A Formal Model for Cross-cutting Modular Transition
Systems

%
Henny B. Sipma
Computer Science Department
Stanford University
Stanford, CA. 94305-9045

sipma@cs.stanford.edu

ABSTRACT

We define a notion of aspects in the framework of modu-
lar transition systems. In our model an aspect is viewed as
a semantic transformation on transition systems. Our pri-
mary objective is to use the model as a basis for studying
inheritance and imposition properties of aspect constructs
currently in use in practical languages such as AspectJ. We
show that our model is sufficiently expressive to represent
many of the constructs in this language. However, the mech-
anism of aspect-orientation presented in this paper may also
be of practical use for systems organized in a modular fash-
ion.

1. INTRODUCTION

In recent years cross-cutting techniques have emerged as a
useful programming technique orthogonal to object-oriented
and modular programming methods [7, 6]. In this paper we
propose a formal model of such cross-cutting techniques,
also called aspects, in the framework of modular transition
systems, an expressive, first-order representation of reactive
systems. Our aim is to use the model as a basis to study
properties and capabilities of such techniques, including in-
heritance properties: which system properties are preserved
across the application of aspects, and imposition properties:
which systems are guaranteed to satisfy the property im-
posed by the aspect. Although not set in an object-oriented
framework we expect our analysis results to give insight into
the general application of aspect-oriented techniques.

In our model aspects are viewed as semantic transformations
on modular systems. Aspects can introduce global and lo-
cal state into modules, introduce additional statements, and
modify existing statements, including altering the program

*This research was supported in part by NSF grants CCR-
99-00984-001 and CCR-0121403, by ARO grant DAAD19-
01-1-0723, and by ARPA/AF contracts F33615-00-C-1693
and F33615-99-C-3014.

flow. The system modifications are modeled by a combi-
nation of abstraction to add newly desired program behav-
iors, and restriction to remove unwanted program behaviors.
Analysis of the effect of aspect application can thus make
use of the well-known analysis methods for abstraction and
restriction.

Although our main objective is to use the model as a basis
for analysis, the application of aspects to modular transi-
tion systems presented here can also be useful in practical
construction of reactive programs. Because of the semantic
basis of our method, potentially more constructs are enabled
than with current methods in which new code can be intro-
duced only at so-called join points in the call graph of the
program.

The paper is organized as follows. In the next section we in-
troduce the computational model of transition systems and
present a simple programming language to describe systems.
In section 3 we define the representation and semantics of
an aspect, and in section 4 we illustrate some typical as-
pect constructs commonly provided by aspect-oriented lan-
guages. In section 5 a preliminary outline is given of the
types of analysis we expect to do based on the model pre-
sented here, and section 6 concludes with a discussion of
some shortcomings of our model and plans for future work.

2. PRELIMINARIES
2.1 Computational Model: Transition Systems

Our basic computational model is that of a transition system
[9] (TS), S = (V,Bs, T), where V- C V is a finite set of typed
variables taken from a universal set of variables V, Ogs is
an assertion (first-order formula) characterizing the initial
states, and T is a finite set of transitions. A state s is an
interpretation of ¥V, which assigns to each variable v € V a
value s[v] over its domain; 3 denotes the set of all states. A
transition 7 € 7 is a function 7 : ¥ — 2% and each state
in 7(s) is called a T-successor of s. We say that a transition
T is enabled on s if T(s) # (), otherwise 7 is disabled on s.!

Note that the set of transitions can equally well be repre-
sented by a single transition. In the original definition of
[9] separate transitions are identified to support the defini-
tion of fairness. Although we do not handle fairness in this
paper, it is the intention to include it in the future. In addi-
tion, identification of separate transitions allows finer-grain
control of aspect applicability.

Each transition 7 € 7 can be described by a first-order
formula p,(V, V'), called the transition relation, expressing
the relation between a state s and any of its 7-successors
s’ € 7(s). In p-(V, V') the unprimed versions of the variables
refer to values in s and the primed versions refer to values
in s'. For example, the formula ' = x + 1 represents the
transition function in which the set of 7-successors of a state
s with s[z] = ¢ contains all states s’ such that s'[z] =c+ 1
for some constant c.

A run o : so,s1,... of a transition system S is an infinite
sequence of states such that the following two conditions
hold

e Initiation: the first state is initial, that is so = Os;

e Consecution: for each ¢ > 0, the state s;+1 is a 7-
successor of s; for some 7 € T.

