

in aspect-oriented languages of the pointcut-and-advice (PA)
flavor [18]. In this flavor, of which the AspectJ language [17]
is the most prominent example, aspects encompass two kinds
of constructs: pointcuts and advice. While advice define the
actions to be performed whenever the program is in a cer-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Seventh International Workshop on Foundations of Aspect-Oriented Lan-

guages (FOAL 2008), April 1, 2008, Brussels, Belgium.
Copyright 2008 ACM ISBN 978-1-60558-110-1/08/0004 ...$5.00.

tain state,1 called a join point, their associated pointcuts
define predicates on join points, thereby associating states
with the advice in question.

The pointcut language, which is an integral part of any PA
flavor language, is typically based on propositional logic or
some extension thereof. Its atomic pointcuts designate, e.g.,
a call to a specific method and are subsequently composed
by propositional operators to form more complex pointcuts.
Furthermore, they generally are parameterized; such atomic
pointcuts are satisfied if and only if the program’s state al-
lows for a satisfying parameter binding [23]. On the whole,
these constructs are the foundation more elaborate pointcut
languages based on, e.g., temporal logics can rest upon [10].

1.1 Residues and Dispatch Functions
The semantics outlined above are typically implemented

in two steps [16]: join point shadow matching and weaving.
First, the matching step identifies all parts of the program,
called join point shadows, whose execution may result in a
join point satisfying a given pointcut. Then, the weaving
step inserts code at the join point shadows performing the
actions defined by each advice. But as compilers may be un-
able to statically determine whether an atomic pointcut is
satisfied or not at a join point shadow [3], residual dispatch-
ing logic has to be woven into the program’s code. This
residue is the result of the pointcut’s partial evaluation [19].

In this setting, residual dispatch at a join point shadow
can be viewed as the evaluation of a finitary Boolean func-
tion fφ : B

n → B, where B = {0, 1}, the so-called dispatch

function [9]; whether an advice is applicable depends solely
on the prior evaluation of the n atomic pointcuts occurring
in φ, the residue in question. Residual dispatch thus bears
close resemblance to predicate dispatch [12], even though the
function’s range is restricted to two outcomes: an advice is
either applicable or not. But this restriction is not inherent
in residual dispatch; in fact, this paper extends the notion
of dispatch functions to the simultaneous evaluation of all
residues φ ∈ Φ sharing a join point shadow. The dispatch
function hence becomes fΦ : B

ñ → B
m and characterizes

the subset of advice applicable at the join point; which com-
bination of the m = |Φ| advice is executed depends on the
state of the ñ atomic pointcuts jointly occurring in Φ.

Both cases are illustrated by Figure 1, which depicts the
residual dispatching logic woven for the following two advice.

1For uniformity of presentation, events in the program’s exe-
cution, as identified, e.g., by AspectJ’s call atomic pointcut,
are treated as part of the program’s state.

fφ1
(x)

advice1;

fφ2
(x)

advice2;

joinPointShadow;

0

1

0

1

f{φ1,φ2}

joinPointShadow;

advice1;
joinPointShadow;

advice2;
joinPointShadow;

advice1;
advice2;
joinPointShadow;

00

01

10

11

Figure 1: Two implementation schemes employing
dispatch functions for residual dispatch at a join
point shadow.

Hereby, the two associated pointcuts match the same join
point shadow but give rise to two residues, namely φ1 and
φ2, which are—in general—different, although there may of
be identical atomic pointcuts occurring in both.

before() : joinPointShadow && φ1 { advice1; }
before() : joinPointShadow && φ2 { advice2; }

The first of the above implementation schemes resorts to
two distinct dispatch functions, fφ1

and fφ2
, which is the

approach followed by current weavers, whereas the second
employs just a single dispatch function: f{φ1,φ2}. Here, in

a state x and based on the value of f{φ1,φ2}(x) ∈ B
2, some

combination of advice is executed. But although the above
suggests that the weaver generates code for each combina-
tion of advice, this need not be the case in practice (cf.
Sections 4, 5.1).

