
Model Checking Applications of Aspects and
Superimpositions

Marcelo Sihman and Shmuel Katz
Department of Computer Science

Technion - Israel Institute of Technology
Haifa 32000, Israel

{sihman, katz}@cs.technion.ac.il

ABSTRACT
The model checking of applications of aspects is explained,
by showing the stages and proof obligations when a collec-
tion of generic aspects (called a superimposition) is com-
bined with a basic program. We assume that both the basic
program and the collection of aspects have their own spec-
ifications. The Bandera tool for Java programs is used to
generate input for model checkers, although any similar tool
could be employed. New verification aspects and superimpo-
sitions are defined to modularize the proofs, and separate the
proof-related code from the program and the aspects. This
allows generating and activating a series of model checking
tasks automatically each time a superimposition is applied
to a basic program, achieving superimposition validation. A
case study that monitors and checks an underlying bounded
buffer program is presented.

1. INTRODUCTION
Aspects help to isolate cross-cutting concerns in programs
and designs. Many researchers have been working on pro-
gramming and design techniques, software evolution and
other implications of AOP. However, little work has been
done about formal verification of aspects. In this paper,
we show in detail how to verify the combination of collec-
tions of aspects over basic programs, using model checking
techniques. The use of special aspects for verification is
also presented, providing yet another natural application of
aspect-oriented software design.

We introduce this approach as a new feature of SuperJ, an
AOP construct that we have proposed in [15]. SuperJ pro-
vides language support for defining collections of parameter-
ized aspects independently of any basic program, where such
a collection is called a superimposition. A superimposition
is a module describing an algorithm that may be applied to
different underlying basic programs. A brief introduction to
SuperJ is presented in Section 2.

In this paper we consider how model checking of software
can be used in the formal verification of combinations of
superimpositions and basic programs. Model checking has
the advantages of automatic verification (in that difficult
invariants do not need to be supplied, as is the case in for-
mal verification based on theorem proving), yet provides full
verification, as long as any data abstractions preserve the
properties being checked. Additionally, it has proven pop-

ular with verification of hardware designs mainly because
it provides counter-examples when the property of interest
does not hold.

We have chosen Bandera [5] as the prototype generator of
input to model checkers such as SMV or Java Pathfinder,
and thus use Bandera’s specification notation BSL for de-
scribing temporal properties to be model checked. A brief
introduction to Bandera is given in Section 3.

When binding a collection of aspects (a superimposition) to
a basic program (a collection of basic classes), we need to
bind each relevant class of the basic program to a generic
aspect (of the superimposition), where basic classes may be
left unbound to any generic aspect if they do not play a role
in the superimposed algorithm.

In a superimposition, we specify assumptions about the ba-
sic programs and parameters to be bound and desired results
that must be true in the augmented program, where an aug-
mented program is the result after binding a superimposition
to a basic program. We assume here that the result of such
binding and instantiation (often called weaving) is a Java
program in itself, rather than, for example, Java byte-code.
(The implications of this assumption for our implementa-
tion are considered later.) A superimposition is correct if,
when the aspects in it are woven into a basic program that
satisfies the superimposition’s assumptions, the augmented
program satisfies the desired results and does not violate the
original specification of the basic program.

As will be shown, in Bandera, code is added to the program
to be model checked in order to define functions, predicates,
control locations, and assertions used only for the model
checking. We take advantage of the superimposition con-
struct to define verification aspects that are used to sepa-
rate these additions from the code of the programs. All
of the verification aspects concerning the assumptions are
grouped into an assumptions superimposition, and similarly,
those related to the results are in a results superimposition.
The superimpositions and basic programs of the application
under consideration can thus be kept free of verification aug-
mentations. This is possible in SuperJ because it supports
weaving multiple superimpositions over a basic program, so
both the application superimpositions and those needed for
verification can be combined before applying Bandera to

generate input for a model checker.

There are several possibilities for using the approach seen
here to check superimpositions and their combination with
basic programs. These vary according to the modularity
in the proof itself, and whether we wish to prove the su-
perimposition correct independently from any specific basic
program. In the case of model checking, this may be done
by writing a suitable abstraction of a basic program that
respects the superimposition requirements, along with an
inductive proof. However, we claim here that a more prac-
tical alternative is to use the verification superimpositions
to set up the automatic generation and activation of four
model checking tasks each time a superimposition is applied
to a basic program. This procedure, explained and justified
later in the paper, is known as superimposition validation.