The behavior of a system S is identified with its set of runs,
denoted by L(S).

2.2 Modular transition systems

Modular transition systems organize a transition system into
transition modules that can be composed into larger mod-
ules by means of module expressions [3]. In this paper we
do not use the full power of module expressions, but re-
strict ourselves to modular transition systems consisting of
n basic modules composed in parallel, where a basic module
consists of an interface I : (Vinput, Voutput; Vshared) declaring
the input variables Vinput, which can be modified by other
modules, but not by the module itself, the output variables
Voutput, whose value can be observed by the other mod-
ules, but can only be modified by the module itself, and the
shared variables Vsnared, which can be observed and modi-
fied by all modules, and a body B : (Var,Onm, Tar) containing
the set of variables local to the module, an initial condition,
and a set of transitions. For the precise semantics of the
parallel composition operator we refer to [3], as it is not
directly relevant to the remainder of this paper.

2.3 SPL programs

Although systems can be described directly as modular tran-
sition systems, using first-order formulas to describe the ini-
tial condition and transition relations, it is usually more
convenient to represent a system as a program in some struc-
tured programming language with a well-defined semantics
in terms of transition systems. We will use SPL (Simple
Programming Language) a simple imperative programming
language to describe modular transition systems [9].

Example Figure 1 shows program BAKERY, a program that
implements Lamport’s Bakery algorithm for mutual exclu-
sion [8], consisting of two SPL modules, P, and P,. This
program can be translated into a modular transition system
with modules M7 and M. The two modules have interfaces

L = ({2}, {nn},0)

I <{y1}7{y2}7®>
respectively, reflecting that y» is observed by Pi, but not
modified by P, and y; is modified by P;, but not modified

[out y; : integer where y; =0
in yo : integer

{o: while T do
?1: noncritical

P la: y1:=y2+1
£3: await (y2 =0V y1 < y2)
l4: critical
l5: y1:=0
Lfs: i
I
[out y. : integer where y» =0
in y; : integer
mo: while T do
m1: noncritical
P

ma: Y2 1= Y1 —+ 1

ma: await (y1 =0V y2 < y1)
maq: critical

ms: Y2 1= 0

Figure 1: Program BAKERY

by the other module, and the other way around for module
P>. The bodies of the two modules are given by

({m1},y1 =0Am = Lo, T1)
({m2},y2 = 0 A2 = mo, T2)

B
B;

where 71 and 72 contain the transitions corresponding to
the statements in each module, as explained below.

FEach statement in an SPL module is associated with a prelo-
cation, identified by the label of the statement, and a set of
post locations. To each module M; a control variable 7; is
added, ranging over the set of locations in the module, and
initialized to the prelocation of the first statement in the
module. Each statement corresponds with a transition ac-
cording to the transition semantics of each statement. For
example, the statement labeled by {2 is represented by a
transition with transition relation

m=LlaA(y2=0Vy <) AT =l Ay =y
while the statement labeled by ¢o can be represented by

w1 = ¥{p
A
((true A1 = £1) V (false A w1 = Lg))
A
(Y1 =y1 Ayh = y2)

In the remainder of the paper we will usually omit the con-
juncts like ¢} = y1, stating that a variable is preserved, and
assume that all system variables not mentioned in the tran-
sition relation are preserved.

Thus, 71 and 72 each contain six transitions, one for each
statement.

For a detailed description of the semantics of SPLin terms of
transition systems, the reader is referred to [9].

In the examples in Section 4 we will use the functions preloc
and postloc that assign to each statement its prelocation and
a set, of post locations, respectively, where the set of post lo-
cations is determined by the control flow of the statement, as
defined by the transition semantics. For example, preloc(¢; :
Y1 :=y2 + 1) = £1, and postloc(fp : y1 :=0) = {¢1,4s}, even
though location ¢ is not reachable via statement £y. Again
these functions are fully defined in [9].

3. ASPECTS

An aspect is defined as a transformation that maps modu-
lar transition systems into modular transition systems. The
modifications an aspect may make to a modular transition
system include the addition of global and local state to the
system and modules, respectively, the introduction of new
transitions, and the modification of existing transitions?. An
aspect is described by a set of global variables, possibly with
an initial condition, and a list of aspect facets, one for each
module constituting the modular system, specifying the ad-
ditional state and modifications to each module.

