
Certificate translation for specification-preserving advices

Gilles Barthe
INRIA Sophia-Antipolis

Gilles.Barthe@inria.fr

César Kunz
INRIA Sophia-Antipolis
Cesar.Kunz@inria.fr

ABSTRACT
Aspect Oriented Programming (AOP) has significant poten-
tial to separate functionality and cross-cutting concerns. In
particular, AOP supports an incremental development pro-
cess, in which the expected functionality is provided by a
baseline program, that is successively refined, possibly by
third parties, with aspects that improve non-functional con-
cerns, such as efficiency and security. Therefore, AOP is a
natural enabler for Proof Carrying Code (PCC) scenarios.

The purpose of this article is to explore a PCC architec-
ture that accommodates an incremental development pro-
cess. We extend our earlier work on certificate translation,
and show in the context of a very simple AOP language
that it is possible to generate certificates of executable code
from proofs of aspect-oriented programs. To achieve this
goal, we introduce a notion of specification-preserving ad-
vice, and provide a verification method for programs with
specification-preserving advices.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Logics of programs

General Terms
Languages, Verification, Security

Keywords
AOP, Proof-carrying Code, Program Verification

1. INTRODUCTION
While reliability and security of executable code is an

important concern, many program verification tools target
high-level languages, and thus do not address the concerns of
the code consumers, who require verification procedures that
can be run on executable code and that dispense them from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Seventh International Workshop on Foundations of Aspect-Oriented Lan-
guages (FOAL 2008), April 1, 2008, Brussels, Belgium.
Copyright 2008 ACM ISBN 978-1-60558-110-1/08/0004 ...$5.00.

trusting code producers (that are potentially malicious), net-
works (that may be controlled by an attacker), and compilers
(that may be buggy).

In a Proof Carrying Code (PCC) [20, 19] architecture, a
certifying compiler returns, in addition to executable code,
program annotations, which specify program invariants tai-
lored to the desired policy, and a checkable proof, a.k.a. cer-
tificate, that the code is compliant to the policy. Through
its associated verification mechanisms for executable code,
PCC addresses the security concerns for mobile code. Nev-
ertheless, current instances of certifying compilers mostly
focus on basic safety policies and do not take advantage of
the existing methods for verifying source code.

In order to overcome the limitations of certifying compil-
ers, earlier work [6, 5, 7, 18] has considered expressive verifi-
cation methods for executable code and established their
adequacy with respect to verification methods for source
programs. In particular, Burdy and Pavlova [7] have de-
veloped a proof compiler for Java, that enables certificates
of Java bytecode programs to be constructed from source
code verification with JML-based tools such as ESC/Java
and Jack.

Proof compilation is an important step towards support-
ing expressive policies since proof compilers allow certificate
generation to rely on widely used verification environments,
and thus enables to address expressive policies (at the cost
of interactive verification). Nevertheless, proof compilation
currently targets Java programs and does not provide sup-
port for advanced programming idioms such as aspects.

Contributions. The main contribution of this work is to
study proof compilation for a very simple AOP language.

In order to realize proof compilation, we introduce the
notion of specification-preserving advice. Informally, an ad-
vice a is specification-preserving for an annotated piece of
code {Φ}c{Ψ}, where Φ and Ψ respectively denote the pre
and postcondition for c, if the advised code a.c satisfies the
same specification, i.e. {Φ}a.c{Ψ}. Specification-preserving
advices are natural in the context of PCC with intermedi-
aries, since many aspects related to security (resource man-
agement, logging, etc.) and efficiency (e.g. cached func-
tions, optimized code,etc.) fall in this category. Moreover,
specification-preserving advices support “separate verifica-
tion” (as coined by [16]) and allow intermediaries to treat
correctness proofs of the baseline code as black-boxes.

In summary, the contributions of this article are:

• the definition of the class of specification-preserving
advices that support modular reasoning, and a mild

generalization of the classification of specification-preserving
advices to sequences of advices;

• the relationship between specification-preserving ad-
vices and harmless advices [11], which are required
to verify the stronger property of preserving the se-
mantics of advised code, except for the possibility of
modifying the termination behavior. Inspired by this
relationship, we provide a simple static analysis that
ensures that advices are specification-preserving;

• an algorithm that takes as input an AOP program p
and a certificate c of its correctness, and returns a cer-
tificate for the compiled program JpK.

• a mild generalization of the classification of specification-
preserving advices to sequences of advices.

2. A BASIC MOTIVATING EXAMPLE
Consider the program p with a procedure main and an-

other procedure twice advised unconditionally by a:

main(x) = y := twice(x); z := y + x; return z
twice(x) = return (x + x)

a(x) = x := 0; z := proceed(x); return z

The correctness of the program is established w.r.t. a spec-
ification table Γ that associates to each procedure a triple
consisting of a precondition, a postcondition, and a modifies
clause that states which variables are modified. We choose
the obvious specifications for main and twice, i.e.

Γ(main) = (true, res = x? + x? + x?, ∅)
Γ(twice) = (true, res = x? + x?, ∅)

(We consider that the variables y and z are local variables,
and thus are not declared in the modified clauses).

One can generate for each procedure a verification condi-
tion that guarantees, in a traditional setting, that the pro-
cedure meets its specification. Both verification conditions
hold obviously. Nevertheless all terminating executions of
the program will simply return the value given as input,
and thus the postcondition will not be satisfied if main is
called with an input distinct from 0. In this case, the prob-
lem is caused by the fact that a forces twice to be executed
with input 0. In other words, a is not parameter-preserving,
i.e. causes f to be called with an input different from the
one that is declared in the program.

A similar problem shall occur if an advice modifies a global
variable that is otherwise unmodified by the procedures it
advises. More generally, advices should, in addition to be
parameter-preserving, preserve specifications. Consider the
modified advice a(x):

(if x = 0 then z := proceed(x) else z := 0); return z

As in the previous case, the postcondition will not be sat-
isfied if main is called with an input distinct from 0. The
problem is caused by the fact that a is not specification-
preserving. Indeed, consider the function â derived from a
by replacing the proceed statement by a call to f :

â(x) = (if x = 0 then z := twice(x) else z := 0);
return z

One cannot prove that the procedure â satisfies the speci-
fication of twice, since the proof obligation for â with the

Commands c ::= v:=e | c; c | v:=f(e)
| v:= proceed(e)
| if b then c else c
| while b do c
| skip | return e

Procedures proc ::= f arg∗ cb

Point-cut descriptors ptd ::= if b around f
Advices advice ::= ptd+ a arg∗ ca

Programs Prog ::= proc∗ advice∗

Figure 1: Syntax of SAL programs

same pre and postcondition as twice is logically equivalent
to x = 0 ⇒ x + x = x + x ∧ x 6= 0 ⇒ 0 = x + x which does
not hold.