2. SUPERJ
SuperJ introduces constructs that extend the expressiveness
and modularity of AOP. Among the new facilities in Su-
perJ are grouping related aspects into a superimposition,
providing specifications, extending parameterization of as-
pects, dealing with interaction and interference among as-
pects, and combining superimpositions to obtain new su-
perimpositions. The new superimposition construct comes
from the merging of ideas from two distinct research sub-
jects: ‘classic’ superimposition and AOP.

Well-known examples of ‘classic’ superimpositions are ter-
mination and deadlock detection, monitoring or debugging,
adding scheduling restrictions, imposing mutual exclusion,
or bounding the possible values of variables that were un-
bounded in the basic program. These examples have in com-
mon the need to add or superimpose an algorithm over a
basic program. Numerous suggestions ([1, 2, 3, 4, 10, 11])
have been made for a syntax that allows augmenting pro-
gram units, such as processes. A brief survey about several
proposals of a language construct for superimpositions may
be found in [16].

In SuperJ, a superimposition is defined as a collection of
generic parameterized aspects and singleton concrete classes.
A generic aspect has no built-in connection with any pro-
gram unit of any basic program, and in contrast to usual
aspects, a generic aspect contains an extensive parameter
list that allows binding it to any appropriate basic class.
The singleton concrete classes define unique objects that
must be instantiated in an augmented system, where these
unique objects interact with the generic aspects. We have
defined an AspectJ-based implementation for SuperJ, and
have written a preprocessor that translates SuperJ to pure
AspectJ code. The same preprocessor is responsible for
several tasks, such as: binding arguments from the basic
program (classes, methods, etc.) to the parameters of the
generic aspects, and applying a superimposition to a basic
program, generating concrete aspects from generic aspects
and then weaving them to the basic classes.

3. BANDERA
The Bandera Tool Set [5], as defined by its authors, is an in-
tegrated collection of program analysis, transformation, and
visualization components designated to allow experimenta-
tion with model-checking properties of Java source code.

Bandera takes as input an augmented Java source code and a
program specification written in Bandera’s temporal Specifi-
cation Language (BSL), and produces a program model and
a specification as input to one of four model-checking appli-
cations: SMV [12], Spin [8], dSpin [9] and Java PathFinder
[7]. This ‘input’ generated by Bandera is written in the
model and specification languages of one of the four model-
checking applications mentioned. Then Bandera uses the
model-checking application to prove whether the model sat-
isfies the required specification (the Java program satisfies
the BSL specification). If the specification is not satisfied,
then a counter-example is returned, as is common in model-
checking tools. Moreover, Bandera shows the problematic
execution path, which does not satisfy the required specifi-
cation, directly in the Java code.

Bandera deals with the state explosion problem, as the pro-
gram state model must be finite, by providing data ab-
straction and program slicing features when customizing the
model. These features help produce a much simpler finite-
state model of the Java program.

To understand the changes we propose in the verification
process, we first need to give a brief introduction to the
specification and verification stages in Bandera, and other
software model checkers. We ignore some actual limitations
imposed by Bandera due to implementation restrictions or
arbitrary design decisions not to implement some features
of Java, and relate to a somewhat idealized version.

Given a Java program, we need to augment it to include
definitions using BSL. For a simple assertion about the state
whenever a given location is reached, or pre and post-condi-
tions of a method, we write the assertion definitions - using
BSL - as Javadoc comments directly in the source code. An
assertion is identified by a @assert tag in BSL, where the
three assertion types supported by BSL are identified by
the identifiers: LOCATION, PRE and POST.

The specification of a more general temporal program prop-
erty is divided into defining the predicates to be used in
the property’s definition, and then separately writing the
property itself, using the defined predicates. Predicates are,
like simple assertions, also planted directly in the source
code, where there are several types of predicates that Ban-
dera allows us to define. For example, we may define a
location predicate, which is true whenever the location is
reached (and false otherwise), by introducing a Java label
at a given control point (inside a method) of the program,
and also writing a Javadoc comment (right before the asso-
ciated method heading) containing the predicate definition
in BSL.

