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ABSTRACT
Reasoning, specification, and verification of Aspect-Oriented
(AO) programs presents unique challenges especially as such
programs evolve over time. Components, base-code and as-
pects alike, may be easily added, removed, interchanged, or
presently unavailable at unpredictable frequencies. Conse-
quently, modular reasoning of such programs is highly at-
tractive as it enables tractable evolution, otherwise neces-
sitating that the entire program be reexamined each time
a component is changed. It is well known, however, that
modular reasoning about AO programs is difficult. In this
paper, we present our ongoing work in constructing a rely-
guarantee style reasoning system for the Aspect-Oriented
Programming (AOP) paradigm, adopting a trace-based ap-
proach to deal with the plug-n-play nature inherent to these
programs, thus easing AOP evolution.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Modules, packages; D.2.4 [Software Engi-
neering]: Software Verification—Formal methods

General Terms
Languages, theory

Keywords
Aspect-oriented programming, modular reasoning,
rely-guarantee
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1. INTRODUCTION
Aspect-oriented programming (AOP) [21] allows for mod-

ular implementations of crosscutting concerns. Since its in-
ception, many authors [8, 24, 26, 33] have shown how aspects
may be used to write localized implementations of impor-
tant crosscutting concerns such as process synchronization,
event logging, data persistence, exceptional situation han-
dling, etc. The separation of concerns that AOP enables
helps produce programs whose components are increasingly
decoupled from one another as a direct consequence of the
reduction of scattered and tangled code. As such, AO pro-
grams tend to enjoy plug-n-play-type capabilities where base
and/or aspect components may be introduced, removed, and
interchanged easily [24]. This inherent nature of AOP is
beneficial in the sense that AO programs may evolve in a
non-invasive fashion simply by “switching” features on and
off. However, program evolution is bound to occur at un-
predictable frequencies; therefore, programmers are often re-
quired to make key decisions and come to conclusions about
a software components, base-code and aspect alike, utiliz-
ing either incomplete or highly volatile information at hand.
Ergo, the ability to reason about individual AO program
components modularly and to then compose these reason-
ing efforts, just as we would compose the components them-
selves, to obtain the actual behavior of the overall program
becomes extremely desirable. This ability would permit AO
programmers to avoid the unfortunate situation where the
entire program must be reexamined upon each component
change, thereby facilitating tractable evolution.

Despite its benefits, modular reasoning about AO pro-
grams indeed presents significant challenges [1, 3, 13, 5, 22,
23, 37, 29, 9, 38, 31, 12, 7, 34, 36, 30]. The problem is
that, by circumscribing core concerns into classes and cross-
cutting concerns into aspects we are essentially creating two
different systems, a baseline system (base-code) and an aug-
mented system which is the result of applying aspects that
alter the behavior of the baseline. Indeed, the ability of
an aspect to change the behavior of the base-code that it
advises, which is the very reason for much of the power of
AOP, is also what causes difficulties for reasoning about the
behavior of such software. In fact, as aspects “weave” in and
out of (or “plugged” then “played”) a software system, we
may be forced to reason about the entire system, account-
ing for the interleaved execution of various pieces of advice
with the base-code.

What we would aspire instead is to draw meaningful and
useful conclusions about component code, e.g., base-code
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Figure 1: Schematic of behavior derivation using pa-
rameterized specifications of a component C under
the influence of advice of A1 and/or A2.

which may reside in a method or an advice body that is
itself subject to advice, without considering the actual ad-
vice code. Ideally, we would like to specify the behavior of
AO components without any particular advice in mind such
that in order to arrive at the behavior of the augmented
system, just as aspects are plugged-in to enhance or enrich
the behavior of the advised components, the specifications
of applicable advice would be “plugged” into the matching
behavioral specifications of the base-code. Furthermore, in
order to arrive at useful conclusions that remain valid de-
spite the addition of advice, it may be necessary to constrain
possible advice behavior in order to preserve the intended
semantics of the advised component. In other words, for a
component to function correctly, assumptions may need to
be made about potentially applicable advice such that these
assumptions hold during evolution, with aspects entering,
leaving, and re-entering the software.

Adopting such an idealized approach would allow develop-
ers as AO programs evolve to deduce the behavior of the aug-
mented software without reexamining the internals of each
component. In essence, the specified behavior of a compo-
nent would be parameterized over the behaviors of all possi-
bly applicable advice. Figure 1 helps to illustrate this notion,
portraying schematically at a bird’s-eye-view how these pa-
rameterized specifications can be hypothetically combined
with the specifications of advice in order to obtain the over-
all system behavior, where Spec(X) refers to the behavioral
specifications of component X.

Although the above outlined approach may seem desir-
able, there are several key obstacles that must be overcome
in its achievement:

Usefulness. As previously mentioned, we would like to
draw useful conclusions about component code that is sub-
ject to the application of advice without considering the ac-
tual advice code. As we are focused on evolving AO software,
the advice code may not yet exist; it may be added a later
time. It is not clear, however, exactly how useful these con-
clusions can be considering that they should hold upon the

application of any advice. What sorts of conclusions could
we draw in this case?

Complexity. Since component specifications would be
written in terms of any applicable advice, there is a strong
possibility of these specifications becoming unwieldy. As
such, any changes made to the internals (i.e., the imple-
mentation) of the advised component code would require a
rather involved effort to rebuild the component’s parame-
terized specifications. Also, situations may arise where a
component C may not be under the influence of advice, yet
Spec(C) would still be specified over all possibly applica-
ble advice. Therefore, the complexity of the specification
may be unnecessarily complicated. This situation is picto-
rially represented in 2 and further discussed later in this
section. Making suitable restrictions on the behavior of po-
tential advice via the use of language constructs, minimizing
the join point model, providing behavioral constraining as-
sertions by adapting a rely/guarantee [39, 18] methodology,
which is the focus of our previous work [19, 35], and using
predicates and/or functions on specifications themselves as
in [16], which is a focus of our future work, may help allevi-
ate several of these obstacles.