Now consider instead the correct advice a(x):

(if x 6= 0 then z := proceed(x) else z := 0); return z

The function â(x) derived from a(x) by replacing the pro-
ceed statement by a call to f :

(if x 6= 0 then z := twice(x) else z := 0); return z

is specification-preserving, since the proof obligation for â
with with the same pre and postcondition as twice is logically
equivalent to

x 6= 0 ⇒ x + x = x + x ∧ x = 0 ⇒ 0 = x + x

and it is thus valid. Note that the proof obligations for â
relies on the specification of twice, but not on its code.

3. A SIMPLE AOP LANGUAGE
This section introduces SAL, a simple procedural language

with aspects. For simplicity, SAL is restricted to around
advices, to point-cuts at procedure calls, and to point-cut
descriptors that do not refer to the control-flow graph.

3.1 Syntax
The syntax of commands can be found in Figure 1, where

v ranges over the sets V of local variables and X of global
variables, arg ranges over local variables, f ranges over the
set F of procedure names, and a ranges over the set A of
advice names. A baseline command is a command that does
not contain any proceed command. We let cb and ca range
respectively over baseline and advice commands.

Point-cut descriptors are of the form if b around f , where
b is a boolean condition and f is a procedure name. Then,
each procedure is composed of an identifier, its formal pa-
rameters and a command that represents its body. Each
advice is composed of an identifier from a set A of advice
names, a non-empty set of point-cut descriptors, its formal
parameters, and an extended command that represents its
body. A program is a given by a set of procedures with a
distinguished main procedure and a set of advices.

3.2 Semantics
Advice weaving, which enables aspects to influence the ex-

ecution of programs at designated program points and under
certain conditions, is the fundamental mechanism that de-
termines the semantics of AOP programs. Thus, the essence
of SAL programs is captured by the transition rules for the
commands call and proceed, which are described informally
below. For simplicity, we restrict our attention to procedures

Logical expressions ē ::= res | x? | x | c | ē op ē
Propositions φ ::= ē cmp ē | ¬φ | φ ∧ φ

| φ ∨ φ | φ ⇒ φ | . . .

Figure 2: Specification language

and advices with a single formal parameter. The semantics
of all remaining constructs is defined in the usual way.

Upon reaching a call statement of the form v:=f(e), one
checks in the order prescribed by the declaration of advices
whether the guard of a point-cut descriptor for f is satisfied.
If there is no point-cut descriptor for f such that the guard
is satisfied, then one starts a new execution frame, initializes
the local variable par with the value of e, and executes the
body of f ; otherwise, if a is the first advice for f whose guard
is satisfied, then one starts a new execution frame, initializes
the local variable par with the value of e, and executes the
body of a.

Upon reaching a statement of the form v:= proceed(e),
one must examine the call stack to determine the current
procedure, say f , and the current advice, say a. Then one
checks for all advices that occur after a in the declaration
of advices whether the guard of a point-cut descriptor for
f is satisfied. If there is no point-cut descriptor for f such
that the guard is satisfied, then one starts a new execution
frame, initializes the local variable par with the value of
e, and executes the body of f ; otherwise, if a′ is the first
advice for f whose guard is satisfied, then one starts a new
execution frame, initializes the local variable par with the
value of e, and executes the body of a′.

Under such a semantics, the body of f will not be exe-
cuted whenever a procedure call to f , say v:=f(e), triggers
an advice that does not contain any proceed statement, or
contains a proceed statement that is not reached during ex-
ecution. Furthermore, if an advice contains two or more
proceed statements, then execution will stop upon reaching
the second proceed statement.

Formally, the semantics of advice weaving is defined by
compilation to an intermediate language SBL, defined in
Section 6. For the purpose of the next sections, it is suf-
ficient to know that the semantics of SAL programs can be
modeled by judgments of the form p, µ ⇓ v, ν which read:
the execution of program p with initial memory µ terminates
with final memory ν and returns value v.

4. VERIFICATION OF BASELINE CODE
In this section, we focus on baseline programs, i.e. pro-

grams without advices, and introduce for such programs a
verification method based on the idea of contract. There-
fore, each procedure is specified in terms of a precondition,
which captures the situations under which the procedure can
be called, and a postcondition, which establishes a relation-
ship between the inputs and outputs of the procedure, and
a frame condition that specifies which variables are modified
during the execution of f , and that is used by the verification
condition generator to improve its context-sensitivity.

The set of propositions is defined in Figure 2, where x? is
a special, so-called starred, variable representing the initial
value of the variable x, and res is a special value representing
the final value of the evaluation of the program. Program
specifications rely on particular classes of propositions:

• preconditions, which refer to the formal parameters of
the function and global variables but do not refer to
starred variables (since redundant at an initial state),
nor the result (special variable res);

• postconditions, which refers to the formal parameters,
and the initial and current state of global variables
(respectively with starred and standard variables);

• loop invariants, which do not refer to the return value
(i.e. the special variable res).

Each precondition Φ yields a predicate over states, denoted
µ |= Φ for a state µ, whereas a postcondition Ψ yields a
ternary relation over an initial state, a final state, and a
result, denoted µ, ν, v |= Ψ for the states µ and ν and the
value v. Likewise, invariants yield binary relations over an
initial and a current state.

In order to reason effectively about programs, we assume
that each procedure is annotated, i.e. that all while loops in
its body carries an invariant (we use whileI(b){s} to denote
the loop whileI(b){s} annotated with invariant I), and that
we dispose of a specification table Γ that associates to each
procedure f a triple (Φ, Ψ,W) where Φ is a precondition, Ψ
is a postcondition, and W is a modifies clause that declares
all variables that are modified during the execution of f .
Furthermore, we let VΓ be the set of variables that appear
in the specification of baseline procedures.

It may be argued that the specification overhead can make
the approach impractical. However, that depends strictly on
the complexity of the properties we intend to specify. In a
practical implementation, we can consider as specification
the result of a static analysis represented in terms of logical
formulae. In that case the specification overhead is reduced
while the results presented in this paper are still applicable.

Given a specification table Γ, one can compute for each an-
notated procedure f a set POΓ(f) of verification conditions.
The verification conditions are defined using an extended
predicate transformer vcg, which takes as input a baseline
command c and a postcondition Ψ, and returns a precondi-
tion Φ and a set of proof obligations ∆f . Formally, the set
POΓ(f) is defined as ∆f∪{Φ ⇒ Φ′[y/y?]}, where ϕ[e/x] stands
for the substitution of the expression e for the free occur-
rences of variable x in the logic formula ϕ, Γ(f) = (Φ, Ψ,W),
y stands for every variable in VΓ and vcg(c, Ψ) = (Φ′, ∆f),
where c is the body of f . We say that a procedure is valid if
all its proof obligations are valid formulae, and that a pro-
gram is valid if all its procedures are. The formal definition
of vcg is given in Figure 3.

