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ABSTRACT
Often, insertion of several aspects into one system is desired
and in that case the problem of interference among the dif-
ferent aspects might arise, even if each aspect individually
woven is correct relative to its specification. In this type
of interference, one aspect can prevent another from having
the required effect on a woven system. Such interference is
defined and specifications of aspects are described. An in-
cremental proof strategy based on model checking pairs of
aspects for a generic model expressing the specifications is
defined. When an aspect is added to a library of noninter-
fering aspects, only its interaction with each of the aspects
from the library needs to be checked. Such checks for each
pair of aspects are proven sufficient to detect interference or
establish interference freedom for any order of application
of any collection of aspects in a library. Implemented exam-
ples of interfering aspects are analyzed and the results are
described, showing the advantage of the incremental strat-
egy over a direct proof in space needed for the model check.
Early analysis and detection of such interference in libraries
of aspects will enable informed choice of the aspects to be
applied, and of the weaving order.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model Checking ; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about
Programs

General Terms
Verification, languages

Keywords
Aspects, interference, model-checking, detection, specifica-
tion
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Aspects have proven useful for a wide variety of tasks, and
aspect languages, such as, e.g., AspectJ [12], have become
increasingly popular. Often reuse of aspects is desired, as
the same concern might arise in many different systems. In
some cases there is more than one aspect we would like to
reuse in multiple systems of similar purpose, and then a
library of reusable aspects is created. This is the case, for
example, in [13], where a library of aspects was created to
implement the ACID properties for transactional objects.

However, use of aspects raises many questions of reliability
and correctness. It is crucial to establish both that each as-
pect individually is correct when woven alone, and also to
consider possible interference among multiple aspects wo-
ven to the same underlying system. This paper considers
the second question, giving a precise definition of semantic
interference among aspects, showing how to detect it, and
how to use examples of interference to modify the aspects or
their specifications. The technique is most appropriate for
establishing usage guidelines for reusable aspects, especially
as libraries of reusable aspects are developed.

We define an incremental proof strategy based on model-
checking that establishes whether there exists a legal under-
lying system in which the aspects interfere. For this strategy,
assume-guarantee specifications of aspects described in Sec-
tion 2 are used to define interference freedom in a way anal-
ogous to interference freedom among processes in shared-
memory systems [16]. In that classic work, interference free-
dom among processes is defined in terms of whether inde-
pendent and local Hoare-logic proofs of correctness for each
parallel process are invalidated by operations from other
processes. The individual proofs that each aspect is cor-
rect when woven alone correspond to the n local proofs of
[16], while the approach in this paper deals with the n2

checks of interference-freedom. A key point, also adapted
here, is that the other processes may change the values of
shared variables, but there is no interference as long as the
independent proofs are not invalidated. The level of inter-
leaving in shared memory systems is much finer than for
aspects: every local assertion about memory values can be
invalidated by another assignment by a different processor.
The fact that aspect advice is only activated at joinpoints
means that less stringent conditions can be used, and that
modular model checking can be used as a proof component.

The work presented here is the first definition of semantic
interference for aspects that uses the specification of the as-



pects as the interference criterion, and applies model check-
ing to detect interference or establish noninterference among
collections of aspects. In our method the interference checks
are performed on pairs of aspects, and the results of these
pairwise checks are shown to be sufficient to determine inter-
ference freedom for all the aspects in the library. However,
as shown in Section 4, to enable such incremental proofs we
have to “pay” by additional incompleteness.

There has been previous work on detecting whether the
pointcuts of aspects match common joinpoints or overlap-
ping introductions [4, 7]. This is important because the
semantics of weaving can be ambiguous at such points, and
be the source of errors. However, as will be shown, aspects
can interfere even if there are no common joinpoints.

Some work has also been done in identifying potential influ-
ence by using dataflow techniques showing that one aspect
changes (or may change) the value of some field or variable
that is used and potentially affects the computation done
by the advice of another aspect [17]. Slicing techniques for
aspects [20, 1, 18] can also be used for such detection. Since
such potential influence is often harmless, many false posi-
tives can result.

Interferences between an aspect and the base program were
discussed in [11]. The reasoning about the influence of the
aspects on the base system is based on the assume-guarantee
paradigm, which is also used in our specifications of aspects.
However, in [11] interactions between aspects are not consid-
ered, and no automated verification procedure is presented.

Verification based on model checking has mainly concerned
the verification of a single aspect relative to an underlying
system. In [14] a modular approach is presented to show
that assertions true of a given underlying system remain
true when an aspect is added. In [5] a modular verification
of an aspect relative to the specifications considered here
is shown. Both of these techniques can be used as compo-
nents in the checking of interference defined here, but the
tool presented in [5] is used in this paper. Other work based
on model checking determines whether the weaving of as-
pect scenarios is done correctly [8], or whether a full woven
system is correct, using annotations that help construct the
(non-modular) proof task for each weaving [10].

2. SPECIFICATIONS OF ASPECTS
A specification of an aspect consists of two parts: its as-
sumption about any system into which it may reasonably
be woven, and its result assertion (also called its guarantee)
about properties of the result of weaving the aspect into any
system satisfying the assumption.

The form of the specification is an instance of the assume-
guarantee paradigm but generalized to relate to global prop-
erties of the system. The assumption of an aspect can in-
clude information on what is expected to be true at join-
points, global invariants of the underlying system, or as-
sumed properties of instances of classes or variables that
may be bound to various parameters of the aspect when it
is woven. (If the assumption states only properties required
from the join-points of the aspect, then it can also be called
the precondition of the aspect, otherwise the term precondi-

tion might be misleading.) The result assertion can include
both new properties added by the aspect, and those prop-
erties of the basic system that are to be maintained in a
system augmented with the aspect. Both parts of aspect
specification are expressed in linear temporal logic.