1.2 Efficient Evaluation Strategies
In either case dispatch functions open up the possibility

for redundancy-free residual dispatch. In particular, each of
the n arguments of a dispatch function fφ need not be evalu-
ated more than once. By extension, any of the ñ arguments
of fΦ, each of which may be shared by several residues, has
to be evaluated at most once. This possibility hinges on a
few assumptions on residual dispatch, though. But these as-
sumptions typically hold for PA flavor languages in general
and AspectJ in particular (cf. Section 2).

As each atomic pointcut’s evaluation incurs a certain run-
time cost, which varies depending on the kind of pointcut [3],
it is of interest to find an evaluation strategy minimizing the
overall cost of evaluation. Hereby, the average-case cost of
evaluating fΦ(x) for all states x ∈ B

ñ is most relevant to
efficient dispatch, as it determines the run-time cost incurred
in the long run. In contrast, the worst-case cost with respect
to all states merely determines an upper bound.

Yet, regardless of the precise notion of optimality em-
ployed, the problem of finding an optimal strategy is NP-

hard, as the Boolean satisfiability problem can be reduced
to it.2 Consequently, this optimization problem is usually
approached heuristically. It is, e.g., often advantageous to
evaluate those atomic pointcuts first whose evaluation in-
curs the least run-time cost. In addition to such heuristics
there is a fundamental method which ensures improvement
with respect to run-time costs: the elimination of redundant
evaluations—ideally across residues.

1.3 Contributions and Structure of this Paper
This paper presents an approach which performs complete

redundancy elimination across all pointcuts sharing a join
point shadow. It furthermore makes use of the aforemen-
tioned heuristic by incorporating an ordering based on the
cost of the atomic pointcuts’ evaluation. To enable these op-
timizations, the approach employs an alternative represen-
tation of Boolean functions, namely ordered binary decision
diagrams [8].

The remainder of this paper is organized as follows. First,
Section 2 states the assumptions made on advice dispatch
to enable the simultaneous evaluation of multiple residues.
Then, Section 3 discusses advantages and disadvantages of
the functions’ traditional formula representation. Section 4
presents ordered binary decision diagrams as an alternative
representation. Thereafter, Section 5 assesses both repre-
sentations based on implementation experience and exper-
imental results. Finally, Section 6 discusses related work,
while Section 7 concludes this paper and suggests areas for
future work.

2. ASSUMPTIONS ON ADVICE DISPATCH
The simultaneous evaluation of multiple residues is made

possible by the three assumptions on advice dispatch stated
below.

• The evaluation of an atomic pointcut is side-effect free.

• The binding of parameters is no side-effect of an atomic
pointcut’s evaluation.

• The execution of an advice does not affect the evalua-
tion of a pointcut associated with another advice.

The first and second assumption make it possible to eval-
uate the atomic pointcuts occurring in a single residue in
any order. The third assumption extends this possibility to
multiple residues. Together, these assumptions allow for a
clean separation between the residues’ evaluation on the one
hand and the advice’s execution on the other hand.

The above assumptions impose only moderate restrictions
on PA programs. In particular, they hold for most—if not
all—programs written in AspectJ. Violations of the first as-
sumption, although prohibited by neither ajc [16, 17] nor
abc [4], the two principal compilers for the AspectJ language,
are strongly advised against in the language’s Programming

Guide [2], since the order of evaluation of atomic pointcuts is
implementation-specific. The second assumption is even ac-
tively enforced by ajc as the AspectJ language disallows am-
biguous parameter bindings [23]. It should be noted, how-
ever, that abc resolves these ambiguities consistently rather

2If a non-tautological formula φ were satisfiable, i.e., if ∃x ∈
B

n.fφ(x) = 1, then at least one argument of fφ would have
to be evaluated by an optimal strategy.

∨

∧ ∧

x1 x2 x3 x1 x2 1 0

Figure 2: A formula (in DNF) and an evaluation
strategy for (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2).

than disallowing them outright [4]; here, parameter binding
becomes a side-effect of evaluation.

In contrast to the first two assumptions, which carry over
from predicate dispatch [12], the third assumption is spe-
cific to advice dispatch and may indeed be violated by legal
AspectJ programs: a pointcut associated with one advice
can observe, by means of an if atomic pointcut, some state
affected by another advice. The latter thus becomes what
is known as narrowing advice [21]; whether the former is
executed depends on the execution of the latter. But this
advice-on-advice interaction is subtle, error-prone, and pre-
sumably not often used. Still, if it is used, the weaver has
to resort to multiple dispatch functions instead of a joint
one (cf. Section 7). Although this precludes redundancy
elimination across residues, each dispatch function’s evalua-
tion strategy may still be freed from redundancies.