For the verification method to be sound, we must also
check the correctness of the modifies clause. Even though we
can propose a logic to verify this frame condition, we assume
a sound but incomplete automatic analysis that checks its
correctness.

The weakest precondition calculus is sound in the sense
that if a program p is valid w.r.t. a specification table Γ with
a main procedure specified by (Φ, Ψ), then all executions of
p initiated with a memory µ satisfying Φ will terminate with
a final memory ν and value v such that (µ, ν, v) satisfy Ψ.

Lemma 1 (Soundness). Let p be a baseline program
over a set F of procedures. Let Γ be a specification table
for p and let Γ(main) = (Φ, Ψ,W). Assume that p is valid
w.r.t. Γ. Then, if p, µ ⇓ v, ν and µ |= Φ, then µ, ν, v |= Ψ.

let Γ(f)=(Φ, Ψ,W) in

vcg(skip, ϕ) = (ϕ, ∅)
vcg(x:=e, ϕ) = (ϕ[e/x], ∅)
vcg(c1;c2, ϕ) = let (ϕ2, S2)=vcg(c2, ϕ) in let (ϕ1, S1)=vcg(c1, ϕ2) in(ϕ1, S1 ∪ S2)

vcg(return e, ϕ) = (ϕ[e/res], ∅)
vcg(if b then c1 else c2, ϕ) = let (ϕ1, S1)=vcg(c1, ϕ) in let (ϕ2, S2)=vcg(c2, ϕ) in(b⇒ϕ1 ∧ ¬b⇒ϕ2, S1 ∪ S2)

vcg(while b {Inv} do c, ϕ) = let (ϕ′, S)=vcg(c, Inv) in(Inv, {Inv⇒(b⇒ϕ′ ∧ ¬b⇒ϕ)} ∪ S)

vcg(x:=f(e), ϕ) = Φ[e/inf] ∧ (∀W′,res.Ψ[e/inf][W
′
/W][W/W?]⇒ϕ[res/x][W

′
/W], ∅)

vcgf (x:= proceed(e), ϕ) = Φ[e/inf] ∧ (∀W′,res.Ψ[e/inf][W
′
/W][W/W?]⇒ϕ[res/x][W

′
/W], ∅)

Figure 3: Weakest Precondition Function

In the setting of PCC, we require that proof obligations are
certified, i.e. that programs come equipped with indepen-
dently checkable proofs of their validity. For the purpose of
our work, we do not need to commit to any particular for-
mat for certificate, nor do we need to specify an algorithm
to check certificates. Instead, we rely on an abstract notion
of certificate. Finally, we define a certified program as one
whose functions are certified, i.e. carry valid certificates for
the proof obligations attached to them. Formally, let p be an
annotated baseline program and Γ be a specification table.
Then, a certificate for the program p w.r.t. Γ is an indexed
set of certificates (cδ)δ∈POΓ(f),f∈F such that cδ :` δ for all
δ belonging to POΓ(f) and for all procedures f . If such a
certificate exists, we say that p is certified w.r.t. Γ.

If a program p is certified w.r.t. a specification table Γ,
then it is obviously valid w.r.t. Γ.

5. VERIFYING AOP PROGRAMS
As illustrated by the examples of Section 2, soundness

fails for programs with advice, as expected since verification
condition generation is oblivious to aspects. The purpose of
this section is to define a method to verify SAL programs; the
verification method is based on the notion of specification-
preserving advice, which is introduced formally below.

Throughout this section, we consider a program p in which
all procedures are annotated, i.e. have loop invariants, and
specified in a table Γ.

5.1 Specification-preserving advices
In order to reason about advices, we extend the verifica-

tion condition generator to proceed statements. The exten-
sion is parametrized by the name of the advised function,
and the proceed statement is interpreted as a call to this
function; see Figure 3. Note that when reasoning about an
advice a, in order for the verification condition generator
to be effective we need one set of loop invariants for each
procedure f that a is advising.

Definition 1. An advice a with guard b preserves the
specification of method f w.r.t. Γ if it satisfies the specifica-
tion (b∧Φ, Ψ,W ′) where Γ(f)=(Φ, Ψ,W), and W ′∩VΓ⊆W.

The condition W ′ ∩ VΓ ⊆ W states that the advice a only
modifies in W, unless they do not appear originally on the
specification of the baseline program. We let POΓ,f (a) stand
for the set of proof obligations required to prove that the
advice a is specification-preserving w.r.t. f and Γ. Formally,
if Γ(f) = (Φ, Ψ,W) and c is the body of a, the set POΓ,f is
defined as ∆a,f ∪ {Φ⇒ φ[y/y?]} where (φ, δa,f) = vcg(c, Ψ)
and y? stands for every starred variable in φ.

If all advices are specification-preserving, then baseline
program verification is sound. To state this result, one first

extends the notion of valid advice, and valid program. Let
(p, Γ) be an annotated program. We say that an advice a
is valid if for all procedures f that it advises, the set of
proof obligations POΓ,f (a) is valid. Then, we say that the
program p is valid if all its procedures and all its advices are
valid.

We can now state soundness of the verification method in
the presence of advice weaving.

Lemma 2 (Soundness). Let (p, Γ) be a valid annotated
program. Then, if p, µ ⇓ v, ν and µ |= Φ, then µ, ν, v |= Ψ.

One can extend the notion of certified baseline program to
programs with specification-preserving advices, by requiring
that programs come equipped with a certificate that advices
are specification-preserving.

Remark. We can extend the scope of this paper to a
language with a richer set of point-cut descriptors, for in-
stance to point-cut descriptors that refer to the control-flow
graph. To this end, as an alternative to reasoning about the
control-flow graph or the call-stack in our logic, we propose
a stronger definition of specification preserving advices. An
advice a is specification-preserving w.r.t. f and Γ if it sat-
isfies the specification (Φ, Ψ,W ′) where Γ(f) = (Φ, Ψ,W),
and W ′ ∩VΓ ⊆ W. Notice that, in contrast to previous def-
inition, the guard b does not appear in the precondition of
a.

5.2 Example
To illustrate the approach with a running example we as-

sume an extended program syntax. Consider a procedure
g

.
= slowRetrieve of a SAL program p, that returns the

value stored in a slow access memory. That is, given as pa-
rameter the integer Address i, the procedure g returns the
value mem[i], where mem is a global array variable, if i is
within the accessible range.

Since we plan to improve the efficiency of the procedure g,
we consider two auxiliary global array variables available

and cache and the SAL procedures f1
.
= updateCache and

f2
.
= isAvailable. Let φ stand for the consistency of the

cache variable with respect to the array availability, i.e.
φ

.
= ∀i.(available[i]⇒ cache[i] = mem[i]) . For simplicity,

we assume that global variables available and cache are
only accessible by these procedures.

Consider a specification table Γ such that Γ(g) = (Φ, Ψ,W)
where Φ

.
= 0 ≤ i < N ∧φ, Ψ

.
= res = mem[i]∧φ and W = ∅.