Modification of transition relations is achieved by a combi-
nation of conditional abstraction and restriction. Transition
relations that imply an abstraction condition are abstracted
by projecting out a set of variables associated with the con-
dition. Abstraction is followed by restriction: the transition
relations of those transitions whose original transition rela-
tion implies a restriction condition are conjoined with the
associated restriction assertion.

The approach of transformation is illustrated in Figure 2.
The original set of behaviors of the system is enlarged by
means of abstraction. This set is then reduced by restric-
tion, possibly eliminating some or all of the original system
behaviors.

Our definition of an aspect was inspired by the class exten-
sions presented in [4], which are code facets that are added
to a base system based on predefined entry and exit condi-
tions in the base system.

3.1 Definition
An aspect A : (Va,04,04,...,a,) is a transformation de-
fined on modular transition systems M : (Ma,..., M,) con-

sisting of n modules, with
Mi : <<Vi,input; Vi,output, ‘/i,sha'red% <‘/za @i, 72))

The aspect consists of the following components:

e Vj4: a finite set of global aspect variables, disjoint from
the variables in M;

e O: the aspect initial condition, an assertion over Vi
and the shared variables in M;

® a1,...,an: a list of aspect facets.

2 At this stage we do not allow aspects to modify the modular
structure; it is a straightforward extension to allow aspects
to introduce new modules.

M_1 M_2 M_n

module module module
variables variables variables

A1l

variables facet

aspect aspect

A_m

variables

aspec

Figure 3: Schematic representation of aspect appli-
cation

An aspect facet is defined for each module. It describes how
the behavior of the module is modified. Figure 3 gives a
schematic representation of the relationship between mod-
ules and aspects and the position of aspect facets.

An aspect facet «; : (Vai, Oai, Tai, Bi, €;) consists of the fol-
lowing components:

e V,i: a set of variables local to the facet, disjoint from
the variables in M; these variables are used to perform
local bookkeeping and are not visible by other aspect
facets.

e O4;: the aspect facet initial condition, an assertion
over Vo U V; U Vy, used to initialize the local facet
variables.

e 7, a finite set of transitions that may modify vari-
ables in V4 U V4 UV output U Vi,shared U Vi, and in addi-
tion, may depend on the values of variables in V; input.-

e [3;: a finite set of aspect facet abstraction instructions,
where each instruction 8;; = (¢ij, Wi;) is a pair con-
sisting of an assertion ¢;; that governs the applicabil-
ity of the instruction, and a set of variables W;; to be
projected out of the transition in case the transition
relation implies the applicability condition;

e ¢;: a finite set of aspect facet restriction instructions,
where each instruction €;; = (45, xi;) is a pair con-
sisting of an assertion ;; governing the applicability
of the instruction, and an assertion x;; to be conjoined
with the transition relation in case the transition rela-
tion implies the applicability condition.

3.2 Semantics

Given an aspect A : (Va4,04,01,...,a,) and a modular
transition system M : (M, ..., My,) the application of A to
M, written A(M), defines the modular transition system
M* (MY, ..., M) with

M'L* : <<‘/itinput7 ‘/ifoutpuh ‘/itshared% (‘/z* 9:7 7:*>>

with the following values

a) original set of behaviors

b) set of behaviors after abstraction c) set of behaviors after restriction

Figure 2: An aspect as a combination of abstraction and restriction

The input and output variables of all modules remain
unchanged:

* *
Vivinput = Viyinput and Vi ouiput = Vioutput

The global aspect variables are included in the shared
variables of each module, making these variables visi-
ble to all modules:

*
‘/i,shtzred = Vji,shared UVa

The local variables of each aspect facet are included in
the local variables of the corresponding module:

Vi =ViUVa

The global aspect initial condition and the aspect facet
initial condition are both conjoined with the module
initial condition:

O =0; ANO4 A Oy

The new set of transitions 7;* consists of the module
transitions, possibly modified by the facet abstraction
and restriction instructions, and the facet transitions.

Let 7 € 7; be a module transition with transition re-
lation p-, and let 8 = {(¢1, W1), ... (¢x, W)} be the
set of abstraction instructions of aspect facet ;. Then
the abstracted transition 73 has transition relation

X . p-

where
x=Uw
JEI
where [is the index set containing the indices of the

abstraction instructions whose condition is implied by
the transition relation, that is,

I'={j|1<j<kandpr — ¢;}

Thus the variables associated with those abstraction
instructions whose condition is implied by the transi-
tion relation are projected out of the transition rela-
tion.