Note that, as all the desired properties of the join-points
are encapsulated by the assumption, the influence of the
pointcuts on the behavior of the aspect is also hidden in it.

In general, there might be a large number of properties of
the base system that should be maintained by the aspect.
However, due to the analysis presented in [9], many of these
properties do not need to be explicitly mentioned in the
guarantee of the aspect. In that work ( [9]) syntactically
identifiable categories of aspects are presented. For each
category of aspects broad classes of syntactically identifi-
able temporal properties preserved by all the aspects of this
category are identified. Thus for each aspect and for each
temporal property of the base system that should be main-
tained in the woven system as well, it is possible to efficiently
decide whether or not this property should be explicitly in-
cluded in the aspect’s guarantee. Once we have stated, for
example, that all safety properties of the base system are
also true in the woven system, instances of such properties
do not have to be listed in the guarantee. Treating such
properties separately makes specification and verification of
the rest of the properties much easier.

Definition 1. An aspect is correct with respect to its
assume-guarantee specification if, whenever it is woven (by
itself) into a system that satisfies the assumption, the result
will satisfy the guarantee.

The question of determining “interference” between an as-
pect and a base system, i.e., whether or not the aspect
maintains all the desired properties of the base system, and
whether or not the aspect succeeds to ensure its guarantee,
is taken care of in [5] and is out of scope of the current
paper. In this paper we assume that all aspects are cor-
rect with respect to their specifications, and consider only
possible interference among multiple aspects.

3. FORMALIZING SPECIFICATIONS, NON-
INTERFERENCE AND PROOFS

We will first define semantic interference between two as-
pects and present a proof strategy for interference detec-
tion. Then it will be shown that performing these pairwise
checks is enough to determine non-interference between any
collection of aspects.

Given two aspects and their specifications, we can estab-
lish whether they interfere semantically, independently of
any specific underlying system, while we rely on the cor-
rectness of the weaving process of the language in which
the aspects are written. There might be some ambiguity
in the weaving process, for example regarding the order of
weaving aspect advices at a common joinpoint. However,
here we assume a standard weaving strategy consistent with
the aspect language used for implementation. First let us
define system-dependent interference, and then define inter-
ference independent of any underlying system. (Recall that



we assume that each aspect is correct with respect to its
specification.)

Definition 2. Given two correct aspects A and B, and
an underlying system S that satisfies the assumptions of both
A and B, we say that A does not interfere with B with re-
spect to S if the following property holds: Let S′ be a system
obtained from S by first weaving A into S, and then weaving
B into the resulting system. Then in S′ the guarantees of
both A and B hold.

Definition 3. Given two correct aspects A and B, we
say that A does not interfere with B if for every system
S satisfying the assumptions of both A and B, A does not
interfere with B with respect to S.

Notice the non-symmetry in the above definition of non-
interference: if A does not interfere with B, it does not nec-
essarily mean that B does not interfere with A, and vice
versa.

Two aspects are semantically non-interfering if each does
not interfere with the other in terms of Definition 3. Note
that an aspect can change the values of variables used by the
other even if they do not interfere, as long as the correctness
of the specification is unchanged.

Let (PA, RA) be the specification of aspect A, where PA

is the Precondition of A (called the assumption), and RA

- its Result assertion (called the guarantee). In the same
way, let (PB , RB) be the specification of B. Note that P
relates to a system before the aspect has been woven into it,
and R to that system augmented by the aspect, and each
aspect is by itself correct. The correctness of the aspects is
in terms of Definition 1, and it means that we assume that
for every base system that satisfies PA, the result of weaving
A into this system satisfies RA, and for every base system
that satisfies PB , the result of weaving B into this system
satisfies RB . Then for an underlying system S satisfying
both assumptions (PA and PB), we need to prove that both
sequential weavings - that of A before B and that of B before
A - result in a system satisfying both guarantees (RA and
RB).

Definition 4. In general, a set {A1, . . . , An} of aspects
is interference-free if whenever the assumptions P1, . . . , Pn

hold in a system, the augmented system obtained after weav-
ing the aspects in any order satisfies the guarantees R1, . . . , Rn.

Now let us describe non-interference and its proof more for-
mally: The specifications of aspects we consider here are
written in Linear Temporal Logic [15]. They relate to com-
putations, which are sequences of states. (In fact, the defin-
itions also hold for branching temporal logic, but the proof
method does not.) The notation S |= ψ is used to say that
a temporal logic property ψ holds for every computation of
a system S. Similarly, to say that a state predicate p holds
at a state s of S we write s |= p.

To prove that A does not interfere with B, we need to show
that

OKAB = ∀S((S |= PA ∧ PB) → ((S +A) +B |= RA ∧RB))

holds, where by (S+A) we denote the result of weaving A
into S (and by ((S+A)+B) - the result of weaving B into
(S+A)). In the same way, to prove that B does not interfere
with A we need to show

OKBA = ∀S((S |= PA ∧ PB) → ((S +B) +A |= RA ∧RB))

Notice that these are two distinct statements, as in many
cases the result of weaving A before B, (S + A) + B, will
differ from the result of weaving B before A, (S + B) + A,
as the advice of the previously woven aspect may not apply
to the last-woven one. For the same reason both orderings
above might differ from the result of simultaneous, AspectJ-
like, weaving - the relation between them will be discussed
in Section 7. The order of weaving will matter, for example,
in the Composition Filters model [2], and in languages with
dynamic aspects introduction. Moreover, even in AspectJ,
if we first weave A into S and compile the program, and then
weave B into the obtained Java bytecode, we do not get the
same result as if A and B were woven into S at the same
time by the AspectJ weaver.