Similarly, we specify procedures f1 and f2 with their re-
spective pre and postconditions:

Φ1
.
= Φ

Ψ1
.
= cache = cache?[i 7→ v] ∧ φ

Φ2
.
= 0 ≤ i < N

Ψ2
.
= res = available[i]

Consider the introduction of an advice a
.
= fastRetrieve

that improves the store access time by taking advantage of
the array variables available and cache and the procedures
f1 and f2. This advice replaces the functionality of method g
by receiving as parameter the store address i and returning
the cached value if available or, otherwise, by permitting the
original function g to continue:

around slowRetrieve(Address i) fastRetrieve {
b:= isAvailable(i);
if b

return cache[i]
else

v:=proceed(i);
updateCache(i, v);
return v

}

Then, we can prove that a is specification preserving by
showing that the proposition

Φ2 ∧ ∀b.(Ψ2[
b/res]⇒

b⇒Ψ[cache[i]/res] ∧ φ
∧
¬b⇒Φ ∧ ∀res.(Ψ⇒Φ1∧

∀cache′ .(Ψ1[
cache′/cache][

cache/cache?]⇒
(Ψ ∧ φ)[cache

′
/cache])))

is implied by Φ.

5.3 Harmless advices
In general, it is not decidable whether an advice a pre-

serves the specification of a procedure f w.r.t. a specifica-
tion table Γ. Therefore, it is of interest to develop automated
approximate methods to detect specification-preserving ad-
vices. A natural condition is to require that the advice does
not modify the variables in VΓ and always executes a proceed
statement. Since such requirements are closely related to the
notion of harmless advice, we call such advices specification-
harmless.

The set of SAL commands is extended with assertions
assert(φ) and ghost assignments set z′ := z, where φ is a
proposition and z′ is a ghost variable not appearing in the
original program. The definition of vcg is extended accord-
ingly:

vcg(assert(φ), ϕ) = (φ, {φ⇒ϕ})
vcg(set z′ := e, ϕ) = (φ[e/z′], ∅)

Formally, an advice a with parameters ~y and guard b is
specification-harmless w.r.t. f and Γ if the procedure â
whose body is obtained from the body of a by substitut-
ing x:= proceed(~e) by

assert(~z? = ~z); x:=f(~y); set x′, ~z′ := x, ~z

satisfies the specification

(b ∧ Φ, x′ = res ∧ ~z′ = ~z,W ′)

where Γ(f) = (Φ, Ψ,W), and W ′ ∩ VΓ = ∅, and where x′, ~z′

are fresh ghost variables, and where ~z is an enumeration of
VΓ. We classify an advice as control flow preserving if ev-
ery path in its control flow contains exactly one proceed

statement. We assume the existence of an automated ap-
proximate static analysis to check this condition.

Lemma 3. Let a be a control-flow preserving advice. Then,
if a is specification-harmless with respect to f and Γ, then it
is specification-preserving.

instr ::= nop | push v | load x | store x
| jmp l | jmpif cmp l
| invoke | return

Figure 4: Instruction set for SBL

Dantas and Walker [11] propose a mechanism to check
that the execution of an advice does not interfere with the
final value produced by the computation of the baseline pro-
cedure. It consists on a type-effect system inspired on in-
formation flow type systems that does not consider timing
nor termination behavior. One can use this type system as
a static analysis to detect whether an advice is specification-
harmless.

5.4 Beyond harmless advices
There are many natural examples of advices that do not

necessarily trigger a proceed statement. For example, ad-
vices that seek to improve efficiency by replacing a pro-
cedure call by a semantically equivalent but more efficient
computation will not call a proceed statement. For such
examples of advices, it is still possible to use the prop-
erty of specification-harmless to ensure that the advice is
specification-preserving for those paths in which a proceed
statement is effectively called, and generate a proof obliga-
tion for all paths that do not call to proceed.

Recall the advice of the basic example shown in Section 2:

a(x) = (if x 6= 0 then z := proceed(x) else z := 0);
return z

Clearly, we have two possible execution paths depending on
whether the input value is equal to 0. To verify that a
preserves the specification of f , i.e. (true, res = x? + x?),
we consider each possible path separately. In case that
the parameter x is not equal to 0 we know that exactly
one proceed statement will be executed, that no variable is
modified and that the expression returned by the proceed
statement is passed unchanged by the advice. Thus, we can
use a simple static analysis to detect whether this path is
specification-harmless. However, the path corresponding to
an input equal to 0 does not execute a proceed statement, so
we need to generate proof obligations that ensures that the
specification is still preserved. In this case, it corresponds
to the valid proposition x = 0⇒0 = x + x.

6. COMPILING ADVICES
From an applicative perspective, AOP is transparent and

compilers target typical back-ends: indeed, it is the role of
the compiler to integrate these concerns into a single exe-
cutable object, through a weaving mechanism that modifies
the code of each procedure depending on the advices that
operate over it. In this section, we define the compilation of
SAL programs to a stack-based language.

6.1 Target language
The target language is a simple stack-based language (SBL)

that can be used to compile the imperative core of SAL.
The syntax of SBL instructions is given in Figure 4, where v
and l ranges over integers, x ranges over program variables,
cmp over relations between integer values, and g ranges over
function names. A SBL program consists of a set of func-

pf [i] = invoke f

〈µ, 〈f ′, pc, lm, v : os〉 :: lf〉 ; 〈µ, 〈f, 1, [par 7→ v], ε〉 :: 〈f ′, pc + 1, lm, os〉 :: lf〉
pf [i] = return

〈µ, 〈f, pc, lm, v : os〉 :: 〈f ′, pc′, lm′, os′〉 :: lf〉 ; 〈µ, 〈f ′, pc′, lm′, v :: os′〉 :: lf〉

Figure 5: Operational semantics of SBL

tion names, and for each function g a declaration of the
form g args∗ = instr∗. The operational semantics of SBL
programs is standard, and defined by a small-step relation
; between states. A state is either final, in which case it
consists of a global memory µ and a result value v, or in-
termediary, in which case it consists of a global memory µ
and a list of frames lf , each frame consisting of the name of
the function being called, of a program counter, of a local
memory with a distinguished variable par that stores the
parameter of the function being called, and of an operand
stack. Figure 5 gives the rules for invoke and return instruc-
tions, where [par 7→ v] denotes the local memory that only
assigns v to par.