3. PROPOSITIONAL FORMULAS
As pointcuts are typically specified using a language akin

to propositional logic, propositional formulas are a repre-
sentation of considerable import; at the very least they will
serve as the dispatch functions’ intermediate representation.
But formulas do not, by themselves, give rise to an evalua-
tion strategy. In most programming languages their evalu-
ation is therefore governed by a set of rules. The Java Lan-
guage Specification [15], e.g., mandates left-to-right short-
circuit evaluation. In contrast, AspectJ, despite its evoca-
tive use of Java’s short-circuiting && and || operators, does
not prescribe any particular order of evaluation. But since
all atomic pointcuts are required to be side-effect free (cf.
Section 2), this is not a problem but an asset; it allows for
evaluation strategies optimized not only by reordering the
atomic pointcuts’ evaluations but also by removing redun-
dant atomic pointcuts outright.

Still, the evaluation strategies chosen by both ajc 1.5.4

and abc 1.2.1 are ultimately based on the left-to-right short-
circuit evaluation of a formula. Figure 2 exemplifies this.
The resulting strategy is hereby depicted as an if-then-else
straight-line program. By convention, the then- or 1-edges
are drawn solid, whereas the else- or 0-edges are drawn
dashed. If, e.g., the three atomic pointcuts are in state
x = (1, 1, 1)⊺ ∈ B

3, then computation proceeds along the
path 〈x1 → x2 → x3 99K x1 99K 0〉; hereby, the second
evaluation of the atomic pointcut x1, in the literal3 x1, is
redundant when it comes to computing the value f(x) = 0.

3A literal is either an atomic pointcut or its negation.

3.1 Redundancy Elimination
Both compilers do not directly derive evaluation strate-

gies from a residue; instead, the strategies chosen revolve
around a refined formula representation thereof: the original
formula φ is brought into disjunctive normal form (DNF).
Given this representation, either compiler generates code
that performs short-circuit evaluation of the normalized for-
mula. In addition, ajc makes use of the DNF representa-
tion to eliminate some redundancies by applying two laws of
Boolean algebra: idempotence and boundedness. The com-
piler furthermore performs a minor optimization by reorder-
ing the literals in each conjunct in order of increasing run-
time cost. Similarly, the conjuncts themselves are ordered.
But, as Figure 2 illustrates, being limited to a two-level for-
mula representation like DNF makes it frequently impossible
to eliminate redundant evaluations of atomic pointcuts.

Some of these can, however, be eliminated after the dis-
patching logic has been generated by the weaver for the cho-
sen evaluation strategy. Compilers which perform data-flow
analyses like common subexpression elimination [1] can, e.g.,
eliminate the second evaluation of x1 in Figure 2, which is
redundant, as on all paths leading to the corresponding ver-
tex the value of this common subexpression has already been
computed. In contrast, the second evaluation of x2 cannot
avoided, as there is a path 〈x1 99K x1 → x2〉 on which the
value of x2 has not previously been computed.

3.2 Extended Propositional Operations
As propositional formulas have traditionally been used to

represent functions fφi
: B

n → B only, AspectJ compilers
generate dispatching logic that evaluates, for i = 1, . . . , m,
one residue φi after the other. But Boolean logic allows
for a straight-forward extension to formulas which can cover
the class of functions f : B

n → B
m for arbitrary m. Using

this extension the m formulas φ1, . . . , φm can be encoded
into one. Hereby, the truth value of variables x1, . . . , xn is
the same across all component formulas, i.e., each variable
x1, . . . , xn still evaluates to either ⊥ = (0, . . . , 0)⊺ ∈ B

m

or ⊤ = (1, . . . , 1)⊺ ∈ B
m. The propositional operators, how-

ever, are extended to operate component-wise on B
m. To fa-

cilitate projections onto a single component the extension is
also enriched by m constants e1, . . . , em evaluating to truth
values other than ⊥ and ⊤, namely to the Boolean atoms
(1, 0, . . . , 0)⊺ , . . . , (0, . . . , 0, 1)⊺ ∈ B