There exists a way to prove the two above statements -
OKAB and OKBA - directly, that will be described later,
but it has several disadvantages. The following theorem will
enable us to use an incremental step-by-step method:

Theorem 1. Let A and B be two aspects with the spec-
ifications (PA, RA) and (PB , RB) respectively, and assume
that both aspects satisfy their specifications. Then to prove
that A does not interfere with B it is enough to show that
the following statements hold:

KPAB = ∀S((S |= PA ∧ PB) → (S +A |= PB))

(“Keeping the Precondition of B when weaving A before B”)
and

KRAB = ∀S((S |= RA ∧ PB) → (S +B |= RA))

(”Keeping the Result of A when weaving A before B”)

Proof.
In other words, we need to prove that if A and B are correct
aspects, and the KPAB and KRAB statements hold, then A
does not interfere with B. The KPAB statement means that
the weaving of A into a system S satisfying the assumptions
of both aspects does not invalidate the assumption of B.
Such an S, in particular, satisfies the assumption of A. We
know that after weaving A into a system S that satisfies PA,
RA is true, for it is assumed as proven that A satisfies its
specification. Thus together we have that (S+A) will satisfy
not only the assumption of B, but also the guarantee of A,
and the following statement will be true:

KP ′
AB = ∀S((S |= PA ∧ PB) → (S +A |= RA ∧ PB))

KRAB means that weaving B into a system in which the
guarantee of A holds does not invalidate this guarantee. B
also satisfies its specification, so in the same way as for A,
S +B from KRAB satisfies RB , and we have

KR′
AB = ∀S((S |= RA ∧ PB) → (S +B |= RA ∧RB))



Now we can combine KP ′
AB and KR′

AB by substituting
S+A instead of S into KR′

AB . As a result we will obtain
the desired property, OKAB .
Q. E. D.

Symmetrically, to prove that the weaving of A can be per-
formed after the weaving of B we need to show KPBA and
KRBA, which, combined, will imply

OKBA = ∀S((S |= PA ∧ PB) → ((S +B) +A |= RA ∧RB))

Theorem 2. Let A1, . . . , An be aspects with the specifi-
cations (P1, R1), . . . , (Pn, Rn) respectively, and assume all
these aspects satisfy their specifications. Assume also that
for every pair of indices i, j KPi,j and KRi,j are true. Then
the set {A1, . . . , An} is interference-free.

In order to prove the theorem, the following lemma will be
useful:

Lemma 1. For every set of n ≥ 2 aspects {A1, . . . , An}
satisfying their specifications (P1, R1), . . . , (Pn, Rn), if for
every pair of indices i, j KPi,j is true, then for every base
system S such that S |= P1∧. . .∧Pn, the following holds: For
every 0 ≤ k < n, (. . . (S+A1)+ . . .+Ak) |= Pk+1 ∧ . . .∧Pn

(where the case of k = 0 means that no aspects are woven
into the system S).

Proof (Lemma 1).
The proof is by induction on k.
Basis: k = 0. We need to show that S |= P1 ∧ . . . ∧ Pn, but
this statement is one of the premises of the lemma.
Induction step: Assume that for every k such that 0 ≤ k <
m < n the statement holds, and let us prove it for k = m.
Let S be a system such that (S |= P1 ∧ . . . ∧ Pn). Let us
denote the system (. . . (S + A1) + . . . + Am−1) by S′. We
need to show that (S′ + Am) |= Pm+1 ∧ . . . ∧ Pn. From
the premises of the lemma, for every m + 1 ≤ i ≤ n the
KPm,i property holds. Also, from the induction hypothesis,
S′ |= Pm ∧ . . . ∧ Pn, and, in particular, S′ |= Pm ∧ Pi.
Together we have that indeed (S′ + Am) |= Pi for every
m+ 1 ≤ i ≤ n.
Q. E. D.(Lemma 1)

Now let us prove Theorem 2. Let us be given a permutation
(i1, . . . , in) of indices. Without loss of generality, we can call
them (1, . . . , n). (Clarification: We can always permute the
aspects in the library so that for every j, aspect number ij
will stand on the j-th place. Then the order 1, . . . , n on the
permuted library will give the same sequence of aspects as
the order i1, . . . , in on the original one.) We need to prove
that for every base system S, if S |= P1 ∧ . . . ∧ Pn) then
(. . . (S + A1) + . . .+ An) |= R1 ∧ . . . ∧ Rn. The proof is by
induction on n.
Basis: If n = 1, there is only one aspect, A1. Let S be a sys-
tem satisfying P1. The aspect A1 satisfies its specification,
thus the statement (S |= P1) → (S +A1 |= R1) holds.
Induction step: We assume that the statement holds for any
1 ≤ k < m aspects from the n given, and prove it for k = m.
Let us be given a base system S satisfying P1∧ . . .∧Pn. We
will denote by S′ the system (. . . (S+A1)+. . .+Am−1). From

the induction hypothesis we have that S′ |= R1∧ . . .∧Rm−1.
Lemma 1 is applicable here, so we also have that S′ |=
Pm ∧ . . . ∧ Pn. In particular, S′ |= Pm. Thus, as Am

is correct according to its specification, S′ + Am |= Rm.
And for every i 6= m, 1 ≤ i ≤ n, the KRi,m property
holds, thus from the fact that S′ |= Pm ∧ Ri it follows
that indeed S′ + Am |= Ri. Together we get that indeed
(. . . (S +A1) + . . .+Am) |= R1 ∧ . . . ∧Rm.
Q. E. D.