6.2 Compiler
The compiler for SAL programs is defined in Figure 6 as

a function JK that takes a command and returns a list of
labeled instructions. It relies on a compiler for integer ex-
pressions and a compiler for boolean conditions, namely JKe

and JKb. The compiler JKe takes an integer expression e and
returns a sequence of instructions whose effect is to push
on top of the stack the evaluation of the expression e. The
compiler JKb takes, in addition to a boolean expression b,
a label l and outputs a sequence a instructions that forces
the program execution to jump to the program point la-
beled l if the condition b evaluates to true. The compiler for
commands is standard, to the exception of the function call
statement, whose compilation involves advice weaving, and
the proceed statement. Since SBL does not feature a dedi-
cated mechanism for advice weaving, each advice is compiled
multiple times, exactly once per procedure it advises, and
the procedure call x:=f(e) is compiled into

JeKe :: invoke âf :: store x

where a is the first advice for f , and âf is its specific com-
pilation for f . The code of âf is of the form

Jb, lKb :: load par :: invoke â′f :: return :: [l : af]

where af is obtained by compilation from a by translating
any proceed statement of the form x:= proceed(e) by

JeK :: invoke a′f :: store x

where a′ is the next advice for f . In other words, the code of
âf tests if the guard for a holds, and if so proceeds to execute
the body of the advice, or lets â′f proceed otherwise.

In order to achieve the desired effect, the compiler is thus
parametrized by a procedure (used in the clause for proce-
dure calls to trigger the appropriate advice), or by a proce-
dure and an advice (used in the clause for proceed to trigger
the appropriate advice). For readability, we use superscripts
to indicate the parameter and omit the superscript in all
cases where it is not used.

JskipK = [l :nop]
Jx:=eK = let inse=JeKe in

inse :: store x
Jc1;c2K = let ins1=Jc1K in

let ins2=Jc2K in
ins1 :: ins2

Jif b then c1 else c2K =
let ins1=Jc1K in
let ins2=Jc2K in
let insb=Jb, l1Kb in
insb :: ins2 :: jmp l :: [l1 : ins1] :: [l :nop]

Jwhile b do cK =
let insc=JcK in
let insb=Jb, lcKb in
jmp l :: [lc : insc] :: [l : insb]

Jx:=h(e)Kf = let inse=JeKe in
inse :: invoke af :: store x

Jreturn eK = let ins=JeKe in
ins :: return

Jx:= proceed(e)Ka
f = let inse=JeKe in

inse :: invoke a′f :: store x

Figure 6: Compiler for SAL programs

stack expressions ōs ::= os | ē :: ōs |↑k ōs
logical expressions ē ::= res | x? | x | c | ē op ē | ōs[k]

Figure 7: Logical SBL expressions

7. CERTIFICATE TRANSLATION
In this section, we show that a valid SAL program is com-

piled into a valid SBL program. To this end, we first define
a verification method for SBL programs. The method is
strongly inspired from earlier work, and in particular [6].

7.1 Verification of SBL programs
While program annotations are similar to those of SAL

programs, the weakest precondition computation will pro-
duce propositions that refer to the operand stack, and thus
the language of SBL annotations is extended to such propo-
sitions.

• The extended set of logical expressions is defined in
Figure 7; the logical propositions are built as before.
In the definition, os is a special variable representing
the current operand stack and ↑k ōs denotes the stack
ōs minus its k-first elements. An annotation is a propo-
sition that does not contain stack sub-expressions.

• An annotated bytecode instruction is either a bytecode
instruction or a proposition and a bytecode instruc-
tion: ī ::= i | (φ, i)

• An annotated program is a pair (p, Γ), where p is a
bytecode program in which some instructions are an-
notated and Γ is a specification table that associates to

each procedure f a triple (Φ, Ψ,W) where Φ is a pre-
condition, Ψ is a postcondition, and W is a modifies
clause that declares all variables that may be modified
during the execution of f .

Verification of SBL programs is defined in terms of a weakest
precondition function wp that operates on annotated pro-
grams. In order for the wp function to be well-defined, we
must restrict our attention to well-annotated programs [4,
6, 21], i.e. programs in which all cycles in the control-flow
graph must pass through an annotated instruction. We char-
acterize such programs by an inductive definition.

An annotated program p is well-annotated if every pro-
cedure is well annotated. A procedure g is well-annotated
if every program point satisfies the predicate reachAnnotg

inductively defined by the clauses:

g[k] = (φ, i)

k ∈ reachAnnotg

g[k] = return

k ∈ reachAnnotg

∀k′. k 7→ k′ ⇒ k′ ∈ reachAnnotg

k ∈ reachAnnotg

Given a well-annotated procedure, one generates an asser-
tion for each label, using the assertions that were given or
previously computed for its successors. This assertion rep-
resents the precondition that an initial state should satisfy
for the procedure to terminate only in a state satisfying its
postcondition.

Let (p, Γ) be a well-annotated program.

• The weakest precondition calculus over (p, Γ) is defined
in Figure 8. Formally, the result of the weakest precon-
dition calculus is a program in which all instructions
are annotated.

• The set PO(f) of verification conditions of the proce-
dure f is defined by the clauses:

Φ ⇒ wpL(0)[
~x?
/~x] ∈ POΓ(f)

f [k] = (φ, i)

φ ⇒ wpi(k) ∈ POΓ(f)

As before, an annotated SBL program is valid w.r.t. Γ if all
its sets proof obligations POΓ(f) are valid.

7.2 Preservation of validity
The purpose of this section is to prove that valid SAL

programs are compiled into valid SBL programs. To this end,
we first extend the compiler of Section 6 so that compiled
programs are well-annotated. This is achieved by modifying
the compiler clause for loops:

JwhileI(b){c}K = let insc = JcK and insb = Jb, lcK in
jmp l :: [lc : insc] :: [l : (I, insb)]

where we denote (I, insb) the sequence of instructions ob-
tained by annotating the first instruction of insb with I. In
the rest of this section, for any SBL function g, we denote
g[l, l′] the sequence of instructions g[l] :: g[l+1] :: . . . ::g[l′−1].

Lemma 4. Assuming the axioms (v :: os)[0] = v and
↑ (v :: os) = os for stacks, the auxiliary compilers JKe and
J.Kb satisfy the following properties:

i) for every integer expression e and function g such that
g[l, l′] = JeKe, wpL(l) is equivalent to wpL(l′)[e::os/os];

ii) for every boolean expression b and function f such that
g[l, l′′] = Jb, l′Kb, wpL(l) is equivalent to

b⇒wpL(l′) ∧ ¬b⇒wpL(l′′)

Given a specification table Γ for SAL programs, Γ′ is a spec-
ification table for SBL programs extending Γ if for every ad-
vice a and procedure f advised by a, Γ′(âf) = (Φf , Ψf ,Wf)
and Γ′(af) = (Φf ∧ b, Ψf ,Wf), where Γ(f) = (Φf , Ψf ,Wf).
In the following paragraphs, we implicitly consider the spec-
ification tables Γ and Γ′ respectively for the verification of
SAL and SBL programs.

Lemma 5. Let g be a SBL function such that g[l, l′] = JcK,
and let (φ, S) = vcg(c, wpL(l′)). Then, φ′ ≡ wpL(l) and the
proof obligations in S are equivalent to the proof obligations
corresponding to the annotated instructions in g[l, l′].