Similarly, let € = {(%1,x1), .., (¥, xx)} be the set of
restriction instructions for aspect facet ;. Then the
abstracted and restricted transition 7g. has transition
relation

X . pr A /\ X
jer
where
I={j|1<j<kandp, -}
is the index set containing the indices of the restriction
conditions implied by the transition relation.
For example, consider a transition 7 with transition
relation
pr: T=bins>0AT =4l

and abstraction and restriction instructions

B: A(m=b,{x"}), (m =ts,{z})}

e: {(m=t, 7" =45}

Clearly p, implies the first abstraction condition in J,
but not the second, and thus only 7’ is projected out,
resulting in an abstracted transition 73 with transition
relation

prgt m=L1 Az >0
Subsequent application of the restriction condition then
results in the transition 75 with transition relation
Prae r=lAz>0AT =l
Thus, the effect of 3 and € on 7 is to redirect the control
flow of 7 to a new location.

Using the above notation, the new set of transitions
7;* can now be given as

7;*:{7',@#1.|’r€7;} U Tai

4. ASPECT EXAMPLES

The aspect model introduced in the previous section is suffi-
ciently expressive to represent many of the aspect constructs
used in practical languages such as AspectJ [6]. In this sec-
tion we present some examples of how these constructs can
be represented in our model.

60 . el
81 . £n+1 gnew
ly: s = ly: s
ls3: ‘s
la: ‘,
M A’Lnse'rt (M)

Figure 4: Inserting a statement before a given state-
ment s

Insert Before

The most common aspect action is to introduce one or more
statements before (or after) a given statement. Given a se-
quential program represented by the modular system M :
(M) with control variable 7 with range (g ... ¢,, the follow-
ing aspect inserts transition 7°“ with (unspecified) transi-
tion relation p™*" just before a given statement s.

Ainsert = <07 true, a>

The set of global variables is empty as no global state needs
to be introduced, and there are no restrictions to the global
initial condition. There is one aspect facet,

a = (0, true, {7}, B, €)

The set of local variables is empty and there is no change
to the initial condition.®> The facet transitions include the
transition to be introduced, 7", The abstraction condition
3 needs to abstract the transition relation of the statement
before s to enable redirection of control to the new transi-
tion:

8= {(7r' = preloc(s), {Tr'})}

that is, variable 7’ is projected out from transition relations
in which the control variable is set to the prelocation of
statement s. Finally e restricts the same transitions to direct
control to a new program location ¢,1, not occurring in the
program

e = {(n’ = preloc(s), 7" = tny41)}
The transition relation of the new transition now becomes

new

prnew 1 P AT = bni1 A = preloc(s)

that is, the new transition is associated with the new pro-
gram location and its post location is the prelocation of the
given statement s.

Figure 4 shows the effect of the aspect in SPL program no-
tation. Note that the above aspect is only one way of rep-
resenting this construct. Others are possible and may be
convenient in different situations (for example, if one does
not want to modify the range of the control variable).

Logging
Given a system M : (M1, Ms), the following aspect counts
the changes to system variable x:

Aogging = ({Nz} , No = 0,1,)

3For simplicity we assume that s is not the first statement
of M; if it is we do need to modify the initial condition.

It introduces a global aspect variable N;, initialized to 0, to
record the number of changes and includes two aspect facets
a1,2:

a2 : {0, true, 0,0, €}

whose only significant component is the restriction instruc-
tion

e={(true, (2’ #2 - N, = No + 1) A (' =2 — N, = N.))}

whose effect is to add the above conjunct to all transitions
in M 2, incrementing N, when z is modified, and leaving it
unchanged otherwise.

An alternative restriction instruction is
€= {(ac/ #x,N, =N +1),(' =z,N, = NE)}

which, when used in actual program construction, would
lead to a more efficient program. However, it relies on our
ability to decide whether a transition relation implies the
restriction conditions, which, in general, may not be decid-
able.

Adding synchronization

Consider a system M : (M1, M;) with two parallel processes
with control variables 1 2 ranging over program locations
lo...ln and mg ... my respectively, that uses a resource S
that requires mutually exclusive access. The following as-
pect adds protection of the resource using the Bakery syn-
chronization mechanism shown in Section 2.