m. Disjunctions thereof
thus cover the entire range of B

m.
Considering the above extension, let there be m residues,

represented by formulas φ1, . . . , φm whose signatures jointly
encompass the variables x1, . . . , xn satisfiable at a single join
point shadow. Then the joint dispatch function fΦ : B

n →
B

m, or rather a formula representation thereof, is given by∨m

i=1
ei ∧ φi. Conceptually, each residue φi is first evalu-

ated separately. The result is then projected onto the i-
th component, before all intermediate results are combined
by means of disjunction. This is exemplified by Figure 3,
which depicts such an extended formula with its constants
distributed downwards to the level of literals. For a state
x = (0, 0, 0, 0)⊺ ∈ B

4, e.g., the subformula on the left evalu-
ates to (0, 0)⊺ whereas the subformula on the right evaluates
to (0, 1)⊺ , which consequently is the value of fΦ(x).

Unfortunately, this extended representation does not al-
low for short-circuit evaluation; while for a range of B the use
of if-then-else instructions was sufficient for implementing
evaluation strategies, code generated for the extended range

e1 ∧ φ1

e2 ∧ φ2

∨

∨

∧ ∧ ∧

e1 ∧ x1

e1 ∧ x2

e1 ∧ x3

e1 ∧ x1

e1 ∧ x2

e2 ∧ x2

e2 ∧ x4

Figure 3: An extended formula, together with its
two component formulas φ1 = (x1 ∧ x2 ∧ x3)∨ (x1 ∧ x2)
and φ2 = x2 ∧ x4.

of B
m needs to evaluate the actual conjunctions and dis-

junctions. Nevertheless, propositional formulas are a useful
representation. Not only are they the representation point-
cuts are typically specified in, but they also allow for an el-
egant description of a pointcut’s addition or removal: given
an extended formula representation, the addition of another
advice and its associated pointcut φm+1 can be described
simply in terms of disjunction. Similarly, their removal can
be described in terms of conjunction and negation.

4. BINARY DECISION DIAGRAMS
Like formulas, binary decision diagrams (BDDs) are a nat-

ural representation of Boolean functions with a long history.
But unlike the former, the latter make evaluation strate-
gies explicit. They are thus of particular interest when such
strategies are sought, as is the case when optimizing residual
dispatch. Informally, a BDD is a rooted, directed, acyclic
graph (DAG) built up from two kinds of vertices: splits and
sinks. Hereby, all splits are labeled with variables x1, . . . , xn

and have two outbound edges, labeled 0 and 1, respectively.
Similarly, the sinks are labeled with values from a set B

m

but do not have outbound edges.
Of the several equivalent definitions of a BDD’s seman-

tics [24], one closely reflects the intuition of a control-flow
from source to sink: given a state x ∈ B

n, computation be-
gins at the root or source of the BDD G. At a vertex labeled
xi it then proceeds along the low or 0-edge if xi = 0 and
along the high or 1-edge otherwise. It finally stops, when a
sink is reached; fG(x) ∈ B

m is the value this sink is labeled
with. This top-down approach to evaluation immediately
gives rise to an evaluation strategy. Code generation is also
straight-forward. Figure 4 exemplifies this by depicting such
a strategy and thus the BDD itself as an if-then-else straight-
line program. Note in particular that this BDD is decision

equivalent to the extended formula of Figure 3; it represents
the same function f : B

4 → B
2, i.e., for every state x ∈ B

4

evaluation of either representation results in the same value
f(x). But, as exposed by the BDD representation, φ1 and
φ2 cannot be satisfied simultaneously, i.e., f(x) 6= (1, 1)⊺ ; if
code is generated for each combination of advice (cf. Section
1.2), then this fact may be exploited to avoid code genera-
tion for all combinations of advice.

x1

x2

x2

x3

x4

00

01

10

Figure 4: A BDD representation decision equivalent
to the extended formula of Figure 3.