Consider a SBL program p′ compiled from an annotated
SAL program p. The following result states that if p is a
valid SAL program w.r.t. Γ, then p′ is a valid SBL program
w.r.t. Γ′.

Theorem 1. Suppose that (p, Γ) is a valid annotated pro-
gram. That is, for every procedure f and for every advice
a, the sets of proof obligations ∆f and POΓ,f (a) are valid.
Then, for every function f , af and âf , the sets POΓ′(f),
POΓ′(af) and POΓ′(âf) contain valid proof obligations.

Furthermore, we can prove that a SAL programs certified
with respect to Γ is compiled into a SBL program certified
with respect to Γ′. More precisely, using the rules of the
proof algebra extended with the axioms (v :: os)[0] = v and
↑(v :: os) = os, for every equivalent proof obligations δ and
δ′, we can transform a certificate cδ for δ to a certificate cδ′

for δ′. Therefore, if for every procedure f ∈ F , (cδ)δ∈POΓ(f)

and (cδ)δ∈POΓ,f (a) are indexed sets of certificates for a SAL

program p, then for every function g of p′ we can generate
a certificate for the proof obligation δ ∈ POΓ′(g).

8. INCREASING THE POWER OF VERIFI-
CATION

Consider the following trivial example:

a1(x) = z := proceed(x + 1); return z
a2(x) = z := proceed(x− 1); return z

When executed in isolation around a function f , it is clear
that neither a1 nor a2 preserves the behavior of f . However,
when both are executed around f they collaborate, and the
effect of a1 is neutralized by the effect of a2.

Then, since it may seem a bit restrictive to require that
every advice in its own is specification-preserving, we pro-
pose a more general proof system to study instead whether
a sequence of advices is specification preserving.

When verifying the behavior of a sequence of advices ~a ex-
ecuting around a function f , we are interested in verifying a
specification for the sequence ~a around f (denoted ~a . f), in
addition to verifying each advice in isolation. As with func-
tions and advices, the specification for sequences of advices
executing around a function f consist on a precondition, a
postcondition and a set of modifiable variables. This spec-
ification is inferred and proved from the specification of its
components. For notational convenience, ~a may also stand
for an empty sequence of advices.

let Γ(f)=(Φ, Ψ,W) and y represent every variable in W:

wpi(k) = wpL(k + 1)[c::os/os] if g[k] = push c

wpi(k) = wpL(k + 1)[(os[0] op os[1])::↑2os/os] if g[k] = binop op
wpi(k) = wpL(k + 1)[x::os/os] if g[k] = load x

wpi(k) = wpL(k + 1)[↑os,os[0]/os,x] if g[k] = store x
wpi(k) = wpL(l) if g[k] = jmp l

wpi(k) = (os[0] 6= 0 ⇒ wpL(k + 1)[↑
1os/os])

∧ os[0] = 0 ⇒ wpL(l)[↑
1os/os])

if g[k] = jmpif l

wpi(k) = Ψ[os[0]/res] if g[k] = return
wpi(k) = Φ[os[0]/in]∧

(∀res, y′.Ψ[os[0]/in][y/y?][y
′
/y] ⇒ wpL(k + 1)[res::os/os][y

′
/y])

if g[k] = invoke f

wpL(k) = φ if g[k] = φ : i
wpL(k) = wpi(k) otherwise

Figure 8: Weakest precondition for SBL programs

For each nonempty sequence of advices ~a1a ~a2 executing
around a function f , we call the sequence ~a2 . f , i.e. the
advices remaining to be executed around f when a executes
a proceed statement, an execution context of a.

Verification proceeds in two steps. First, each advice a
is verified in isolation, i.e. without considering the set of
contexts in which the advice a may be executed. To this
end, we must rely on a single specification for the expected
behavior of the execution invoked by a proceed statement.
In a second phase, for each context in which the advice may
be executed, we check the consistency of the specification
for the proceed statement w.r.t. the specification derived
for the remaining context.

Verification of advices in isolation. We extend the spec-
ification of advices such that for every advice a we have, in
addition to the tuple (Φ, Ψ,W), a specification for the code
that may be invoked by a proceed statement. That enables
to reason about the correctness of an advice abstracting from
the possible contexts in which this advice may be invoked.
The specification extension for an advice a consists on an ex-
tra and distinct tuple (Φ′, Ψ′,W ′), in addition to the tuple
(Φ, Ψ,W). The tuple (Φ′, Ψ′,W ′) is such that W ′ specifies
the set of variables that the code invoked by a proceed state-
ment is allowed to modify, and Φ′ and Ψ′ are respectively
the pre and postconditions of such invocation. The propo-
sitions Φ′ and Ψ′ may refer, in addition to the input and
output arguments of a (in and res), to the input and out-
put arguments of the invoked code, respectively represented
with the new variables in′ and res′. It is the goal of the sec-
ond phase to check, for every context in which the advice a
may be executed, that the code allowed to proceed satisfies
the specification (Φ′, Ψ′,W ′).

The predicate transformer wp is extended for proceed

statements, s.t. wpa(x:= proceed(e), φ) is defined as

(Φ′
a[e/in′a] ∧ ∀y′,res′ .Ψ

′
a[e/in′a][y

′
/y][y/y?′]⇒φ[res′

/x][y
′
/y][e/in′a], S)

where (Φ′, Ψ′,W ′) correspond to the specification extension
for the proceed statement and y ∈ W ′.

By using this modified wp function we can prove that the
body of an advice satisfies its specification as long as the
code invoked by a proceed statement satisfies the specifica-
tion (Φ′, Ψ′,W ′).

Verifying weaved code. After statically determining the
sequence of advices ~af executing around f , we are interested

in identifying a set of sufficient proof obligations that ensures
that the sequence ~af is specification-preserving.

The collection of proof obligations is defined by induc-
tion on the length of the sequence of advices ~af executing
around the procedure f . Since we do not require that ev-
ery subsequence ~af

′ of advices preserves the specification,
we generalize and accept the inference of pre and postcon-
ditions Φ and Ψ for ~af

′ . f without requiring Φ and Ψ to be
compatible with the pre and postcondition of f . The goal of
the verification for each subsequence ~a of ~af is a judgment
of the form Γ, Γa`{Φ}~a . f{Ψ}. For such a judgment, we
do not require Φ and Ψ to be compatible with the pre and
postcondition of f , i.e. the subsequence ~a is not necessarily
specification-preserving.

To verify a judgment Γ, Γa`{Φ}~a . f{Ψ}, we proceed by
induction on the length of the sequence ~a to identify the set
of proof obligations ∆~a(Φ, Ψ).

In the base case, i.e. when no advice is executed around
the function f , we have the judgment Γ, Γa`{Φ}f{Ψ} with-
out premises, where Φ and Ψ are the pre and postconditions
of f .