Obliviousness. Annotating the component code with pa-
rameterized specifications by very nature compromises the
traditional oblivious [10] property intrinsic to AOP, in par-
ticular languages such as AspectJ [20]. Thus, by allowing
AOP authors to construct their specifications in a param-
eterized fashion, and to further constrain the behavior of
intangible advice (which would constitute the actual param-
eters), we are indeed forcing them to be at least cognitive
of crosscutting concerns (CCCs). Nevertheless, it has been
shown in [22] that even in (non-AOP) ordinary software, one
must still be aware of CCCs, and [37] suggests that design-
ing components subject to advice also requires the cognition
of CCCs.

Modelling. How do we model specifications that abstract
enough information from the internal details of components
while simultaneously constraining the effects of potentially
applicable advice that manipulates the internal implemen-
tation of these components? We will see later in this paper
how our proposed approach, with the help of traces, may
allow us to write such specifications for AOP.

Composition. Given the specifications of a component
and its applicable aspects, how do we decide if the con-
stituent advice is applicable especially considering that ad-
vice may be bound to lexical and dynamic pointcuts? A
reasoning formalism should account for such situations if it
intends to deal with lexical pointcut designators (LPCDs),
e.g., within(), and/or dynamic pointcut designators (DPCDs),
e.g., cflow(), if(). Then, given that advice is applicable
to component code, how do we utilize the specifications of
the advice and that of the parameterized component spec-
ifications to arrive at the overall behavior of the system,
thus verifying that the software behaves as intended? Con-
versely, how do we derive the behavior of a component in
which no advice is applicable given the nature of the com-
ponents specifications? In fact, the schematic in Figure 1
is somewhat misleading as it fails to mention the situation
where no advice is applicable. That is, in order to derive the
behavior of a component that is not under the influence of
advice we must either (i) obtain the behavior of a component
C taking its parameterized specification and then composing
it with a “empty” aspect specification Anull (portrayed in
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Figure 2: Schematic of behavior derivation using
parameterized specifications of a component C not
under the influence of advice.

Figure 2), or (ii) supply a second specification for each com-
ponent which would correspond to the situation where no
advice is applicable.

The focus of this paper is to (i) present new ideas in
our ongoing work in this area, (ii) discuss our proposals to
combat several of the above mentioned obstacles, and (iii)
facilitate interesting discussion in respects to some of the
open issues that faces our approach, in which we highlight
throughout the paper.

2. CONSTRAINING AND ENRICHING THE
BEHAVIOR OF PROGRAMS

Several approaches [1, 12, 13, 7] have been developed to re-
strict the behavior of AO components in order to reduce the
efforts required in reasoning –both formally and informally–
about such systems. In this paper, however, as mentioned in
section 1, we are interested in specifying the intended run-
time behavior of components under the possible influence of
advice that accounts for the unique evolutionary nature of
AOP; hence, assertions of these components should reflect
this notion. Such a solution seems to call for a technique that
would to need to be more flexible than existing approaches
in the way that constraints on acting advice are expressed.
In this section, we will briefly discuss how behavior of pro-
cesses within concurrent programs are suitably constrained
to achieve interference freedom using the rely/guarantee ap-
proach. This section will draw a parallel with concurrent
programs and that of AOP, outlining our previous work in
adapting the rely/guarantee approach for AOP. In addition,
we will overview how assertions for evolving AO programs
can be written, and how specifications can be composed to
arrive at the effective behavior of the overall system, that is,
the behavior of the components augmented with the behav-
ior of applicable aspects.

Constraining behavior of concurrent programs. Con-
sider a concurrent program with two processes P1 and P2

that share some variables that either of them may read and

write. Standard modular reasoning would require us to rea-
son about each process independently of the other and then
combine the results of the two reasoning tasks in an appro-
priate manner to arrive at the behavior of the whole pro-
gram, [P1//P2]. But since the two processes will be inter-
leaved during execution, whatever conclusions we may have
drawn about each of them when reasoning about them in-
dependently may not, in fact, be valid. In effect, the actions
of each process may interfere with the other process thereby
invalidating whatever results we may have established by
reasoning about that other process.

The rely-guarantee approach [18, 39] addresses the prob-
lem of interference in concurrent programs as follows. Let
σ be the state, i.e., the set of all program variables of the
program consisting of two processes P1 and P2 running in
parallel. When reasoning about P1, we recognize that the
actions of P2 may modify the state. Hence, we write our
assertions in the proof outline of P1 in such a manner that
they continue to be satisfied even in the presence of such
actions. To enable this, we identify a relation rely1() that is
a predicate over two states, σa and σb. This relation means
the following: suppose at some point in the execution of P1

the current state is σa and that some part of P2 is now in-
terleaved in the execution; suppose that the state when P1

gets control back is σb; then rely1(σa, σb) must be satisfied.
In other words, when reasoning about the behavior of P1,
we assume that any interleaved action that P2 (or any other
process in the case of programs with more than two pro-
cesses) may change the state but only within the constraints
specified by rely1(). If this is satisfied, the correctness of
the proof outline of P1 will not be affected by the actions
of P2. Conversely, when reasoning about P2, we introduce a
relation rely2() that imposes constraints on the changes in
the state that may be caused by P1’s actions.

Next, we must verify that P2 and P1 meet the require-
ments contained respectively in rely1() and rely2(). To make
this possible, when reasoning about each process, we es-
tablish a guarantee clause. This clause, denoted guar1()
in the case of P1, is again a relation over two states; it is
a guarantee provided by P1 that any change it makes in
the state when executing any instruction in it will obey the
constraints specified in guar1(). The specification of P1 is
of the form (pre1, rely1, guar1, post1) which denotes: if P1

starts in a state that satisfies pre1 and if all transitions, i.e.,
state changes, made by P2 satisfy the constraints specified in
rely1(); then each transition made by P1 will satisfy the con-
straints specified in guar1(), and the state, when P1 finishes
execution, will satisfy post1(). The parallel composition rule
requires us to check, using guar1() and guar2(), that the
rely clauses of both processes are satisfied.