4.1 Redundancy Elimination
Since a BDD representation corresponds to an evaluation

strategy, redundant evaluations of atomic pointcuts can be
characterized by a simple syntactic property: the existence
of paths from source to sink on which more than one split is
labeled with the same variable or, equivalently, the existence
of paths which are not taken for any state x [24]; BDDs
without such inconsistent paths are called free or read-once.

While the read-once property is generally desirable, the
conversion from unconstrained BDDs to free ones can cause
an exponential blow-up in terms of size [24]. This blow-up
is, however, in general no worse than that which a formula’s
conversion to either CNF or DNF can cause. Still, there are
functions which allow for a polynomial-size normal form but
which require a free BDD (FBDD) whose size is exponential
in the number of variables [6]. But this is also true vice
versa. Thus, the representational power of FBDDs, DNFs,
and CNFs is only comparable on a case by case basis; neither
representation is smaller for all functions.

Yet, there is one assumption one can reasonably make
about the functions encountered during residual dispatch:
they stem from a small and structured formula represen-
tation. This is because these formulas correspond to the
pointcuts as written. It is hence reasonable to restrict the
discussion to those formulas which are likely to form a point-
cut in real-world programs. But this set of small, structured
formulas is difficult to characterize. Nevertheless, such a
characterization will be attempted in Section 5.2.

4.2 Propositional Operations
Given two (free) BDDs G and H, the problem of com-

puting their conjunction or disjunction, a task known as
synthesis, is NP-hard. (Negation, however, can trivially be
applied by negating the value of all sinks.) Thus, a variety
of syntactic constraints has been imposed on BDDs in order
to facilitate efficient synthesis [22, 14]. The most prominent
constraint [8] gives rise to a subclass of BDDs known as
ordered binary decision diagrams (OBDDs): on each path
from source to sink the variables are required to occur in the
same order π. The OBDD shown in Figure 4, e.g., is a π-
ordered representation of the extended formula of Figure 3,
where π = 〈x1, x2, x3, x4〉.

Obviously, every OBDD is free and hence gives rise to
a redundancy-free evaluation strategy. The converse, how-
ever, is false; thus, the representational power of OBDDs is
strictly smaller than that of FBDDs—although not smaller
than that of either CNF or DNF (cf. Section 4.1). Nev-
ertheless, OBDDs are of particular interest when dispatch
functions are to be represented. In this setting, being con-

xi

xj

≃

xj

xi xi

xj xk

≃

xi

xj xk

Figure 5: The deletion rule and the merging rule.

strained to a fixed variable ordering π is only a moderate
impediment. In fact, ordering the atomic pointcuts simply
in the order of increasing run-time cost is a heuristic which
performs well in experiments (cf. Section 5.2).

Provided that both operands are π-ordered, there exists
an efficient algorithm for computing the disjunction or con-
junction of two OBDDs G and H [8]; employing memoiza-
tion, synthesis is performed in O(|G||H|). While originally
devised for OBDD representations of functions f : B

n → B,
the algorithm can easily be adapted to sinks labeled with
values from the larger set B

m. It can furthermore be mod-
ified such that the result of each step is reduced, i.e., the
number of vertices is minimized [7]. This is done by repeat-
edly applying the two reduction rules shown in Figure 5.
Applying these rules during each synthesis step is desirable
not only because it keeps intermediate results small, but also
because it minimizes the size of the final OBDD.

5. ASSESSMENT
When assessing the utility of OBDD-based dispatch func-

tions, two questions have to be answered: whether dispatch
functions can be easily integrated with a compiler or an
aspect-aware execution environment and whether an OBDD
representation thereof can improve upon the average-case
run-time cost of residual dispatch.

5.1 Implementation Experience
OBDD-based dispatch functions were implemented and

integrated with an experimental execution environment for
PA flavor languages developed as part of the Aspect Lan-
guage Implementation Architecture project [5];4 they sup-
planted the previous, DNF-based residual dispatching logic.
Furthermore, dispatch functions were incorporated into the
framework the environment builds on, with the abstraction

4The implementation is available to the public:
http://www.st.informatik.tu-darmstadt.de/static/
pages/projects/ALIA/alia.html.

completely hiding the chosen representation; whether the
functions are represented by means of formulas, OBDDs, or
even a combination thereof is immaterial to the framework
itself. Only when the residual dispatching logic needs to be
woven by an instantiation of the framework, e.g., a compiler
or an execution environment, the functions’ concrete rep-
resentations have to be considered. The weaving approach
which the default instantiation hereby follows avoids gener-
ating code for each combination of advice. Instead, it com-
putes the joint dispatch function’s value and, based on this,
dispatches the applicable advice one after the other.