Given a non-trivial sequence ~a = a~a′, we consider two al-
ternative sets of verification conditions, depending on whether
we can statically ensure that the code of the advice a is con-
trol flow preserving. We assume an automated static mech-
anism to check this condition.

In case that it cannot be checked whether a is control-flow
preserving we apply the following rule:

Γa(a) = 〈(Φa, Ψa,Wa), (Φ′a, Ψ′
a,W ′

a)〉
Γ, Γa`{Φ′}~a′ . f{Ψ′}

Φ′a⇒Φ′[in
′
a/inθ] Ψ′[in

′
a/inθ][res

′
/res]⇒Ψ′

a Wf ∪W~a′ ⊆ W′
a

Γ, Γa`{Φa}a~a′ . f{Ψa}

For simplicity, we are not considering the boolean condition
specified in the point-cut descriptor.

Unfortunately, the rule above makes hard to propagate
the information carried by the specification (Φ′, Ψ′), unless
it is explicitly stated in the specification (Φa, Ψa) of a. How-
ever, under the hypothesis that a is a control flow preserving
advice we can apply the following alternative rule:

Γa(a) = 〈(Φa, Ψa,Wa), (Φ′a, Ψ′
a,W ′

a)〉
Γ, Γa`{Φ′}~a′ . f{Ψ′}

Φ⇒Φa ∧ ∀x′.(Φ′a[x
′
/x]⇒Φ′[in

′
a/inθ][x

′
/x]) Wf ∪W~a′ ⊆ W′

a

Ψ′[in
′
a/inθ][res

′
/res][y

?′
/y?]⇒Ψ′

a ∧ ∀x′.(Ψa[in/ina][x
′
/x]⇒Ψ[x

′
/x])

Γ, Γa`{Φ}a~a′ . f{Ψ}

where x′ represents the global variables potentially modified

by a, and W ′
a specifies the variables that may be modified

by the execution triggered by the proceed statement.
For every procedure f advised by ~af , we define ∆~af

(Φ, Ψ)
as the set of proof obligations required to derive the judg-
ment Γ, Γa`{Φ}~af . f{Ψ}. Assume the specification table
Γ is such that Γ(f) = (Φf , Ψf ,W). Then, we say that the
sequence ~af is specification preserving with respect to f , Γ
and Γa, if Φf ⇒ Φ, Ψ ⇒ Ψf and the proof obligations in
∆~af

(Φ, Ψ) are valid.

Lemma 6. Let p be a SAL program over a set F of proce-
dures and a set A of advices. Let Γ be a specification table
for F and Γa be a specification table for A. Assume that for
every procedure f that is advised by ~af , the sequence ~af is
specification preserving with respect to f , Γ and Γa. Then,
if f, µ ⇓ v, ν and µ |= Φ, then µ, ν, v |= Ψ, where Φ and Ψ
are the pre and postconditions of f .

The dynamic nature of some point-cut descriptors can
make static verification a difficult task. Consider for exam-
ple a cflow point-cut descriptor, for which program semantics
must refer to a collecting call stack to decide whether a cflow
condition is valid.

Although possible, it is cumbersome to reason explicitly
about the call stack in the program logic. We propose, thus,
the following simple derivation rule to reason in the presence
of cflow point-cut descriptors:

Γ, Γa`{Φ}a~a′ . f{Ψ} Γ, Γa`{Φ}~a′ . f{Ψ}

Γ, Γa`{Φ}a
cflow
. (~a′ . f){Ψ}

where a
cflow
. (~a′ . f) denotes that the execution of the advice

a is conditional on a cflow statement. The rule can be inter-
preted as the fact that the specification (Φ, Ψ) is still verifi-

able with respect to the sequence a
cflow
. (~a′ . f), regardless of

whether the cflow condition is valid. Although incomplete,
this rule may prove to be useful as long as the advice a is
specification preserving with respect to (Φ, Ψ).

We have formally proved the soundness of the proof sys-
tem proposed in this section. In addition, we have shown
how to extended the compiler with a mechanism to translate
a certificate of correctness of a SAL program to a certificate
for the compiled code.

9. RELATED WORK

Reasoning about advices. As the invasive nature of as-
pects cause them to break modularity, the design of verifica-
tion methods for AOP programs is challenging. Many works
have explored the design space for such verification methods,
and proposed different trade-offs between the modularity of
verification and the generality of the method. In addition,
there are been many works that isolate particular classes of
aspects that are well-suited for modular reasoning and pro-
vide automatic analysis methods to detect when an advice
fits in one of these classes.

Clifton and Leavens [9] define a notion of modular reason-
ing and show why modularity is not a general property in
AspectJ. They define a classification for aspects as spectators
or assistants: the former include aspects that only modify
the state space they own and do not alter the control flow,
whereas assistants can interfere with the original behavior
of the program but only if explicitly accepted by the original

program. Based on this classification, Clifton and Leavens
suggest a verification method, detailed in [8]. More recently,
Clifton, Leavens and Noble [10] have developed an effect sys-
tem to verify the control and heap effect of aspects in the
MAO language. The system verifies whether an advice is
a spectator, and provides information exploitable by subse-
quent verification. To our best knowledge, there is however
no sound program verification method based on these ideas.
In a similar vein, Rinard et al [22] provide a a static analy-
sis that automatically classifies aspects. They illustrate the
usefulness of their analysis, but do not develop any verifica-
tion mechanism based on it.

There have been several efforts to develop modular model-
checking techniques for AOP. The prevailing trend to achieve
modularity is to isolate specific classes of aspects that ex-
hibit an appropriate behavior. Early work by Katz et al.
[15] proposes a classification of aspects as spectative, regula-
tive or invasive, and analyze the class of temporal properties
that are preserved by aspects falling in these categories. In
a subsequent work, Goldman and Katz [14] have formal-
ized the idea that weakly invasive aspects preserve temporal
properties. More recently, Djoko Djoko et al [12] have given
a formal treatment of similar ideas based on a slightly dif-
ferent classification. These works resembles our own in the
sense that they favor modularity of the verification process
and makes emphasis on the preservation of original proper-
ties. Krishnamurthi et al [16] propose an alternative method
where modularity is achieved by requiring that the set of
point-cut designators is known statically.

Dantas and Walker [11] define the notion of harmless ad-
vice, which may preventing termination and may also per-
form I/O, but it does not interfere with the result of the base-
line code. This weak interference property is an instance of
specification-preserving advice, and thus permits to reason
about the original program independently. They propose an
information-flow type system over a core AOP language [23]
to check harmlessness with respect to the main program. As
discussed in Section 5.3, their type system can be combined
to form part of our hybrid logic to certify and check that an
advice does not interfere with the original global state.

Aldrich [1] has proposed a module system called “Open
Modules” that enables class interfaces to explicitly control
the visibility of internal control-flow points. Thus, it pro-
vides a mechanism to restrict the interference of external
advice, by forbidding the attachment of advices to hidden
internal join-points.