Constraining behavior of AO programs. As we noted
earlier, reasoning in concurrent programs seems to have some
resemblance to reasoning about AOP. Suppose, for example,
that the code of a component, say a class C, subject to ad-
vice contains an assignment statement assigning a value v
returned from a method call m() on an object obj to a partic-
ular instance variable x of C. When reasoning about the code
of C, we might have established an assertion following the as-
signment that states that the value of C.x would be equal to
v. Suppose now that an aspect is added that encompasses a
piece of after-advice that applies at the call-join point associ-
ated with the invocation of obj.m(). Immediately following
the execution of the assignment of the returned value v to



C.x, the after-advice would execute and, possibly, invoke a
mutator method of C that assigns a new value to C.x. When
control returns to C, at this point, the assertion we previ-
ously established may no longer satisfied. In other words,
the aspect has interfered with the component code.

While this seems highly analogous to the case of the con-
current program, there are notable differences between the
situation in AOP and that of concurrent programs. Firstly,
AO programs are intrinsically sequential, making the in-
terleaving of their constituent statements more predictable.
Nevertheless, when reasoning about components indepen-
dently we must recognize that advice may be weaved in,
out, or around each join point, thereby detracting this oth-
erwise innate predictability. Secondly, the severity of possi-
ble interference is governed by the join point model of the
underlying AO language. Possible interference is thus dic-
tated by the types of join points, the control structures, and
the mutable contexts that are exposed and available to ad-
vice to manipulate. Thirdly, there is an asymmetry between
components that does not possess the ability to advise other
components, e.g., a method within a class in AspectJ (sans
annotation-based mechanisms such as @AspectJ), and com-
ponents, e.g., aspects, that do possess this ability. In par-
ticular, while advice can intercept the execution of a class, a
class does not intercept the advice. As such, control is solely
at the mercy of aspects as opposed to other paradigms like
concurrent programming, and coroutines [6] where control is
explicitly released and suppressed at various points. Lastly,
in the case of parallel programs, concurrent processes are
typically designed hand-in-hand, while in AO programs as-
pects may be added, removed, and/or changed to a system
at unpredictable intervals as the software evolves.

A key observation underlying our approach is that asser-
tions contained within component subject to advice should
be in the form of a relation over two states σa and σb. Here,
σa refers to the state of the advised component prior to con-
trol transferring to advice, and σb refers to the state of the
advised component immediately following the point where it
reacquires control. Therefore, components subject to advice
can effectively detail the sorts of constraints on advice be-
havior required for it to behave properly regardless if advice
is applicable at the moment. Principally, when reasoning
about a component C we recognize that its behavior may be
modified as a result of aspect(s) being applied to it. As C

executes, if control were to reach a join point that matches
a pointcut at which a particular advice is applicable, control
will transfer to the advice before, after, or around (poten-
tially bypassing) the statement at that point. The advice
would then execute, possibly changing the values of some of
the instance variables of C and/or other accessible parame-
ters. Finally, control would then return to C which would
continue execution.

The approach discussed in this paper is based on aug-
menting leverages a existing technique made for improving
modularity in AO programs. We extend the notion of point-
cut interfaces [13] by annotating pointcuts with associated
specifications that must be met during the execution of the
matching join points by both the component (through a guar
clause) and applicable advice (through a rely clause). We
will discuss related work in more detail in section 4, even
so, it is worth mentioning here that the contractual obli-
gations between advice code and advised code is similar in
spirit to Crosscutting Interfaces (XPIs) [12], however, our

interest lies in establishing run time behavioral properties
exhibited at compile time, i.e., through use of an axiomatic
proof method.

Deriving effective behavior. Unlike concurrent pro-
grams where a prime concern is preserving process interfer-
ence freedom [32], the of addition of aspects typically corre-
sponds to enriching existing program behavior. Indeed, it is
the possibility of such enrichment that is the source of much
of AOP’s power. For this purpose, we introduce the concept
of join point traces (JPTs). A JPT is used when reasoning
about a component C under the potential influence of advice,
to record the flow-of-control through various join points con-
tained within C. These join points are the ones “exposed” by
the pointcut interface of C, where items of advice may be
applied to enrich or otherwise affect its behavior. We will
delve into the details of the structure of JPTs in section 3,
but the central idea is to specify the behavior of C in terms
of assertions involving not just the variables of C but also
abstractly in terms of the state changes caused by various
items of advice that could possibly be applied at the various
join points recorded in C’s JPT, without referencing the ac-
tual advice. When reasoning about C, we will not, of course,
know what these state changes will be since the aspect(s) in
question may not yet have been constructed (or even if they
have been, we have not yet reasoned about them). Hence,
in our reasoning, we have to allow for a range of possible
state changes –subject to the constraints of the appropriate
rely() clauses– that these items of advice may carry out; es-
sentially the assertions characterizing the behavior of C will
allow for various such changes and, corresponding to each,
specify how C will behave. In effect, the behavior of C will
be parameterized with respect to the possible behaviors that
each item of advice code may engage in at the various join
points, with the JPT being used to record the “parameter
values” representing these behaviors. The next step, given
a particular set of advice specifications, is to compose our
JPT-based specification of C with the specified behaviors of
the aspects to arrive at the resulting enriched behavior of
the composed system as illustrated earlier in Figures 1 and
2. Formally, this will be carried out by appealing to our rule
of composition of aspect and the components they advise.