A proof that uses Theorem 1, that is, a proof that shows the
assumption of the second woven aspect and the resulting as-
sertion of the first one are preserved, is called an incremental
proof. A direct proof merely shows that the weaving of the
two aspects achieves both results.

Note that, as opposed to the incremental proofs assumed in
Theorem 2, a direct proof of non-interference among pairs of
aspects does not generalize to weaving of more than two as-
pects: even if aspects A, B, and C are pairwise interference-
free, and are correct relative to their assumptions and guar-
antees, weaving of all three into a system with PA∧PB ∧PC

does not guarantee RA ∧ RB ∧ RC in the resulting system.
For example, S + A might not satisfy PC , and thus, when
B and C are woven, RC might not result (even though just
weaving C would give RC). Thus the incremental method
is essential for showing interference-freedom among groups
of aspects of any size.

In some cases a conflict in the specifications of the aspects
exists, which means that the specifications do not allow some
composition of the aspects. Then for some order of weaving
these aspects will always interfere, regardless of their advice
implementation, as will be seen in Section 5.2. This compo-
sition of the aspects will be called not feasible according to
the following definition:

Definition 5. Given two aspects A and B with specifica-
tions (PA, RA) and (PB , RB) respectively, the composition
of A before B is feasible iff all the following formulas are
satisfiable: PA ∧ PB, RA ∧ PB, RA ∧RB

If a composition of A before B is not feasible, it means that
A has to interfere with B. Thus as a first step in detection
of interference, a feasibility check can be performed - i.e., a
satisfiability check on the appropriate formulas. It is rec-
ommended to perform a feasibility check before starting the
full verification process described below, because this check
is much easier and quicker, and then proceed to the ver-
ification only if the composition of the aspects is feasible.
However, this is not an obligatory stage of the verification
process, because if some contradiction exists, the verifica-
tion method below will also detect interference and provide
a counterexample.

4. PROOF IMPLEMENTATION USING MAVEN
In order to perform a verification without having to con-
sider each possible underlying system, we use and adopt
to our purposes the proof method suggested in [5] and the
MAVEN tool presented there, while also improving MAVEN
and making it more robust. The basic idea of that work, de-
scribed for the verification of a single aspect relative to its



specification, is that a single model can be generated from
the aspect assumption, the pointcut description, and the
advice, and used to model check the result assertion. If
that model check succeeds, the augmented program result-
ing from the weaving of the aspect to any underlying system
satisfying the aspect assumption is guaranteed to satisfy the
result assertion of the aspect.

The single model to be checked is built from the tableau
(state machine) that corresponds to the linear temporal logic
assertion of the aspect assumption. This tableau is a generic
model for all the systems satisfying the assumption of the
aspect, and the state machine fragments that correspond
to the advice are woven according to the pointcut descrip-
tions. The tableau contains all the possible behaviors of the
base systems into which the aspect can be woven. In other
words, for any given underlying system that satisfies the as-
sumption of the aspect, for every computation of this system
there is a corresponding computation of the tableau, satisfy-
ing the same LTL properties. In [5] it is shown that the same
holds for the woven systems: if the system S1 results from
weaving the aspect into some appropriate base system, and
the system S2 is the result of weaving the aspect into the
tableau, then for every computation of S1 there exists a cor-
responding computation of S2. The properties we check are
LTL properties, and an LTL property holds in a system iff
each computation of this system, taken alone, satisfies this
property. So if there exists a “bad” base system S such that
S satisfies the assumption of the aspect, but the resulting
assertion of the aspect is violated when it is woven into S, it
means that there exists a “bad” computation in the woven
system, violating the guarantee of the aspect, and for this
bad computation there exists a corresponding bad computa-
tion in the (tableau + aspect) state machine. It follows that
indeed it is enough to model-check the resulting assertion of
the aspect on the (tableau+aspect) system only.

The state-machine fragments corresponding to the advice
can be obtained from high-level code, e.g. in AspectJ or
Java, using existing tools, such as Bandera [6]. Alterna-
tively, the state machines can be created at earlier stages of
the programming cycle to serve as abstract models of aspects
during their design, before code is generated. Note that the
aspect can consist of multiple pointcuts and advices, but not
only the correctness of theorems 1 and 2 from Section 3 is
not invalidated in this case, but this case is also supported
by the implementation of the proof method presented be-
low. However, if such complicated aspects do interfere, the
diagnosis of the interference cause would be more efficient
if the aspects were split into simpler ones, each with one
advice only - if such a splitting is possible.

In order to use the MAVEN tool, we have to pose one re-
striction on the aspects: they should both be of the weakly
invasive category, as defined in [9]. An aspect is weakly
invasive if whenever its advice completes its execution, the
resulting state, when the local variables and private objects
of the aspect are ignored, already existed in the original un-
derlying system. Notice that the advice can change state
variables of the underlying system during its execution, and
that local aspect variables can be modified with no restric-
tion. The restriction to weakly invasive aspects is not a
strong one, as most aspects fall into this category, including

all of our examples. When an aspect is not weakly invasive,
it may return control to the basic system in a state that was
not previously reachable, and thus the effect of the base sys-
tem’s code is not limited by the assumption. The restriction
on the aspects is not necessary theoretically: our statements
are sound for all types of aspects. As MAVEN improves, or
other verification tools for aspects become available, this re-
striction may become unnecessary.

Note also that a verification using MAVEN is relative to the
standard weaving strategy built into that tool. Again, this
is not inherent to our approach.

In order to use MAVEN as a subsystem for our technique,
it was extended in several ways. Most significantly, - now
it is possible to automatically determine whether the aspect
verified is weakly invasive. In the first version of MAVEN the
given aspect could be woven only into a tableau built from
its assumption, while now it is possible to weave an aspect
into an arbitrary transition system (in the NuSMV format).
It also now allows initializing aspect variables globally, and
preserving aspect values between activations of advice.