An instance predicate defines a given property that is not
connected to any control point of the program, e.g., invariant
properties that must hold during the whole life cycle of an
object. In addition, it is also possible to define predicates as-
sociated with two different method call control points: when
a given method is invoked and when it returns a value. In
this case, the predicate evaluates to true both when the
given method is invoked and when it returns a value. Ev-
ery predicate definition is written in a Javadoc comment.
A predicate definition is identified by a @observable tag in

BSL, where the four predicate types supported by BSL are
identified by the identifiers: LOCATION, EXP, INVOKE
and RETURN; location, instance, method invoking, and re-
turn predicates, respectively.

In the second step needed for defining a given temporal prop-
erty, after having defined all the predicates that it needs,
we need to specify the required temporal property using
the temporal specification patterns supported by Bandera,
which are: absence, existence, precedence, response and uni-
versality. Let P , Q, R be predicates defined using BSL. P
is absent in a program if it never evaluates to true. P ex-
ists if it is evaluated to true at least once in the program.
P precedes Q when P does not evaluate to true before Q
is true (which is automatically satisfied when P is absent).
P responds to Q if after Q is true, then P exists (which is
automatically satisfied when Q is absent). P is universal if
P always evaluates to true.

In Bandera’s temporal specification pattern system, we may
require a temporal property to hold globally, i.e. during all
the program execution, or at certain points during the pro-
gram execution, such as after Q, after Q until R, before
Q, between Q and R, where Q and R are predicates defined
using BSL.

The temporal specification of a given program is stored in
a separate specification file. After having specified all the
assertions and temporal properties required for verifying the
correctness of the program, we may use Bandera’s graphic
tool to define a verification session and supply all the data
needed, such as the names of the files containing the source
code and the specification. When running a correctness
check, we may choose exactly which of the assertions and
temporal properties defined we want to verify.

Moreover, it is also possible to use data abstractions to sim-
plify the finite-state model generated by Bandera. For ex-
ample, in a pipeline program shown in [6], a series of integer
values, ranging from 1 to 100, is sent from the first stage
to the last, passing by all the pipeline stages. When the
pipeline program finishes, the first stage sends a 0 value,
and then all the stages finish consecutively. In the specifi-
cation of this example, the integer values - ranging from 1
to 100 - sent in the pipeline are not important. We only
need to know when a stage receives a 0 value. Therefore,
we may use Bandera’s Signs data abstraction, which will
generate only three different states for the possible values
that are sent in the pipeline: negative, zero and positive;
instead of more than a hundred different states. Bandera’s
graphic tool has an interface for defining data abstractions,
which we can afterwards store in a separate file. We may
also select Bandera’s program slicing feature for simplifying
the finite-state model generated. After defining the verifi-
cation session, we only need to run the verification checker,
obtaining formal verification of the property if the model
checking completes without discovering an error, and other-
wise provides a counter-example in terms of the Java code.

In the Appendix, we use a bounded buffer program to give a
brief demonstration of all the Bandera concepts introduced
in this section. This program is a slightly changed version
of an example seen in [6]. Explanations of the example may

be also found in the Appendix.

4. PROVING CORRECTNESS IN SUPERJ
4.1 Introduction
In this and the following sections we explain and demon-
strate the different options for verifying that a combination
of a superimposition and a basic program is correct, as sup-
ported by the new features of SuperJ. In Section 4.2, we
explain the verification of a combination of a superimposi-
tion and a basic program. In Section 4.3, we introduce the
intuitively attractive option of proving the correctness of a
superimposition independently of any basic program, and
discuss the practicality of this option. In Section 5, we use a
simple superimposition example to demonstrate some of the
concepts introduced by the new SuperJ features, and discuss
the implications for superimposition validation in Section 6.

4.2 Superimposition over a Basic Program
In this subsection, we assume a superimposition and a ba-
sic program. We want to apply the superimposition over
the basic program, checking that the basic program satis-
fies the superimposition assumptions and that the resulting
augmented program is indeed correct, i.e., satisfies all the
desired results of the superimposition, as well as the original
specification of the basic program. The simplest possibility
is to simply view the result of weaving the superimposi-
tion’s aspects with the basic program as a Java program
that should satisfy the original specification, plus the result
assertions of the superimposition. Following the description
in Section 3, we then may build in all the needed functions,
predicates, labels, and BSL statements to the augmented
program, create the separate specification file, and model
check all at once that the needed temporal BSL assertions
are satisfied (or obtain counter-examples).