3. SPECIFICATION AND VERIFICATION
In this section, we will explore possible ways to specify

and curtail the behavior of AO programs in order to improve
reasoning in these systems that is natural to the way they
evolve, intuitively similar to what is portrayed in Figure 1.
We will then examine several inference rules using a highly
distilled version of an AspectJ-like AO language that will
allow us to show that the composition of AO components
meets a certain specification. Our goal in this paper is not to
provide a complete formal set of rules but rather to indicate
the types of considerations involved in them. In future work
we intend to define the syntax for a complete but simplified
version of AspectJ, present its operational semantics, extend
our set of proof rules to apply to this language, define a
formal operational model based on the notion of JPTs, and
address questions about soundness and completeness of the
rules with respect to the model.

Specifications and pointcuts. To demonstrate the crux
of our proposal, we will only consider call-join points and af-
ter advice. Before advice could be theoretically handled in
a symmetric manor; around advice, however, poses some in-



teresting complications as advice could alter both the calling
and callee objects and avoid the execution at the join point
entirely by opting not to call proceed(). We leave around
advice as a problem open to discussion with the possibility
of leveraging existing work from [4]. For further simplicity of
the presentation, we will also not consider such constructs
as lexical pointcut designators (LPCDs) but will consider
them in future work.

The flexibility and expressiveness that we desire with our
specifications may lead to undesired complexity since many
join points may be traversed as a result of a given method
invocation. This complexity, however, depends heavily on
the strength of the associated rely clauses as any applicable
advice must respect it. Thus, although our specifications
will be over the behavior any applicable advice, we do not
need to consider potential behavior that does not abide the
rely assertion. Another possibility would be to follow the
conventions in [1], allowing only external calls to methods
within a component C listed on the interface of C to be sub-
ject to advice, that is, C is “sealed.” Pointcuts appear on
C’s interface in order to export important internal events
within C that the author of the component feels aspects
may be interested in advising. Note that importantly the
author does not examine existing aspects to come to this
decision, instead, she solely examines C to determine which
internal events should be exported on its interface. In much
the same way, in the context of our proposal, the author of
the component determines the necessary constraints to place
on possible advice that would apply to the it based on the
internals of that component alone, deciding what essential
constraints are necessary to place on the behavior of advice
either currently in existence or to be developed in the future.
Moreover, as another possible extension to our approach, it
may be worthwhile to break the sealing of a component for
observer aspects [3]. That way, less intrusive aspects, e.g.,
logging aspects, would be allowed to advise the execution of
the entire program. We leave both of these issues open for
discussion.

A common challenge with providing a reasoning scheme
for software that contains objects (and aspects) is aliasing,
which tends to cloud the vision as to what an object’s state
precisely consists of. A component C, say a class for instance,
will in general define a number of (instance) variables. Some
of these will be of primitive types (int, boolean, etc.), oth-
ers will be of reference types. Consider an instance obj of C.
The state of obj at any time will consist of the values of the
variables of primitive types plus the values of references to
objects. Generally we will not consider the states of objects
that obj contains references to as part of the state of obj.
Only changes to the values of its primitive variables resulting
from execution of methods invoked on obj will be reflected
as changes in the state of obj. As these methods execute,
they will in general invoke methods on objects that obj has
references to, resulting in changes in the states of those ob-
jects; these latter changes are not part of the changes in the
state of obj. In effect, we are assuming that there is a heap
in the background that holds all the objects, retains their
current states, and makes them available to us as needed.
These considerations are, of course, common to reasoning
frameworks for all object-oriented languages. Hence we will
not consider them in any detail when presenting our formal-
ism.

Join point traces. From this point forward we will typ-

ically consider the situation where we wish to specify and
verify a method in a class that may potentially be under
the influence of advice. It is not inconceivable to conversely
apply our proposal to reasoning about a piece of advice in
an aspect which itself may be open to advice (possibly even
itself), however, as noted earlier, around advice does pose
several interesting problems (e.g., constraining the behavior
of calls to proceed()). For now, however, consider, in gen-
eral, a method m() of a class C. The JPT for this method will
record the flow-of-control through the various join points in
the body of m() where items of advice defined in various
(perhaps yet-to-be-developed) aspects may apply. Each join
point is a call to a method either of the same class C or of
a different class. Note that we do not have to worry about
every call that appears in the body of m(). Suppose there
is a call to a method n() of a class D. If n() appears in an
exported pointcut on the pointcut interface of D, then this
call, in our current approach, will be recorded on the JPT of
m(). If not, however, it will not be record since this call in
this case would have no advice applicable to it. The design-
ers of D are responsible for deciding whether or not calls to
D.n() should be included in one of the pointcuts of D. Our
specifications, using JPTs, will reflect these decisions.

Traces of various kinds have been widely used for specify-
ing the behaviors of different types of systems ranging from
ADTs [16, 17] to processes in a distributed system [15, 28].
In each case, elements in the traces are used to record infor-
mation about important events in the system; the ordering
of the elements in the trace represents the order in which
the corresponding events took place. Specifications of the
systems are written in terms of conditions that must be sat-
isfied by the structure of the trace and by the information
recorded in the individual elements. In the case of JPTs,
the events of interest are the arrival of control at various
join points. Since the only kind of join point we are consid-
ering is the call-join point and since the only type of advice
we are considering is after advice, each element of the JPT
will correspond to the completion of a call. In order to deal
with DPCDs such as cflow ad cflowbelow, it is also conve-
nient, from the point of view of specifying our methods, to
record on the JPT the events corresponding to the start of
method execution as well as its end.

Let us now consider the structure of the elements that ap-
pear in a JPT. Consider the completion of a call of a method
m() of a class C invoked on object obj. Suppose we have a
pointcut pc defined in the pointcut interface of C that in-
cludes calls to m(). Suppose A is an aspect that includes an
(after) advice that applies to this pointcut. We will assume
that any variables defined in A will be of primitive types.
The code of the advice may update the values of these vari-
ables and also update the state of obj by updating values of
the primitive variables in that state. For simplicity in the
presentation, in this paper, we will not consider the possi-
bility of A invoking additional methods. Trace models are,
in general, powerful enough to handle such complications
but the resulting specifications tend to be rather complex.
The exclusion of such calls means we do not have to worry
about additional items of advice associated with calls to such
methods being triggered. Nevertheless, we encourage open
discussion on how some of these restrictions may be relaxed.