= ({y1,92}, 11 =0Ay2 = 0,01, a2)

Aezclusion

Two global variables are introduced, both initialized to 0.
The two aspect facets are defined as follows:

1 <0, true, {T11,T12,T13} ,ﬂl, €1>
with

pro i m=lpp AT =Lopa Ayh =1p+1
Prig . W1 =Lnta Ay = preloc(S1) A (y2 =0V y1 < y2)
Prig @ T = Lnts AT € postloc(S1) Ayy =0

where £p11 ... ¢n43 are new program locations not occurring
in the program. The abstraction instruction is given by

1= {(7r1 = preloc(S1) V 7y = preloc(S1), {7’!'/1})}

eliminating the control flow from the statement using the
resource, and those preceding the statement that uses the
resource. The restriction instruction restores the control
flow:

o = (1 = preloc(S1), 71 = bnt1),
Y= (m = preloc(S1) A € postloc(Sh), 7} = £ny3)

Similarly,
ag = (0, true, {721, T22, T23} , B2, €2)
with

Pra1 ¢ T2 = Mi41 /\ﬂ'g=mk+2/\y’2:yl+1
Pros ¢ T2 = Myy2 ATh = preloc(S2) A (y1 =0V y2 < y1)
Proz ¢ T2 = M43 A 75 € postloc(S2) Ayy =0

and similar definitions for B2 and e2 as above.

Figure 5 shows the effect of the aspect in SPL program no-
tation.

fo:
£1: Si(uses S)
£2:

mo: ...
my: Sz(uses S)
ma:

(a) M :< M1, M> > using shared resource S

[shared y1,y2 : integer
where y1 =y =0

Zo: .

bpy1: Y1 =y2+1

Lnyo: await (y2 =0V y1 < y2)
01 S1(uses S)

£n+3: Y1 = 0

| /o :

[shared y1,y> : integer T
where y1 =y2 =0

mo: e

Met1: Y2 :=9y1 +1

Mpt2: await (y1 =0V ya < y1)
mi: Sa(uses S)

mr4+3: Y2 :=0

M2 . .

(b) Aeczciusion (M) ensuring mutually exclusive access to S

Figure 5: Adding synchronization

lo: 1:=2 h
¢1: while i < N do
[fz: ali] := f(a[i — 1], ad], ali + 1])
l3: 1: =1+ 1
la: 1:=1
l5: while i < N — 1 do
[fa: ali] := g(a[i])]

br: i:=1+1

Figure 6: Program SERIES

Loop Fusion

Our model of aspects is sufficiently expressive to represent
loop fusion, a transformation often useful in image process-
ing to optimize cache performance. Consider program SE-
RIES shown in Figure 6. Assume the program has control
variable 7w with range 0..8, such that m = ¢ when control is
at location #;.

The following aspect merges the two loops starting at £ and
652
Afusion = (0, true, a)
with
a = (0, true, {1}, ¢€)
with abstraction instruction
B={(r=1vr=2vr=17{x"})}
and restriction instruction

(r=1,\E<NAT =2)V(i>NA7 =28))
(m=2,7"=9)
(r=7,7"=3)

The transition relation of the newly introduced transition is

prim=9 AT =6 Ai=i—1

[lo: 1:=2]
¢1: while i < N do

ls:

Figure T: Afusion(SERIES)

The result of applying Afu sion, tO Program SERIES is shown
in Figure 7.

5. ANALYSIS OF ASPECTS

Properties of reactive systems are often specified in some
form of temporal logic. For example, the property that in
all program behaviors the value of system variable z does
not exceed 10 can be specified by the linear temporal logic
(utL) formula

O(z < 10)
where the O-operator means “always”. Other temporal op-
erators are provided that state that some condition p must
eventually be fulfilled (Op), or that some condition p holds

until another condition ¢ holds (pl{q). The precise semantics
of LTL can be found in [9].

Verifying that a system S satisfies a specification expressed
as an LTL formula ¢, usually written

Sk o

consists of proving that all program behaviors of S satisfy
¢, that is

L(S) € L(¢)

where L£(¢) is the set of all behaviors (infinite sequences of
states) that satisfy ¢.

Property Inheritance
The definition of a formal semantics of aspects now allows
us to study questions of the type

ME@o,...
AM) E ¢

for some temporal property ¢; that is, what restrictions on
aspects guarantee preservation of system properties. For
example, it is easy to see that for a given safety property ¢

M |: @,,BAZQ,TAZQ
AM) E ¢

where 34 = () stands for 5; = 0 for all aspect fragments «;
in A, and similarly, 74 = @ stands for 7; =) for all aspect
fragments. Clearly all aspects in which no abstraction is
applied, that is, no program behaviors are added to the sys-
tem, and no new transitions are introduced, should preserve
any safety property. Note that liveness properties may not
be preserved as restriction may disable transitions necessary
to achieve some goal.