Overall, the changes required by the integration to both
the framework and its instantiation were minimal. This fact
can serve as indication that the notion of dispatch functions
is a natural one. Deployment and undeployment of aspects
in particular were found to be easily implementable in terms
of the extended propositional operations (cf. Section 3.2).

5.2 Experimental Results
Traditionally, the complexity theory of Boolean functions

has considered the class of functions f : B
n → B only. Con-

sequently, any representation’s expressiveness has been as-
sessed primarily with respect to this class. When a rep-
resentation suitable for residual dispatch has to be chosen,
however, this assessment is of limited usefulness as all dis-
patch functions ultimately stem from pointcuts and their
respective residues. Thus, an attempt was made to char-
acterize the formulas likely to form residues in real-world
programs: these non-trivial but simple formulas are those
which are not decision equivalent to either ⊥ or ⊤ and can-
not be simplified by applying the laws of idempotence and
boundedness.

Although there are, e.g., 22
5

= 4, 294, 967, 296 Boolean
functions in five arguments, there are only about 118 million
non-trivial, simple formulas of signature 〈x1, . . . , x5〉 with up
to six propositional operators; this set, which contains, e.g.,
the formula of Figure 2, is at the same time large enough
to encompass most residues encountered in practice but also
small enough to experiment with. It should be noted, how-
ever, that it contains various decision equivalent formulas.
During the course of the experiments these were treated as
distinct, for they may give rise to distinct evaluation strate-
gies. The cost incurred by evaluating each of the five atomic
pointcuts was assumed to be 1.0, 1.5, 2.0, 2.5, and 3.0, re-
spectively, which reflects the range of relative costs observed
for common atomic pointcuts like this and cflow.

Figure 6 charts the average-case costs of evaluation strate-
gies derived from the original formulas and their DNF coun-
terparts, respectively. Each data point hereby corresponds
to numerous pairs of formula and DNF; its shade indicates
how many representations give rise to a particular combina-
tion of average-case costs. While there are formulas whose
DNF representation is considerably larger and thus incurs
higher cost of evaluation, it is noteworthy that there are nu-
merous formulas which benefit from conversion to this rep-
resentation. The figure depicts these cases as data points
above and below the bisector, respectively.

The aforementioned result is due to two causes: first, con-
version allows for simplification to be applied twice; the laws
of idempotence and boundedness were employed once be-
fore and once after conversion to DNF. Second, literals and
conjuncts were reordered according to the run-time costs
incurred by their evaluation. These two optimizations are

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

> 0.05% of formulas

> 0.005% of formulas

> 0.0005% of formulas

D
is

ju
n
ct

iv
e

N
o
rm

a
l
F
o
rm

Formulas

Figure 6: The average-case costs of evaluation
strategies derived from formulas and their DNF.

precisely those used by ajc (cf. Section 3.1) and here have
been proven effective; the evaluation cost averaged over all
simple formulas considered is 4.398 for DNF representations,
whereas their left-to-right short-circuit evaluation results in
an average cost of 4.603.

In contrast to this marginal difference OBDD represen-
tations offer significant improvements over either formula-
based representation. These improvements are only partly
owed to the redundancy-free nature of OBDDs; the vari-
able ordering chosen is also important, as illustrated by Fig-
ure 7. One of the variable ordering heuristics applied here,
the so-called depth-first search (DFS) heuristic [13], derives
an ordering from a depth-first traversal of the original for-
mula. The second heuristic applied, the cost-only heuristic,
derives an ordering from the costs incurred by the variables’
evaluation. While the former heuristic ignores the atomic
pointcuts’ cost, the latter ignores the residue’s structure.
Both are straight-forward, but when the average-case cost
of evaluation strategies is the primary concern, the cost-only
heuristic was found to be superior to the DFS heuristic.