In our context, to show that A does not interfere with B,
we will use the incremental method. The verification can be
preceded by a feasibility check of the composition of aspects.
The verification process, based on Theorem 1 and using the
improved MAVEN tool, will be as follows:

1. To prove KPAB , build a tableau that corresponds to
the conjunction of the assumptions of the aspects, PA∧
PB , weave the advice of A and show that the assump-
tion of B, PB , is true of the result.

2. In order to prove KRAB , a tableau that corresponds
to the conjunction of the assumption of B and the
guarantee of A, RA ∧ PB , is built. Then after the
advice of B is woven in, show that the guarantee of A,
RA, still holds for the result.

The proof that B does not interfere with A is symmetric.
When we prove non-interference in both directions, although
there are four steps of verification, we need to build only
three different tableaus: one for the proofs of KPAB and
KPBA, and the other two - for the proofs of KRAB and
KRBA, respectively.

The above method is sound, due to Theorems 1 and 2, but
not complete. There are two cases when the OKAB check
fails though the aspects do not interfere (the case of OKBA

is, of course, symmetric): The first case is a failure due
to the incompleteness of the model-checking itself. If the
model we are model-checking is infinite, or finite but too
large, the model-checking will collapse without providing
any answer. So, as always when model-checking is used,
the models and the verified properties should be described
at a sufficient level of abstraction. The second case is when
the specification of some aspect is not the most general pos-
sible. Then there are two possibilities for failure - one arises
when the assumption of aspect B, PB , is not the weakest
possible, and the other - when the guarantee of A, RA, is
not the strongest possible. In the first case, as PB is not



the weakest possible, it might happen that aspect A does
not preserve the assumption of aspect B, but assures some
other property, P ′

B , that is enough for aspect B to oper-
ate correctly. Then the KPAB check fails, but the OKAB

is true. In this case, if PB was the weakest possible (i.e.,
such that (S |= ¬PB) → (S + B |= ¬RB)), this possibil-
ity of interference would be eliminated. In the second case,
symmetrically, it might happen that we can not prove that
aspect B preserves the guarantee of A, because the assump-
tion RA ∧ PB is not strong enough to ensure RA after B is
woven, but the OKAB property is true because A guaran-
tees a stronger statement, R′

A, and with this assumption B
is able to preserve RA (for every system S, if S |= R′

A ∧PB ,
then S+B |= RA). Notice some non-symmetry in the above
statement - we have to assume R′

A, but can guarantee only
RA, because that is the property proven by the successful
OKAB check. In fact, by demanding that aspect B will pre-
serve RA when woven into any system that satisfies RA∧PB ,
we pose too strong a restriction, because we are interested
in this statement only for base systems in which aspect A
is present. This is an additional source of incompleteness in
this case.

One could try to eliminate the second cause of incomplete-
ness by verifying the OKAB statement directly: Build a
tableau that corresponds to the conjunction of the assump-
tions of the aspects, PA ∧ PB , weave the advice of A into
the above tableau, and then weave the advice of B into
the resulting state machine. Then verify both guarantees,
RA∧RB , on the result. However, as we saw before, the direct
method can not be generalized to more than two aspects.
Moreover, even if we are interested only in detecting inter-
ference between two aspects, the analysis below shows that
the space complexity of the direct method is higher than that
of the incremental one, and thus the model-checker might
fail to perform the direct verification, while succeeding to
perform the incremental one.

For the complexity analysis, we assume, for convenience
of presentation, that all the specifications are of (approx-
imately) the same size, and all the advice machines are of
(approximately) the same size as well. Given two aspects,
A and B, with the specifications (PA, RA) and (PB , RB) re-
spectively, we denote by r the maximal length of a formula
from the aspect specifications (max(|PA|, |RA|, |PB |, |RB |)),
and by M - the maximal size of the advice model of the
aspects (max(|MA|, |MB |)).

Lemma 2. The space complexity of the incremental method
is O(23r ·M).

Proof.
The size of the tableau built from an LTL formula of length
k is O(2k) (as shown in [3]). In our case the tableau is
always built from two properties, so the size of the tableau
is O(22r), and the size of the woven system on which the
resulting assertion is model-checked is O(22r ·M). When a
formula of size k is verified on a model of size m, the space
complexity of the model checking is O(m · 2k) ( [3]). In our
case, m = O(22r ·M) and k = r, so the altogether space
complexity is O(22r ·M · 2r) = O(23r ·M).
Q. E. D.

Lemma 3. The space complexity of the direct method is
O(24r ·M2).

Proof.
Here first the assumptions tableau is built from the two
assumptions of the aspects, and its size is O(22r). Then
two advice models are woven into it, one after another, so
the size of the woven system is O(22r · M2) (M2 appears
here because there might be join-points of the second as-
pect inside the advice machine of the first). The property
verified on this woven system is the conjunction of the two
resulting assertions of the aspects, so the property size is
O(22r). Together we have that the space complexity is
O(22r ·M2 · 22r) = O(24r ·M2).
Q. E. D.

5. EXAMPLES
5.1 Encrypting Passwords
In this example we discuss two reusable aspects, E and F,
that may appear in a security-aspects library and might be
used in a password-protected system. An example of such
a system can be the internet terminals of a bank, providing
the possibility of viewing and/or updating the user’s account
via the internet.