This is the simplest option for verifying the correctness of
a combination of a superimposition over a basic program,
since we directly consider the augmented program, and add
in all of the needed predicates and assertions in BSL, as seen
in the previous section. However, in this case the assump-
tions and desired results of the superimposition are already
instantiated for the combination, and are mixed together
with the original specification of the basic program. When
a new combination is done, a completely new annotation has
to be added before Bandera can be applied. This makes the
model checking impractical when the superimpositions are
to be used in many contexts. Thus we now propose a better
option.

In order to more clearly organize the proofs, and thus to
help in identifying the source of any errors, new verification
aspects and superimpositions can be used to modularize the
treatment. This allows having regular superimpositions and
basic programs, free of verification definitions. The extra
definitions needed for Bandera’s verification are isolated in
dedicated aspects, which are used just for proving the cor-
rectness of the augmented program in separate steps.

When completely separating the verification definitions from
the superimposition and basic program, we have a series of
verification aspects that may be sequentially applied to the
basic program, or may be combined using combinations of

superimpositions. Moreover, we may now define a verifica-
tion superimposition as a collection of verification aspects.
We may classify the verification superimpositions in three
different types, defining:

Spec the specification of the basic program;

Asm the superimposition assumptions;

Res the superimposition desired results.

The Spec superimposition will have one or more verifica-
tion aspects, which will contain (AspectJ) advice declara-
tions needed for introducing the verification definitions of
the basic program’s specification. It also includes the BSL
temporal properties which in Bandera are kept in a separate
file.

The Asm superimposition, dealing with assumptions, will
have a collection of verification aspects: one verification as-
pect for each generic aspect that assumes some properties
about the basic class to be bound to it; and one verification
aspect for the global assumptions of the superimposition
that must be satisfied by the basic program, where these
assumptions are not connected to only a generic aspect and
its (bound) basic class. Clearly, the assumptions should be
as weak as possible, in order to allow applying the superim-
position to a large class of basic programs.

A Res superimposition is very similar to an Asm superimpo-
sition, except that it specifies the superimpositions desired
results instead of its assumptions. Res will also have a col-
lection of verification aspects, like Asm.

The complete verification process is composed of four steps:

1. apply Spec over the basic program and check its cor-
rectness;

2. apply Asm over the basic program, and check that the
basic program satisfies the superimposition assump-
tions;

3. apply the superimposition over the basic program, ap-
ply Spec over the augmented program, and then check
that the superimposition does not cancel any desired
result of the basic program;

4. apply the superimposition over the basic program, ap-
ply Res over the augmented program, and check that
the augmented program achieves the desired results.

Note that Spec is used twice, and that the separation of the
verification definitions into aspects and superimpositions is
a cleaner solution than the comments used by Bandera to
sometimes use and sometimes ignore the verification defini-
tions. Of course, if some of the model checking has already
been done for a basic or augmented program, it need not be
redone. For example, if the basic program has been shown
to satisfy Spec once, this need not be redone when applying
a superimposition. The parameterization in the verification
aspects allows their reuse for different basic programs, with
different weavings and instantiations. The advantages of
this reuse are further considered in the Discussion section.

4.3 Proving Superimposition Correctness
In this section we consider how to prove that a superimpo-
sition is correct independently of any basic program. If we
succeed, then we are assured that when this superimposition
is applied over a basic program that satisfies its assumptions,
then the augmented program will have the superimposition’s
desired properties. Such a verification is desirable if the su-
perimposition is intended to be put in a library for reuse in
many contexts. Of course, if such a proof has been done, we
still need only the model checking proofs that the basic pro-
gram satisfies the assumptions of the superimposition, and
that the result of weaving does not violate the specification
of the basic program.

The generic correctness requirements and stages in such a
proof are not difficult to state in terms of inductive asser-
tions about the structure of every possible basic program to
which the superimposition can be applied. However, any
such proof has a part which is inductive, and thus non-
algorithmic, requiring the invention of inductive assertions.
This is true both when the entire proof is based on inductive
theorem proving, and when the proof can be divided into a
model checking part and an inductive part proving that if
the model checking part is successful, then the desired con-
clusion is justified.