During actual execution of the system, if an aspect such
as A considered above had been defined, control will transfer
to the corresponding advice code. That code will execute,



possibly resulting in changes in the state of the aspect as
well as in the state of obj (e.g., through exposing context at
the join point using the target() PCD), or even the caller of
obj.m() (e.g., through exposing context at the join point us-
ing the this() PCD). Hence, in this element of the JPT, we
will record the state of obj at the time that control reached
the completion of the call to obj.m() and its state when
control returns from the advice, and likewise for the calling
object of obj.m(). If there is no applicable advice, either
because calls to obj.m() are not included in any pointcut,
no aspect such as A had been defined to apply at the point-
cut, or because the conditions for the advice to be applied
are not satisfied, these two states will be identical, since the
state will not, in this case, change between the time that the
call completes and the code of the calling method continues
execution.

However, the completion of the call to obj.m() is not the
only point at which advice may apply. That is, calls made
to additional methods within the body of C.m() may them-
selves be subject to advice. As such, the specifications of
these method calls will also be parameterized over applica-
ble aspects. Thus, although until now we have been consid-
ering an individual method m() of a class C and described
the JPT as if it corresponded to just (a single call to) this
method, there is, in fact, a single JPT for the entire sys-
tem. This JPT is initialized, at the start of the system’s
execution, to the empty sequence. We will use the symbol
γτ to denote this (global) trace. Each time a method is
called, an element is added to the JPT to record the start
of this invocation. And when the method call completes, an
element corresponding to the completion is added to the
JPT, in fact, this element corresponds to the join point
at that location. The effect of any (after) advice that ap-
plies at this call-join point is recorded in this latter element.
The completion elements of the JPT will have the structure
(oid ,mid , aid , args, res, σ, σ′) where mid is the identity of
the method whose call just completed; oid is the identity
of the object on which the method mid was invoked; aid is
the identity of an applicable aspect instance, args and res
are the arguments and result (if any) of this method. σ
and σ′ are state vectors as follows. σ[oid ] is the state of
the callee object at the time the method call completed (im-
mediately prior to transferring control to the advice if any)
and σ′[oid ] the state at the time immediately following the
completion of the advice code. Likewise, σ[this] is the state
of the calling object at the time the method call completed
and σ′[this] the state at the time immediately following the
execution of advice. If there is no applicable advice at this
join point, then σ[this] = σ′[this]. These state vectors also
contain the state of aspects in a similar fashion. Specifically,
σ[aid ] refers to the the aspect state immediately following the
completion of the execution of the method, whereas σ′[aid ]
is the aspect state immediately following the completion of
the advice code. If there is no applicable advice at this join
point, these elements will not be included. We should note
again that the above description is an operational picture of
the JPT.

Let us now consider the structure of the elements of the
JPT that record method call invocations. Consider again
the call of a method m() invoked on object obj. If we wanted
to account for before advice that might apply at this point,
the element of the JPT recording this invocation would have
to include information very similar to the above. In this

paper though, we are only considering after advice, hence
we can omit much of this information. The only information
that does need to be included are the identities of m() and
obj since these may be used to control the applicability of
some advice, especially those point to pointcut expressions
containing DPCDs.

Inference rules. We will consider three rules correspond-
ing respectively to accounting for the advice that may apply
when a method call completes; for the call a method body
makes to another method; and for combining the specifica-
tion of a method C.m() with that of the aspects that apply,
including those that apply to the various methods that m()

calls during its executions to arrive at the resulting “en-
riched” behavior of m(). Let us first consider the rule de-
picted in Figure 3 corresponding to completion of a method
call to C.m(). The specification of such a method will be a
4-tuple, (pre, post , guar , rely). Here, guar is obtained from
the conjunction of each guar clause of each exported point-
cut which corresponds to calls to C.m(). rely is obtained in a
similar manor except that it is derived from the disjunction
of each rely clause. This specification annotation means that
if pre is satisfied when C.m() is called; and if the methods
called in the body of C.m() satisfy their respective specifica-
tions –these calls may be to methods of C or other classes or
both–; and if any advice applicable to calls to C.m() satisfy
the rely clause; then when body of C.m() finishes execution,
it will satisfy post as well as the requirements specified in
the guar clause. Note that the post-condition will, in gen-
eral, involve the JPT since that is what will allow us to later
enrich this specification, accounting for the action of advice
defined in any aspect that may be developed to apply to calls
to C.m(). But this JPT is not the global JPT, γτ ; rather,
it corresponds to a single execution of this method and we
will use the symbol λτ to refer to it.

pre ∧ [λτ = 〈(inv , C.m)〉]⇒ p
{p}S{q}

q ⇒ guar(σ[this])ˆ
q ∧ rely(σ[this], σ′[this])

˜
⇒

post [λτ ← λτb(this, C.m, ?, args, res, σ, σ′), σ ← σ′]

C.m :: 〈pre, post , guar , rely 〉

Figure 3: Rule for method specification.

S is the body of the method, with pre-condition p. This
differs from pre since pre does not give us any information
about λτ ; thus the first line essentially tells us that when
the method body starts execution, λτ has been initialized to
contain the element representing the start of the invocation
(inv) of this method (C.m(). The post-condition of S is as
denoted q. The second line of the rule requires us to show
that when S completes, q will indeed hold. Moreover, C.m()
will, in general, provide a guarantee to any advice that may
apply when the call to C.m() completes. This guarantee
is represented by guar and this has to be satisfied when
S finishes; i.e., the post-condition q of S must imply this
assertion.