For 47.6% of the formulas considered, the cost-only heuris-
tic gives rise to a strategy with average-case cost superior
to that derived using the DFS heuristic. The latter heuris-
tic is superior in only 18.2% of the cases. But with 3.438
and 3.721, respectively, the evaluation costs averaged over
all formulas in either case are lower than that of the two
formula-based representations.

6. RELATED WORK
Dispatch functions of the form h : B

n → {1, . . . , m} play
an important role in predicate dispatch [12] and bear a close
resemblance to the functions employed during advice dis-
patch [20]; in this setting, the n atomic predicates deter-
mine which of the m methods is ultimately executed. When
the dispatch function is viewed as a composition h = g ◦ f ,
with f : B

n → B
m and g : B

m → {1, . . . , m}, this resem-
blance is most prominent. Hereby f characterizes applicabil-
ity, whereas g determines the overriding relationship. This

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

> 5% of formulas

> 0.5% of formulas

> 0.05% of formulas

> 0.005% of formulas

> 0.0005% of formulas

C
o
st

-o
n
ly

H
eu

ri
st

ic

DFS Heuristic

Figure 7: The average-case costs of evaluation
strategies derived from OBDDs ordered with re-
spect to two straight-forward heuristics.

decomposition is particularly advantageous if, as suggested
by the present paper, an OBDD representation is used for
the former function. First, a representation of f is synthe-
sized by applying the extended propositional operations (cf.
Sections 3.2, 4.2). Then the sinks are relabeled according to
g. Finally, subsequent applications of the reduction rules (cf.
Figure 5) yield the reduced OBDD representing h.

Decision diagrams have been employed, under the name of
lookup DAGs, for the efficient implementation of both multi-
ple and predicate dispatch [9]. But these decision diagrams
are not necessarily binary; this complicates synthesis. For
residual dispatch, however, this complication is unnecessary
as atomic pointcuts are propositional in nature. Construc-
tion of lookup DAGs is further complicated by the fact that
the synthesis algorithm requires a canonical formula repre-
sentation, namely DNF, to be used. In some cases, this can
cause an exponential blow-up of intermediate results even
though the size of the final result is moderate. Also, as the
range of f is specified with respect to the DNFs’ conjuncts
instead of the m predicates themselves, this view prevents
the straight-forward but elegant description of the addition
or removal of predicates in terms of propositional opera-
tions (cf. Section 3.2). This paper therefore links the work
on lookup DAGs with the theory of Boolean functions in
general and that of BDDs in particular [24].

7. CONCLUSIONS AND FUTURE WORK
This paper has shown that, under three assumptions which

typically hold for PA flavor languages, the average-case run-
time cost incurred by residual dispatch can be improved
upon by applying two optimizations. The first and fore-
most of these, namely the complete redundancy elimination
across multiple residues, is facilitated by an alternative rep-
resentation of the dispatch function in question: OBDDs.
This representation does also allow for a straight-forward
implementation of the second optimization, namely the re-
ordering of atomic pointcuts in order of increasing cost. Fur-

thermore, as OBDDs are, like formulas, a representation of
dispatch functions, they, too, allow for an elegant descrip-
tion of aspect deployment and undeployment.

It should be noted, however, that, strictly speaking, only
point-in-time semantics [11] allow for the one-to-one corre-
spondence between dispatch functions and join point shad-
ows this paper so far has alluded to. Yet, dispatch func-
tions can be used to good effect with AspectJ’s region-in-
time semantics [17] as well. They merely necessitate a sep-
arate treatment of after returning and after throwing
advice. This is necessary, since in either case a parame-
ter may be bound which is unavailable at the beginning of
the join point’s region-in-time. A straight-forward solution
would require two dispatch functions, which handle the be-
ginning of the join point’s region-in-time and the end of the
join point’s region-in-time, respectively. Using several dis-
patch functions may also be advantageous in the presence
of around advice which do not proceed. While such an
advice may preclude the execution of other advice and is
therefore narrowing, it leaves their pointcuts’ satisfiability
unaffected and hence does not violate the assumptions of
Section 2. The precise workings of this scheme are, how-
ever, an area for future work.