Aspect E is responsible for encrypting the passwords before
sending.The joinpoint E advises is the moment when the
password-containing message is to be sent from the login
screen. E’s advice is a “before” advice, that encrypts the
message. E should guarantee that each time a password is
sent, it is encrypted, and the assumption of E might be that
password-containing messages are sent only from the login
screen in the base system. In fact, there is more to E: each
time a password is received, it is be decrypted. But this
part is irrelevant to our example, so we’ll ignore it here. A
possible specification for E can thus be that E assumes that
password-containing messages are sent only from the login
screen in the base system, and guarantees that each time a
password is sent, it is encrypted. More formally it can be
written as follows:

PE = G(psw_send↔ login_psw_send)

and

RE = G(psw_send→ encrypted_psw)

where the predicate psw_send means that a message con-
taining a password is being sent, and login_psw_sendmeans
that the password is being sent from the login screen. The
assumption of the aspect might seem arbitrary, but this
choice was guided by a possible implementation of the as-
pect. It might be the case that the aspect is unable to iden-
tify password-containing messages from the message content
only, and then the pointcut could be defined as the creation
of a message containing information from some specific field
of the graphic user interface. Note that the aspect is generic
(to enable reuse), and thus the field from which the infor-
mation is taken should be a parameter bound to the aspect
when adding the aspect to a concrete system.

Aspect F is responsible for treating a situation when the user
forgets the password. Usually in password-guarded systems
there is a way of retrieving your password once you forget



it. F provides a list of security questions to the user, and
if the questions are answered correctly, F guarantees that
the user will get his password via an e-mail. In order to
add this functionality to the system, F should add some in-
troductory operation. For example, a new button - “Forgot
my password” - can be added to the system so that we can
define the pointcut of F as the moment when this button is
pressed. F’s advice then provides the dialog with questions,
checks the answers and in case all the answers are correct
- sends an e-mail to the user. The button is added by F
itself, thus one of the possible ways to specify F is to say
that F assumes nothing about the system (because F itself
adds to the system the possibility to report forgetting the
password), and guarantees that whenever the security check
is passed, the forgotten password will be sent to the user
(and if the check is never passed, the password remains for-
gotten forever as it was in the base system). More formally,
F’s assumption is

PF = true

And F’s guarantee is

RF = [G((button_pressed∧quest_answered) → F (psw_send)))]

where button_pressed is the flag that means forgetting the
password has been reported and not yet treated.

Let us check the possibility of sequential weavings. F’s as-
sumption is true, thus E can not violate it. Thus in order
to check the possibility of weaving F after E, we need to
prove only that the weaving of F maintains the guarantee of
E (the KREF statement):
∀S((S |= G(psw_send → encrypted_psw)) →
(S + F |= G(psw_send → encrypted_psw )))
This statement seems to be reasonable, and the feasibility
check succeeds, but the advice of aspect F is implemented in
such a way that the password sent from it is not encrypted.
Thus when trying to verify the KREF statement, a coun-
terexample is obtained. It is a computation in which at some
state s1 the predicate button_pressed became true, and at
the same time the predicate encrypted_psw was false. Two
states after that, at a state s2, due to the operation of the as-
pect F, quest_answered became true (while button_pressed
was still true), and in the next state, s3, psw_send be-
came true. But F does not encrypt the passwords, thus
encrypted_psw was still false at s3, contradicting the impli-
cation in RE , so the verification failed.

In order to check the possibility of weaving E after F, we
need to prove that the weaving of F to a system satisfying
both assumptions maintains the assumption of E (theKPFE

statement):
∀S((S |= G(psw_send↔ login_psw_send) ∧ (true)) →
(S + F |= G(psw_send↔ login_psw_send))).
However, the implementation of the advice of F leads to
violation of the assumption of E, because F does not send
the password from the login screen. Note that in this case,
again, there is no contradiction in the specifications of E and
F, so the feasibility check succeeds, and the interference is
detected during the verification only.

Two remarks about the example: (1) If E and F were the
only two aspects existing in the library, it would be very
easy to detect the interference just by looking at the library,

but, as already noted, in real life many different aspects are
added to systems and libraries by different groups of people,
and an automated solution is needed. (2) In this example we
see that the conflicting aspects do not share any joinpoints,
and the interference doesn’t emerge from updating common
variables.

A variant of this example, both as Java code and abstract
models, is presented at http://www.cs.technion.ac.il/

ssdl/pub/SemanticInterference/

It includes the input for verification by the indirect method,
checking whether E interferes with F, including aspect de-
scriptions in the NuSMV format, and appropriate LTL as-
sertions (the KPEF stage is not interesting in our case, so
only the KREF stage is presented), and the output of the
verification - the counterexample provided by NuSMV. Some
statistics for this variant, comparing the verification by in-
direct and by the direct method, appear in Figure 1. |M.|
means the model size and is measured by the number of
BDD nodes in the model, and |Ex.| means the number of
states in the counterexample found (0 means the result of
verification was true). These statistics show the additional
disadvantage of the direct method: not only is this method
applicable only for the case of two aspects, but also the mod-
els it creates for verification of two aspects interference are
much bigger than those created by the incremental method.
In average for this example the models created by the direct
method are more than 4 times bigger than those created by
the incremental, and the maximal ratio of model sizes for
this example is almost 7.

Remark: as a result of verification of KPFE , a counterex-
ample was obtained. Thus it would be possible to stop
the verification at this stage and try to amend the aspects
and/or their specifications before continuing to verification
of KRFE .