One way to do such a combination of model checking with
an inductive proof to obtain a correctness proof of a super-
imposition uses what can be called dummy basic programs,
first proposed in [11]. Note that model checking tools verify
a model of a fully defined program by checking that the spec-
ified properties hold in all execution paths of the program.
A superimposition, however, is itself not a program, since it
cannot be run, so there are no execution paths. Therefore,
we need to write an abstraction of a basic program that fits
the superimposition’s assumptions, so that we can apply the
superimposition over the abstraction. Then we will have ex-
ecution paths that may be used to prove the correctness of
the superimposition combined with the abstract program.
This program abstraction may be seen as a dummy basic
program.

The dummy program will have no desired results, since it
does not do any useful computation. Thus, there will be
no Spec verification superimposition in the correctness ver-
ification process. On the other hand, the other types of
verification aspects and superimpositions will still appear,
as explained in the previous section. The abstract program
must have classes and states that satisfy the assumptions
of the superimposition, and also states that correspond to
predicates tested by the superimposition or locations that
can be reached. That is, if a predicate is tested whenever a
(parametric) method is called, the abstract program should
have a state where the predicate is false when a (correspond-
ing concrete) method is called, and another where it is true.

This is analogous to the abstraction seen in usual Ban-
dera verifications, where only the ‘significant’ differences are
maintained, as in the abstraction of message values already
mentioned. It is also related to work on model checking a
representative model built from a model-generating graph
grammar and then concluding that any model that can be
generated from the grammar will be correct [14].

Ideally, if the model checking succeeds for the combination of
the superimposition over the abstract basic program, then
it would succeed for any basic program satisfying the as-
sumptions of the superimposition. However, techniques for
proving this ideal conclusion are not yet developed, and in
any case they are inductive except when there are trivial
structural similarities between the ‘real’ basic program and
the dummy actually model checked. If done successfully,
any basic program satisfying the assumptions, and with suf-
ficient components and states to allow binding to the super-
imposition and its aspects, can be abstracted to this canonic
abstract basic program.

In general, the justification that a representative abstraction
is indeed sufficient can itself involve infinite or very large
state spaces and may require inductive theorem proving.
In the Discussion section, we show that by carefully using
the techniques in the previous subsection, it may not be
necessary to generate such non-algorithmic proof obligations
to obtain fully verified combinations of aspects and basic
programs in practice.

5. CASE STUDY
5.1 Introduction
In this section, we demonstrate the stages in verifying a
combination of a superimposition and a basic program us-
ing SuperJ by means of a case study over the Monitoring
superimposition, which is shown in Figure 1. Monitoring is
a simple superimposition that gathers statistics on basic ob-
jects, such as counting the total number of external method
calls for all relevant basic objects. The superimposition does
not modify the values of the variables. It also checks that
objects intended to be constant, actually are - and stops the
program when a violation is discovered. It thus does reg-
ulate the behavior of the basic program and can affect its
properties. In reading the example, note that SuperJ has
a keyword BC (an abbreviation for Bound Class) which is
like this of Java, indicating the class to which this instance
of the aspect is bound. Formal parameters are in capital
letters, to distinguish them from local variables.

The Monitoring superimposition contains two generic as-
pects (Constant and Mutable) and one singleton class (Co-
ordinator). Constant and Mutable extend the Common ab-
stract aspect, which contains code common to both generic
aspects. The Common aspect defines the Coordinator class
and creates its single instance coord, which is used by Con-
stant and Mutable; moreover, Common’s advice increments
the nCalls counter after each external call to any method
of the bound class, where each aspect instance will have its
particular nCalls counter. The Common’s allExternalCalls
pointcut is defined in both generic aspects of the superimpo-
sition (Mutable and Constant). The join points determined
by this pointcut - in some bound (basic) object - are all the
method calls where the basic object is the callee, but not
the caller. In a basic object bound to Mutable, after each
field assignment performed, Mutable’s advice increments the
nAssigns counter, where each instance of Mutable has its
particular nAssigns counter. The only instance of Coordi-
nator (coord) accumulates the global statistics gathered by
Constant and Mutable. Basic objects intended to be con-
stant, whose field values should not be changed, must be
bound to the Constant aspect; and then, if a field assign-

superimposition Monitoring {
class Coordinator {

private int totCalls = 0;
private int totConCalls = 0;
private int totMutCalls = 0;
private int totMutAssigns = 0;

public void conMethodCount(int x) {
totConCalls += x; totCalls += x;
}
public void mutMethodCount(int x) {
totMutCalls += x; totCalls += x;
}
public void mutAssignCount(int x) {
totMutAssigns += x;
}