Proof compilation. There have been several efforts to study
proof compilation for non-optimizing and optimizing com-
pilers. Our work is most closely based on the work of [6],
who show that a sufficiently simple compiler generates, from
an imperative source program, a stack based low-level code,
whose proof obligations are syntactically equal to that of the
source program. Similar results are detailed by Pavlova [21],
for a significant subset of Java Bytecode.

There has been a closely related effort by Zhao and Ri-
nard [24] to provide state-of-the-art specification and verifi-
cation tools for AOP, and to relate them to standard verifica-
tion. They have defined Pipa [24], an extension to JML [17]
for AspectJ [2], to support specification for aspects invari-
ants, pre and postconditions for advices and variable intro-
ductions, and provided a compiler that transforms a Pipa-
annotated AspectJ program into a JML-annotated Java pro-

gram. However, they do not provide any formal treatment
to support their approach.

10. CONCLUSION
We have introduced the notion of specification-preserving

advice, that mildly generalizes the notion of harmless advice
of Dantas and Walker, and that is expressive enough to cap-
ture many advices related to security and efficiency. In ad-
dition, we have developed a modular verification method for
programs with specification-preserving advices, and shown
how proof compilation extends naturally to this setting. Our
results, while preliminary, establish the feasibility of a Proof
Carrying Code scenario with untrusted intermediaries modi-
fying the code by aspects. In future work, we intend to build
on proof compilation for Java and extend our results towards
an expressive fragment of AspectJ, taking into account re-
cent developments in optimizing compilation for aspects [3].
In addition, it would be interesting to target our compiler
to low level languages with support for aspects [13], and
investigate certificate translation in that setting.

11. REFERENCES
[1] J. Aldrich. Open modules: Modular reasoning about

advice. In A. P. Black, editor, ECOOP, volume 3586
of Lecture Notes in Computer Science, pages 144–168.
Springer, 2005.

[2] AspectJ Team. The AspectJ programming guide.
Version 1.5.3. Available from
http://eclipse.org/aspectj, 2006.

[3] P. Avgustinov, A. S. Christensen, L. J. Hendren,
S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. abc : An
extensible aspectj compiler. 3880:293–334, 2006.

[4] G. Barthe, B. Grégoire, C. Kunz, and T. Rezk.
Certificate translation for optimizing compilers. In
K. Yi, editor, SAS, volume 4134 of Lecture Notes in
Computer Science, pages 301–317. Springer, 2006.

[5] G. Barthe, B. Grégoire, and M. Pavlova. Preservation
of proof obligations for java. Draft paper, 2008.

[6] G. Barthe, T. Rezk, and A. Saabas. Proof obligations
preserving compilation. In T. Dimitrakos,
F. Martinelli, P. Y. A. Ryan, and S. A. Schneider,
editors, Formal Aspects in Security and Trust, volume
3866 of Lecture Notes in Computer Science, pages
112–126. Springer, 2005.

[7] L. Burdy and M. Pavlova. Java bytecode specification
and verification. In Symposium on Applied Computing,
pages 1835–1839. ACM Press, 2006.

[8] C. Clifton. A design discipline and language features
for modular reasoning in aspect-oriented programs.
Ph.d. thesis, Iowa State University, 2005.

[9] C. Clifton and G. Leavens. Spectators and assistants:
Enabling modular aspect-oriented reasoning. Technical
report, Iowa State University, 2002.

[10] C. Clifton, G. T. Leavens, and J. Noble. Mao:
Ownership and effects for more effective reasoning
about aspects. In E. Ernst, editor, ECOOP, volume
4609 of Lecture Notes in Computer Science, pages
451–475. Springer, 2007.

[11] D. S. Dantas and D. Walker. Harmless advice. In
POPL ’06: Conference record of the 33rd ACM

SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 383–396, New York,
NY, USA, 2006. ACM Press.

[12] S. Djoko Djoko, R. Douence, and P. Fradet. Aspects
preserving properties. In PEPM ’08: Proceedings of
the 2008 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation,
pages 135–145, New York, NY, USA, 2008. ACM.

[13] R. M. Golbeck and G. Kiczales. A machine code
model for efficient advice dispatch. In VMIL ’07:
Proceedings of the 1st workshop on Virtual machines
and intermediate languages for emerging
modularization mechanisms, page 2, New York, NY,
USA, 2007. ACM.

[14] M. Goldman and S. Katz. Modular generic verification
of LTL properties for aspects. In Foundations of
Aspect Languages Workshop (FOAL06), 2006.

[15] S. Katz. Aspect categories and classes of temporal
properties. In A. Rashid and M. Aksit, editors, T.
Aspect-Oriented Software Development I, volume 3880
of Lecture Notes in Computer Science, pages 106–134.
Springer, 2006.

[16] S. Krishnamurthi, K. Fisler, and M. Greenberg.
Verifying aspect advice modularly. In SIGSOFT
’04/FSE-12: Proceedings of the 12th ACM SIGSOFT
twelfth international symposium on Foundations of
software engineering, pages 137–146, New York, NY,
USA, 2004. ACM Press.

[17] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,
D. R. Cok, P. Müller, J. Kiniry, and P. Chalin. JML
Reference Manual. Department of Computer Science,
Iowa State University. Available from
http://www.jmlspecs.org, February 2007.

[18] P. Müller and M. Nordio. Proof-transforming
compilation of programs with abrupt termination. In
SAVCBS ’07: Proceedings of the 2007 conference on
Specification and verification of component-based
systems, pages 39–46, New York, NY, USA, 2007.
ACM.

[19] G.C. Necula. Proof-Carrying Code. In Proceedings of
POPL’97, pages 106–119. ACM Press, 1997.

[20] G.C. Necula and P. Lee. Safe kernel extensions
without run-time checking. In Proceedings of OSDI’96,
pages 229–243. Usenix, 1996.

[21] M. Pavlova. Java bytecode verification and its
applications. Thése de doctorat, spécialité
informatique, Université Nice Sophia Antipolis,
France, January 2007.

[22] M. Rinard, A. Salcianu, and S. Bugrara. A
classification system and analysis for aspect-oriented
programs. In SIGSOFT ’04/FSE-12: Proceedings of
the 12th ACM SIGSOFT twelfth international
symposium on Foundations of software engineering,
pages 147–158, New York, NY, USA, 2004. ACM
Press.

[23] D. Walker, S. Zdancewic, and J. Ligatti. A theory of
aspects. In C. Runciman and O. Shivers, editors,
ICFP, pages 127–139. ACM, 2003.

[24] J. Zhao and M. C. Rinard. Pipa: A behavioral
interface specification language for aspectj. In
M. Pezzè, editor, FASE, volume 2621 of Lecture Notes
in Computer Science, pages 150–165. Springer, 2003.