Direct method Incremental method
Check |M | |Ex| Check |M | |Ex|
OKEF 7778 18 KPEF 1127 0

KREF 1283 12
OKFE 8700 18 KPFE 2375 12

KRFE 2450 0

Figure 1: Security example statistics

5.2 ATM Communication and Card Theft
In this example we consider two aspects that can be used
in a system with remote authorized access. They are most
useful for systems in which each user can have only one open
session at a time. The first aspect (aspect C below) treats
communication failures in the system, that occurred dur-
ing authorization process or while some authorized user was
logged in. Its goal is to assure that the user will be able to
log in again after the communication is restored. The second
aspect (aspect T) prevents identity-theft: for example, if a
wrong password is provided in several consequent attempts
of logging in, the aspect guarantees that the user is blocked.
One possible system in which these aspects might be used
is an ATM system of a bank, consisting of several ATM ma-
chines and a server. The user interacts with this system by
first inserting a card and code, and then, if permission is



granted, entering a request for some bank operation (money
withdrawal, or account balance check).The ATM machine
communicates with the server to process user requests, and
the server grants or denies permission to perform operations,
and processes the operations permitted. From the point of
view of the aspects, the card serves as a user-login, and code
- as a password. To make the example more intuitive, all the
descriptions below are written in terms of the ATM system
(note that the aspects are still general and reusable, even
after this concretization, because many different implemen-
tations of the above-described ATM system are possible). A
more detailed description of the aspects is as follows:

Aspect C (for Communication) is responsible for treating
communication failure between the server and an ATM ma-
chine. In case of communication failure, the aspect checks
whether there is a card stuck in the ATM machine, and re-
turns it to the user. One of the reasonable specifications of
C is: C assumes that the only case when a card can get stuck
in a machine is when a communication failure occurred while
the card was in the machine. In such a case C guarantees
that a card is never stuck in a machine forever. Formally,

PC = G(card_in→ F (¬card_in ∨ comm_fail))

(which means that if a card was inserted, either it will be
eventually returned, or a communication failure - indicated
by comm_fail predicate - will happen), and

RC = G(card_in→ F (¬card_in))

(which means that if a card was inserted, it will eventu-
ally be returned). Note that the comm_fail predicate does
not necessarily represent a general communication failure in
the whole system. Our abstraction here is that the flags
comm_fail and card_in relate to a communication failure
and card status at a particular ATM.

Another aspect, T (for Theft), comes to prevent card-theft.
A possible specification is: T assumes that there exists a
possibility to detect that the card is stolen, and if the card
is stolen it will remain stolen forever. T ensures that such a
card will never return to the user. Formally,

PT = G(card_stolen→ G(card_stolen))

and

RT = G((card_in ∧ card_stolen) → G(card_in))

Let us examine the possibility of sequential weaving of T
after C. One of the statements we need to show is that T
does not violate the guarantee of C,KRCT :
∀S((S |= (G(card_in → F (¬card_in))∧ (card_stolen →
G(card_stolen))))→ (S+T |= G(card_in→ F (¬card_in)))).
There is a contradiction in the requirement from S+T : On
one hand, we require RC , that says that an inserted card will
eventually be returned in every case. On the other hand, T
satisfies its specification, and PT was true in S, thus RT

should be true in S + T . By that we require that in some
special case (that of a stolen card) the card will never be
returned, which contradicts our first requirement (which is
the RC assertion). This contradiction is found when the
RC assertion is model-checked on the Tab+T system, built
by weaving T into the tableau Tab of RC ∧ PT . Thus it is

impossible to weave T after C, at least not with such a spec-
ification. Note that in this case the feasibility check is also
able to detect interference, because there is a contradiction
between RC and RT . Similarly, we will find a contradiction
and counterexample to the weaving of C after T.

Verification statistics for this variant, comparing the verifi-
cation by indirect and by the direct method, appear in Fig-
ure 2. Note that here, as in the previous example, the model
sizes of the incremental method are much smaller than those
of the direct (about 1

3
of their size).

Direct method Incremental method
Check |M | |Ex| Check |M | |Ex|
OKCT 3154 8 KPCT 1038 0

KRCT 776 8
OKTC 3045 5 KPTC 1028 8

KRTC 1098 11

Figure 2: ATM example statistics

6. ERROR ANALYSIS
When interference has been detected between two aspects,
the cause of the verification failure should be localized -
which property was violated, and which advice is “guilty”.
The verification process is divided into stages, making the
localization straightforward: if we fail to prove the OKAB

and there is a problem in violating the assumption of B, the
proof of KPAB will fail, and if the advice of B violates the
guarantee of A, the failure will occur in the proof of KRAB .

After the cause of the failure is localized, one needs to decide
on what steps should be taken next. In many cases there is
a need to add the functionality of both aspects to the base
system, in spite of the interference detected between them.
There are several possible ways to handle this problem, de-
pending on the type of the interference detected, and the
results of the feasibility check (thus it is recommended to
perform the feasibility check of the specifications as a first
step of error analysis in case an interference is detected).
One should then decide whether to change the advice of one
of the aspects (or both), and whether the specification of the
aspects should be refined. For the examples from Section 5,
the way to interference elimination might be as follows:

For the example in Section 5.2, the weaving of C before T
appears to be non-feasible, thus the first step to elimination
of the interference is to try and refine the specification of the
aspects in such a way that the composition becomes feasible.
And indeed, there is a possibility of such a refinement: if
we knew of the possibility of stealing the card, or, more
generally, of special events other than communication failure
that can cause the card to be stuck, we could update the
guarantee of C to treat these events: RC = G((card_in) →
F (special_event∨¬card_in)), and then add (card_stolen→
special_event) to PT . Then C would not interfere with T.
Note that if such a refinement is possible, it means that the
specification provided by the user for one of the aspects (or,
maybe, for both) was too strong.