The next requirement, split over the next two lines of the
rule, essentially allow us to go from the post-condition q of
the body of the method to post , the post-condition of the
method. The difference between these two assertions arises



because the JPT has an extra element added to it to repre-
sent the completion of this method; and the state might be
modified from σ to σ′ as a result of an advice that has been
defined to apply at the completion of a call to this method.
Any such advice is required, as indicated in the third line, to
satisfy the rely clause. The element being appended to λτ
at this point corresponds to the completion of this method
call. The first element denotes the fact that the object in
question is simply the this object. The aid element repre-
sents the identity of the aspect, if any, that may apply at
this point. Since we are only considering the method at this
point, we have no requirements with respect to an aspect
state, hence the question mark. But the state of the cur-
rent object may itself change; this change is represented by
the elements denoted σ[this] and σ′[this]; these elements
may, as just noted, be assumed to satisfy the rely clause of
this method (since if not, the aspect is considered unaccept-
able). Once we have added this method completion element
to the JPT, we change the state of the object to whatever
the aspect assigns to it. The rule requires us to show that,
following this assignment, post , the specified post-condition
of the method is satisfied.

The rule looks rather involved but much of it is notational
complexity. Intuitively, the rule may be summarized by say-
ing, it requires us to show that the body S of C.m() behaves
according to its specification; and that when S finishes, the
state satisfies the requirements specified by the guar clause
so any after advice that is defined can legitimately assume
this clause. The rule also requires us to take account of
the fact that when the method is invoked, before the body
starts execution, the trace must be appropriately initialized.
And when the method finishes, the trace must be finalized
by adding a completion element that also records the effect
of any advice that may be applied corresponding to calls to
this method.

Next let us consider the rule portrayed in Figure 4 for deal-
ing with a method call. Suppose the method invocation is of
obj.m(args) where m() is a method of the class C. Let us as-
sume that the specification of C.m() is 〈pre, post , guar , rely〉.
Let us further assume that the (local) JPTs for the calling
and called methods are named λτ1 and λτ2, respectively.
At the start of the method, we have to account for the fact
that the object obj of the calling method will play the role
of the this object of the called method and substitute the
actual arguments for the formal parameters of C.m(). We let
p[x/e] denote p where all free occurrences of a variable in the
list x are replaced by its respective expression in e. When
the method finishes, we have to substitute in the reverse
direction and append λτ2 of C.m() to λτ1 of the caller.

p⇒ C.m.pre[pars/args]
C.m.post ⇒ q[λτ1/λτ1bλτ2, args/pars]

{ p } obj.m(args) { q }

Figure 4: Rule for method call

Essentially, the JPT records appropriate information about
the various (potential) join points through which control
flows. The value of λτ1 at the time of the method call, i.e.,
just prior to control being transferred to C.m(), represents
all join points we have encountered thus far in the calling

method. Now control continues in the body of C.m(). As
that body is executed, additional methods may be called and
information about the corresponding call-join points should
be accumulated in λτ2, the local JPT of C.m(). But this
is, in fact, simply a record of the additional join points that
we are encountering as execution continues. Hence, as con-
trol returns from C.m() to its caller, we need to append this
record to the JPT that we already had immediately prior to
the call, i.e., to λτ1. This will ensure that, in λτ1, we will
have a complete record of the control-flow along join points
that occurs during the entire execution of the caller of C.m(),
including the flow that occurs during the execution of the
methods that are called.

The final rule (Figure 5) we consider is for applying an
aspect to a class, in particular to a class method, to arrive
at the resulting enriched behavior of the method. More pre-
cisely, this aspect has been defined to apply at a pointcut
that includes the call join point to C.m() and we want to
arrive at the enriched behavior of this method as a result of
this aspect. Let us first consider a simpler form of the rule
ignoring the possibility of DPCDs. A refers to the aspect
being applied and Aadv is the applied advice defined in the
aspect.

{ guar(σ) ∧ ap } Aadv {rely [σ/σ@pre, σ′/σ] ∧ aq }
C.m :: 〈pre, post , guar , rely 〉
{pre ∧ ap } C.m() + A {post ∧ aq }

Figure 5: Rule for aspect application (simple ver-
sion)

In this rule, the rely and guar clauses are part of the spec-
ification of C.m(). The σ@pre notation denotes the state
at the start of the execution of this code. The first line
thus requires us to check that this code meets the rely and
guar clauses. In particular, the post-condition of Aadv en-
sures that the rely clause with σ@pre playing the role of the
starting state of the clause and σ playing the role of end-
ing state, is satisfied. The ap and aq are assertions over
the state of the aspect. The second line simply states that
we have already established the required result about C.m().
The post-condition in the conclusion of the rule shows us
the effect of the enrichment resulting from the application
of the aspect.

There are some problems with this rule. First, the pre-
condition requires not only the expected pre-condition of
the method is satisfied but also, ap, which is a condition
over the aspect state. The value of this state would not be
affected by the execution of the body of C.m(), so if it is
satisfied at the start of the execution of this body, it will
also be satisfied when the code Aadv starts execution. But
how will we ensure that this condition is, in fact, satisfied
at the start of C.m()? This state is going to be modified only
as a result of execution of various pieces of advice code of
this aspect, not by the body of C.m(). Nevertheless, there
is nothing in the pre-condition of C.m(), as we have it so
far, that will ensure that the aspect state, as it existed at
the start of C.m(), satisfies this assertion. Hence we need to
add this as an additional part of the pre-condition of C.m().
Therefore, this information needs to be provided as part of
the invocation element that is added to the JPT at the start



of C.m().
However, although the execution of the body of C.m() will

not directly modify the state of the aspect, there may be calls
in this body to other methods, and those methods might be
subject to this same aspect as well. Thus the state of the
aspect when the execution of the body of C.m() completes
and control is transferred to the advice code may not be the
same as it was when C.m() started execution. Instead, it will
be whatever it was when the most recent such call finished
execution. These calls will, of course, be recorded on the
JPT as per our method call rule. Further, the effect of the
advice acting on the called methods will result in the aspect
state that exists at the end of each such call to be recorded
on the JPT. We can address these considerations by making
two changes to the above rule. First, we modify the pre-
condition of A so that the assertion ap applies to the state
of the aspect as recorded in the invocation element of the
JPT. Second, we need to modify the post-condition so that
the assertion aq applies to the (final) aspect state recorded
in the JPT when this method returns to its caller.