As was suggested in an early work on superimposition [5],
aspects can be classified by their inheritance properties. For
example, one can distinguish monitoring aspects, which per-
form pure augmentation and therefore preserve all temporal
properties, requlatory aspects, such as the one given above,
which may turn unfair computations into fair ones, and thus
cause liveness properties to be violated, and all other as-
pects, which cannot make any guarantees. We expect to be
able to make a finer classification for this last class.

Property SuperImposition

Similarly, one may develop a notion of aspects satisfying cer-
tain properties and determining what restrictions on mod-
ule systems are required to ensure that the resulting system
satisfies the property, that is, under what conditions can we
guarantee

AEo,...
AM) E ¢

Aspect Interaction

The third question that can be studied in this framework is
aspect interaction, that is, under what conditions does the
following hold:

L(A1(A2(M))) = L(A2(A1(M)))
That is, is the order of applying aspects significant?

6. DISCUSSION AND FUTURE WORK

Extensions

The model presented in this paper is the basic model upon
which we intend to build several extensions. A first desir-
able extension is parameterization. In our current aspect
description language, variables, predicates and transitions
must be specified literally. It is a straightforward extension
to the aspect description language to allow aspects to be
parameterized by the components appearing in the aspect
fragments, such as 3, € and 7. A more challenging exten-
sion is to add the capability of capture of context as, for
example, provided in AspectJ.

The current model relies on rather coarse abstraction, po-
tentially causing the set of behaviors to grow larger than
necessary, thus making it harder to prove property preser-
vation. We are currently investigating whether a more fine-
grained abstraction such as assertion-based abstraction [2]
would allow to increase the accuracy of the abstraction in a
useful way.

For ease of exposition we have omitted fairness in this paper.
To investigate inheritance and superimposition of liveness
properties, fairness properties will have to be included.

Constructing systems

The model as presented cannot be used directly to con-
struct new systems from aspects and base systems. Ab-
straction and restriction depend on our ability to decide the
validity of the implications governing their applicability. In
all examples shown these implications were decidable and
easy to check. It would be interesting to determine which
constructs can be expressed by decidable conditions. We
are currently implementing a construction method in STeP
(Stanford Temporal Prover) [1], using decision procedures
to decide applicability, to experiment with the various con-
structs.

7. REFERENCES

[1] BI@RNER, N. S., BROWNE, A., CoLON, M.,
FINKBEINER, B., MANNA, Z., SirmA, H. B., AND
URIBE, T. E. Verifying temporal properties of reactive
systems: A STeP tutorial. Formal Methods in System
Design 16, 3 (June 2000), 227-270.

[2] CoLON, M. A., aND URIBE, T. E. Generating
finite-state abstractions of reactive systems using
decision procedures. In Proc. 10" Intl. Conference on
Computer Aided Verification (July 1998), A. J. Hu and
M. Y. Vardi, Eds., vol. 1427 of LNCS, Springer-Verlag,
pp. 293-304.

[3] FINKBEINER, B., MANNA, Z., AND SipMaA, H. B.
Deductive verification of modular systems. In
Compositionality: The Significant Difference,
COMPOS’97 (Dec. 1998), W.-P. de Roever,

H. Langmaack, and A. Pnueli, Eds., vol. 1536 of LNCS,
Springer-Verlag, pp. 239-275.

[4] FISLER, K., AND KRISHNAMURTHI, S. Modular
verification of collaboration-based software design. In
International Conference on Foundations of Software
Engineering (2001).

[5] KATzZ, S. A superimposition control construct for
distributed systems. ACM Trans. Prog. Lang. Sys. 15,
2 (April 1993), 337-356.

[6] KiczALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN,
M., PALM, J., AND GRISWOLD, W. Getting started
with AspectJ. Communications of the ACM 44, 10
(October 2001), 59-65.

[7] KiczALES, G., LAMPING, J., MENDHEKAR, A.,
MaAEDA, C., LopEs, C., LOINGTIER, J., AND IRWIN, J.
Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP) (1997), vol. 1241 of LNCS, Springer-Verlag.

[8] LAMPORT, L. A new solution of Dijkstra’s concurrent
programming problem. Communications of the ACM
17, 8 (1974), 435-455.

[9] MANNA, Z., AND PNUELI, A. Temporal Verification of
Reactive Systems: Safety. Springer-Verlag, New York,
1995.