Other areas for future work include methods which ex-
ploit static information, e.g., the fact that args(Integer)
implies args(Number) or which perform profile-guided op-
timizations whose notion of optimality is based not on the
average- but on the expected-case cost. In these areas, how-
ever, experiments require a detailed model of both the inter-
dependencies of atomic pointcuts and the probability distri-
bution underlying the set of states; such a model does not
yet exist.

8. ACKNOWLEDGEMENTS
This work was supported by the AOSD-Europe Network

of Excellence, European Union grant no. FP6-2003-IST-2-
004349.

9. REFERENCES
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.

Compilers: Principles, Techniques, and Tools. Addison
Wesley, Reading, MA, USA, 2nd edition, 2006.

[2] The AspectJ Project. The AspectJ Programming

Guide. http://www.eclipse.org/aspectj/doc/
released/progguide/.

[3] P. Avgustinov, A. S. Christensen, L. J. Hendren,
S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. Optimising
AspectJ. ACM SIGPLAN Notices, 40(6), 2005.

[4] P. Avgustinov, A. S. Christensen, L. J. Hendren,
S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. abc: An
extensible AspectJ compiler. In Transactions on

Aspect-Oriented Software Development I. Springer,
Berlin, Germany, 2006.

[5] C. Bockisch, M. Mezini, W. Havinga, L. Bergmans,
and K. Gybels. Reference model implementation.
Technical Report AOSD-Europe Deliverable D96,
Technische Universität Darmstadt, 2007.

[6] B. Bollig and I. Wegener. A very simple function that
requires exponential size read-once branching
programs. Information Processing Letters, 66(2), 1998.

[7] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient
implementation of a BDD package. In Proceedings of

the 27th Design Automation Conference, 1990.

[8] R. E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on

Computers, 35(8), 1986.

[9] C. Chambers and W. Chen. Efficient multiple and
predicated dispatching. ACM SIGPLAN Notices,
34(10), 1999.

[10] F. Chen and G. Roşu. MOP: An efficient and generic
runtime verification framework. In Proceedings of the

22nd OOPSLA Conference, 2007.

[11] Y. Endoh, H. Masuhara, and A. Yonezawa.
Continuation join points. In Proceedings of the 5th

FOAL Workshop, 2006.

[12] M. D. Ernst, C. S. Kaplan, and C. Chambers.
Predicate dispatching: A unified theory of dispatch. In
Proceedings of the 12th ECOOP Conference, 1998.

[13] M. Fujita, H. Fujisawa, and Y. Matsunaga. Variable
ordering algorithms for ordered binary decision
diagrams and their evaluation. IEEE Transactions of

Computer-Aided Design of Integrated Circuits and

Systems, 12(1), 1993.

[14] J. Gergov and C. Meinel. Efficient Boolean
manipulation with OBDDs can be extended to
FBDDs. IEEE Transactions on Computers, 43(10),
1994.

[15] J. Gosling, W. N. Joy, G. L. Steele, and G. Bracha.
The Java Language Specification. Addison-Wesley,
Reading, MA, USA, 3rd edition, 2005.

[16] E. Hilsdale and J. Hugunin. Advice weaving in
AspectJ. In Proceedings of the 3rd AOSD Conference,
2004.

[17] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of AspectJ.
In Proceedings of the 15th ECOOP Conference, 2001.

[18] H. Masuhara and G. Kiczales. Modeling crosscutting
in aspect-oriented mechanisms. In Proceedings of the

17th ECOOP Conference, 2003.

[19] H. Masuhara, G. Kiczales, and C. Dutchyn. A
compilation and optimization model for
aspect-oriented programs. In Proceedings of the 12th

Conference on Compiler Construction, 2003.

[20] D. Orleans. Incremental programming with extensible
decisions. In Proceedings of the 1st AOSD Conference,
2002.

[21] M. C. Rinard, A. Salcianu, and S. Bugrara. A
classification system and analysis for aspect-oriented
programs. In Proceedings of the 12th ACM SIGSOFT,
2004.

[22] D. Sieling and I. Wegener. Graph driven BDDs: A
new data structure for Boolean functions. Theoretical

Computer Science, 141(1 & 2), 1995.

[23] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. ACM Transactions on Programming

Languages and Systems, 26(5), 2004.

[24] I. Wegener. Branching Programs and Binary Decision

Diagrams: Theory and Applications. Society for
Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2000.