The third problem with the rule has to do with bound
pointcut expressions containing DPCDs. The rule above as-
sumes that the advice code Aadv will apply to the execution
join point of C.m(). But it may not. Or, rather, we may have
a condition that depends on the call stack (as is the case
with such DPCDs as cflow) that will determine whether or
not it is applicable. And this, of course, cannot depend on
anything that is contained in the body of C.m() nor can it be
specified as part of the pre-condition of C.m(). Instead, it will
depend on the state of the call stack for each call to C.m()
that we have to deal with in reasoning about the behavior
of the overall system. In order to handle this, when reason-
ing about C.m(), if the pointcut associated with this advice
is dynamic, we will allow for both possibilities – when the
associated condition is satisfied and when it is not satisfied.
For this purpose, we will have two (possibly) distinct post-
conditions with the method, corresponding respectively to
the cases when the method is called with the state of the
call stack satisfying the condition of the dynamic pointcut
and when this condition is not satisfied. These are marked,
in the rule depicted in Figure 6, with the labels d and ¬d
respectively, d being the condition specified in the dynamic
pointcut for deciding whether or not the advice should apply
when the execution of C.m() finishes.

{ guar(σ) ∧ ap } Aadv {rely [σ/σ@pre, σ′/σ] ∧ aq }
C.m :: 〈pre, post , guar , rely 〉

{pre ∧ ap } C.m() + A {〈d : post ∧ aq , ¬d : post ∧ ap〉 }

Figure 6: Rule for aspect application (revised ver-
sion)

There is one final complication – the combination of the
two problems identified above. That is, the items of advice
applicable to methods called within the body of C.m() may
also have dynamic pointcuts associated with them! This
means the effect of dynamic pointcuts is not going to re-
sult in just two possibilities in the post-condition of C.m()
but rather all possible combinations of the conditions cor-
responding to these various dynamic pointcuts being or not
being satisfied! In the worst case, this would give rise to

2n possibilities, n being the number of calls in the body of
C.m(). What this tells us is that while dynamic pointcuts
are undoubtedly powerful, using them too liberally can lead
to systems that are extremely difficult to specify or reason
about. In fact, it is precisely this problem that forced Kr-
ishnamurthi et al. [23], in their model checking approach,
to introduce a depth parameter that is used as threshold to
combat this explosion. This problem is indeed more general
as illustrated above as it would also be encountered when
a join point resides either in a loop or is traversed multiple
times as a result of recursion. We will not present a for-
mal version of the rule that accounts for this problem as a
solution is currently being investigated.

4. RELATED WORK
Several authors have proposed restrictions to AOP in or-

der to address the complexity of the associated reasoning.
Clifton and Leavens [5] present MAO, a language that ex-
tends AspectJ [20] with concern domains and control-limited
advice. MAO, via static analysis, allows developers to re-
strict the behavior of advice, e.g., to allow accesses to only
certain parts of the heap belonging to a particular concern
domain. MAO also allows for restricting the manipulation of
control-flow by advice thereby forbidding it to perturb the
control-flow of the base-code in inappropriate ways. Such
restrictions are expected to help simplify reasoning about
AOP since developers can examine the signatures of each
advice declaration to reason about its potential effects. Sim-
ilar restrictions are also conceivable using our proposed rely
clauses; however, our advice restrictions are more flexible
and fine-grained in that rely clauses take an arbitrary asser-
tion over two states σ and σ′, the state at the point in which
advice obtained control and the state corresponding to the
point when it released it, respectively. Furthermore, MAO
does not provide the proper facilities to combine the spec-
ifications of the base-code and the advice to arrive at the
overall behavior exhibited by the augmented system. Nev-
ertheless, it should be possible to borrow some of MAO’s
ideas to help simplify our formalism.

Dantas and Walker [7] propose “Harmless Advice,” a re-
stricted form of advice that has minimal effects on the base-
code, and develop a type system that enforces such behavior
statically. Harmless advice cannot alter state (with the ex-
ception of I/O) and control-flow that is visible to the base-
code. What is interesting about such advice is that, al-
though highly constrained, it is shown to be quite useful
especially in the domain of security. With the use of rely
clauses, our approach could conceivably be adopted to relax
some of the constraints on harmless advice in order to make
it more “helpful” while maintaining effective local reasoning.
This would allow the base-code developer to explicitly state
on a fine-grained level what kinds of advice behavior he or
she considers “harmless” by means of a less restrictive rely
assertion, and then use JPTs to reason about the overall
effects of the advice applied to the base-code.

Krishnamurthi et al. [23] propose a verification technique
which can, using model-checking [2], modularly verify advice
independent of the base-code. The proposal, given the base-
code represented as a finite-state model, a set of properties
that the augmented system (i.e., the base-code combined
with the aspects) must satisfy, and a set of pointcuts where
potential advice may be applicable, automatically generates
enhanced interfaces which can be used for verifying the ad-



vice when it becomes available. Essentially, the interface
captures the state of the model checking process prior to
advice being added to the system. Goldman and Katz [11]
present a related technique using their MAVEN tool. While
these approaches, as well as the approach presented in this
paper, all employ techniques that do not require repeated
analysis of the entire augmented system each time a de-
veloper adds, removes, or changes advice, there are several
key differences. Firstly, our proposed proof technique relies
on deductive logical reasoning while model-checking entails
a fundamentally different approach in which an abstract
model is exhaustively examined for violations of a certain
property. Furthermore, our approach is centered on com-
bining the specifications of the base-code and that of the
aspects using JPTs in order to assist developers in obtain-
ing the overall behavior of the system. As such, our proposal
does not require a specific property that neither the base-
code nor the augmented system must exhibit.