For the example in Section 5.1, on the other hand, aspect
F interferes with E, though the composition of E after F is



feasible. In this example it is impossible to eliminate the in-
terference by changing only the specification of the aspects,
and a change in one advice, or in both, is necessary. For
instance, we can change the advice of F to bring the user
to a version of the login screen where the password can be
changed, instead of sending the e-mail with the password. In
this case, if E is woven after F, the password-sending opera-
tion of F is done by the user as another login-password send
and thus will be a legal joinpoint of E. Therefore the advice
of E will be performed and no password will be sent unen-
crypted. More formally: the specification of F can stay the
same, but as a result of the change in the advice, whenever
psw_send is true, so is login_psw_send. Aspect E and its
specification will stay as before. Now the verification will be
of F’s new code relative to the specifications, so that KPFE

and KRFE now will hold. This means that the sequential
weaving of first F and then E is possible. Notice, however,
that weaving first E and then F would still be problematic.

7. JOINT WEAVING
The above discussion treated only sequential weaving. Let
us now consider the case of simultaneous weaving. Such a
weaving at every point of the program decides whether to
apply A, or B, or both, and in which order (as opposed to
sequential weaving, where the possibility of inserting only
one aspect at a time is checked). One approach is to re-
duce joint weaving to sequential weaving, whenever possi-
ble. Then given aspects A and B, we would like to check
whether weaving both A and B together into some base sys-
tem is equivalent to one of the sequential weavings (A after
B or B after A) into the same base system. If A and B
have a common join-point, then the ordering of application
may not be well defined, and this is well-known to create
possible ambiguity. The lemmas below assume no common
join-points, because some of the alternative semantic mean-
ings violate the lemmas.

The following definitions will be useful to us:

Definition 6. Let S be a system, and A and B - two
aspects. Let us denote by J the set of all the joinpoints that
are matched by B in S, and by J ′ - the set of all the joinpoints
that are matched by B in (S+A). We say that A creates a
joinpoint matched by B if there exists a joinpoint j1 ∈ J ′

such that j1 is not in J (that is, J ′ is not included in J).
We also say that A removes a joinpoint of B if there exists
a joinpoint j2 ∈ J such that j2 is not in J ′ (that is, J is not
included in J ′)).

Thus if A does not create or remove joinpoints matched by
B, it means that the joinpoints matched by B in the original
system S are exactly the same as in (S+A) - the system
obtained by weaving A into S.

The following lemma shows that if weaving aspect B into a
base system does not affect join-points of A (i.e, the join-
points of A in the woven system are the same as in the base
one), and the symmetric statement holds - weaving aspect
A into a base system does not affect join-points of B - then
the order of weaving of the aspects “does not matter” for
the final result:

Lemma 4. Let S be a system such that there is no join-
point in S matched by both A and B, and they do not create
or remove joinpoints matched by each other. Then the si-
multaneous weaving of A and B into S (S+(A,B)) is equiv-
alent to both sequential weavings: of A before B ((S+A)+B)
and of B before A ((S+B)+A). That is, the weaving is both
associative and commutative.

It is also not difficult to treat the possibility of adding join-
points of the second woven aspect in the advice code of the
first, as seen in the following lemma.

Lemma 5. Let S be a system such that there is no join-
point in S matched by both A and B, and B does not create or
remove joinpoints matched by A. Let it be possible for A to
create joinpoints matched by B, but only inside its (A’s) own
advice and without removing joinpoints matched by B. Then
the simultaneous weaving of A and B into S (S+(A,B)) is
equivalent to weaving A before B ((S+A)+B). That is, the
weaving is associative, but not necessarily commutative.

The proofs of the lemmas appear at the same site as the
example. In order to check that the above lemmas can be
applied, we need to establish that A and B do not match
common joinpoints. For that purpose existing tools men-
tioned in Section 1 can be used ( [4, 7]).

8. CONCLUSIONS
In this paper we have defined semantic interference among
aspects relative to their specifications and shown an effective
way to detect interference or prove interference-freedom of
multiple aspects in a library.

The interference-detection method is modular: the library of
aspects is checked independently of any base system. Thus
when the user would like to weave multiple aspects from the
library into some base system, the only check that should be
performed is that the base system satisfies the assumptions
of all the aspects that will be added to it.

The result of the verification process is not a “yes” or “no”
answer, stating whether or not the current library is interference-
free: the results of the verification are more informative. For
each aspect we know with which aspects it does not inter-
fere, and also for every aspect with which an interference
exists, we know what is the cause of the interference, and in
which order of weaving it occurs. All this information can
serve as usage guidelines for the developers who would like
to use aspects from the verified library. In case the library
as a whole is not interference-free, a developer might chose
some interference-free subset of the library (recall that pair-
wise interference-freedom of the aspects in any set is enough
to guarantee interference-freedom of the set as a whole), or
decide on an appropriate weaving order of the aspects to
prevent interference.

There already exist libraries of reusable aspects. One of
them - a library implementing ACID properties for trans-
actional objects - is described in [13], and different kinds
of interference among the aspects from this library are men-
tioned there. As future work we would like to apply our ver-
ification method to detect interference among aspects from



that library, and analyze the different types of interference
described in that paper.

Currently we have started to work on an aspect case study
demonstrator of the AOSD-EUROPE project, based on the
Toll System [19] written by the Siemens company: a system
designed for computing fees and charging the drivers for the
use of toll roads. The goals of the case study are formal-
ization and verification of aspects from the Toll System and
include detection of possible interference among them. As
one example, we have discovered and are analyzing inter-
ference between an aspect to impose fines and an aspect to
give discounts on the use of the toll road.

This paper deals with interferences between the aspects, but
the formalization and proof methods it provides can be eas-
ily extended to treat some other types of aspect interactions
that can be formalized and checked by similar means. For
example, aspects may work cooperatively when one aspect
is dependent on another to establish its assumption and can-
not be woven into a system unless that other aspect is also
there.
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