Devereux [9] also attempts to exploit the similarities be-
tween AOP and concurrent programs. The approach trans-
lates an aspect-oriented program into to an equivalent, low-
level concurrent program in an alternating-time logic for-
malism. The reasoning then is performed on this concur-
rent program using an assume-guarantee paradigm [14]. The
modus operandi is focused on preserving particular proper-
ties of the base-code despite the addition of advice. Our ap-
proach, through the use of JPTs, on the other hand, allows
a developer to reason about the behavior of the base-code
parameterized over any applicable aspect; therefore, reason-
ing about the base-code does not need to be reconstructed
for each property being verified nor a specific property that
the base-code must evince. We are interesting in obtaining
the enriched behavior of the combined system as opposed
to solely verifying the existence of interference freedom [32].
Moreover, transformation from an aspect-oriented program
to a concurrent program may cause the task of reasoning
about the original program to be more difficult. That is, a
change to either the base-code or an aspect could possibly
result in previous reasoning efforts being invalidated. Also,
assume-guarantee reasoning in concurrent programs are nor-
mally leveraged with the acknowledgement that other pro-
cesses may exist in the system. In AOP, nevertheless, as-
pects may not even have been developed yet or may be in-
terchanged between different systems. As such, the proposal
presented in this paper is designed more towards how AOP
is used, especially to the plug-n-play capability inherent to
aspects.

Several approaches [1, 12, 13, 25] attempt to augment
traditional interfaces with various degrees of information re-
garding crosscutting concerns in order to improve reasoning.
In particular, Kiczales and Mezini [22] argue that in the pres-
ence of crosscutting concerns we cannot expect to work with
the standard interfaces provided by a class’ methods and
their behaviors. Instead, we must define a more detailed in-
terface for the class that includes information pertaining to
how the system is intended to be deployed. These aspect-
aware interfaces, which include the various join points at
which advices defined in the aspects are applicable, accom-
pany traditional interfaces, thus adding to their usefulness.

5. FUTURE WORK AND CONCLUSION
Reasoning, specification, and verification of AO programs

indeed presents unique challenges especially as such pro-

grams evolve over time. Constructing an approach general
enough to reason about components subject to the unpre-
dictable frequency of advice applicability poses many ob-
stacles including but not limited to usefulness, complexity,
obliviousness, abstraction, and composition. In this paper,
we have presented our ongoing work in developing such a
technique that attempts to overcome these obstacles in an ef-
fort to enable tractable evolution of AOP. We propose an ap-
proach that is aimed at tailoring specifications of these sys-
tems to their evolutionary plug-n-play nature and enhancing
the expressiveness of constraints made on their constituent
components.

In future work we intend to extend our set of proof rules
to account for many additional AOP mechanisms. We also
intend to define a formal operational model based on the
notion of JPTs and address questions about soundness and
completeness of the rules with respect to that model. One
interesting direction for further work is to investigate multi-
ple aspect instances as provided by the association facilities
(e.g., perInstance) of AspectJ. The close relation between
an aspect instance and an object should be reflected in rea-
soning mechanisms expressing the tight connection between
the object state and the state of the aspect instance. We also
plan to address mechanisms for member introduction and
class hierarchy modifications, possibly utilizing techniques
employed in [27]. Another possible avenue to explore is the
notion of specification weaving as it may help in prevailing
over some of the aforementioned hurdles. Additionally, we
have listed several unresolved issues below in hopes of pro-
voking interested and related discussion.

Execution-join points vs. call-join points: Suppose
we have two classes C and D and there is a call in the body
of C.m() to the method D.m′(). Further suppose there is an
aspect that contains advice that applies (on calls to) D.m′().
When reasoning about what the advice code does, we are
allowed to assume the guar clause given to us as described
in section 3, but how it is exactly derived is not yet clear. It
seems it should solely be from D.m′(). But we discuss how, at
various points in the body of a method, the rely/guar clause
can be assumed (for rely) or must be shown hold (for guar).
That would mean we are referring to C.m(). But the advice
that applies to the call-join point associated with the call
to D.m′() is not concerned with C.m(); it is concerned with
D.m′(). Furthermore, it is not concerned with what happens
inside the body of D.m′() because it is associated with the
call-join point, meaning that the question is only about the
state at the end of D.m′(). Thus, is there a need to consider
the rely/guar clauses in the middle of various methods?

Classes vs. objects. We are supposed to be specifying
classes but we often treat it as if we are dealing with a spe-
cific object with a specific history (of method calls, etc.).
Such an approach makes sense when dealing with processes
in a concurrent language because each process is an actual
run time entity and there is only one instance of a given
process; but there can be any number of instances of a given
class and the approach presented in this paper does not cur-
rently deal with this appropriately.

Heap access. We assume that we can access the states of
all the relevant objects in the system. However, our formal-
ism does not have any provision to ensure that the heap is
properly updated, etc. That is, we are assuming that there is
an operational system “running alongside” that keeps track
of the heap and gives us the states of all the objects when-



ever we need them. This notion conflicts, however, with our
goal of developing an axiomatic reasoning approach. Addi-
tionally, we assume access to the state of the aspects, e.g.,
ap and aq in the rules depicted in Figures 5 and 6. However,
how is the state of the aspect maintained and how can we
access it? This is especially problematic if there are mul-
tiple instances of the class that an aspect applies to, or if
an aspect applies to multiple classes, because each method
applied to each instance of a given class C will, potentially,
trigger the aspects associated with C to execute and have
that state modified. Somehow, we will have to keep track of
this state; essentially, we are treating the aspect state as if it
was part of the “static state” of the class C without having,
in the formalism, any way to deal with such state. And the
situation is, of course, worse for aspects that apply to mul-
tiple classes since then this state becomes part of the static
state of each of these classes.
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