}

abstract aspect Common {
protected final static Coordinator coord =
new Coordinator();

protected int nCalls = 0;

abstract protected pointcut allExternalCalls();
after(): allExternalCalls() {
nCalls++;
}

}

aspect Constant(EM) extends Common {
protected pointcut allExternalCalls(): !cflowbelow
(within(Element)) && execution(* BC.* (..));

before(): set(* BC.*) &&
!cflow(initialization(BC.new(..))) {

System.out.println(”Constant err: illegal assignment”);
System.out.exit(-1);
}
after(): execution(* BC.EM(..)) {
coord.conMethodCount(nCalls);
}

}

aspect Mutable(EM) extends Common {
protected int nAssigns = 0;

protected pointcut allExternalCalls(): !cflowbelow
(within(Element)) && execution(* BC.* (..));

after(): set(* BC.*) {
nAssigns++;
}
after(): execution(* BC.EM(..)) {
coord.mutMethodCount(nCalls);
coord.mutAssignCount(nAssigns);
}

}

Figure 1: A monitoring superimposition.

ment is tried, the aspect prints an error message and finishes
the execution of the augmented program.

Each basic object augmented by Mutable will call coord’s
mutMethodCount and mutAssignCount methods, while
objects bound to Constant will call coord’s conMethodCount
method. The mutMethodCount and conMethodCount meth-
ods both update the totCalls common method call counter,
and, respectively, update their totMutCalls and totConCalls
individual counters. The mutAssignCount method updates
the totMutAssigns assignment counter. Of course, Moni-
toring could make more sophisticated use of the gathered
statistics. Generalizations of the same idea should be useful
for bookkeeping and debugging. In particular, superimposi-
tion is especially appropriate when the generic aspects have
more interaction, as when the statistics collected by each
generic aspect are combined.

The assumptions and desired results of the superimposition
are introduced stepwise in Section 5.2, where we verify the
correctness of Monitoring over the bounded buffer program
(seen in the Appendix), which is used as an example of a
basic program.

5.2 Superimposition over a Basic Program
In this subsection we want to apply the Monitoring superim-
position over the bounded buffer basic program, and verify
the correctness of the augmented program, which we get
as a result of their combination. We apply Mutable over
BoundedBuffer, binding BoundedBuffer’s finish method to
Mutable’s EM parameter (an abbreviation for End Method).
In addition, we apply Constant over Element, binding El-
ement’s finish method to Constant’s EM parameter. We
show the whole verification process stepwise, as introduced
in Section 4.

In the first step, we want to check that the basic program
itself is correct, i.e., satisfies its specification. In the Ap-
pendix, we show the BoundedBuffer class with all the Ban-
dera specification definitions interleaved with its code, where
all these definitions are needed for verifying that the basic
program satisfies BoundedBuffer’s specification when using
Bandera. In our approach this is already the result of ap-
plying the Spec superimposition of the bounded buffer to
the original version of the program. This is given as input
to Bandera, defining a new verification session with all the
information needed by Bandera for running the verification,
as shown in Section 3. We then run Bandera’s verification
to check if all the properties specified are satisfied. In this
example, we succeed to show that the basic program is cor-
rect, since it indeed satisfies its specification, completing the
first stage of the model checking.

In the second step, we want to check that the basic program
satisfies all the assumptions specified by the superimposi-
tion. For this purpose, we use an Asm verification super-
imposition. Asm has a verification aspect for each generic
aspect of Monitoring that assumes some property about the
basic class to be bound to it. In addition, Asm has a verifica-
tion aspect for the global properties assumed by Monitoring
about the basic program, such as invariant properties, which
are not connected to only a specific generic aspect.

superimposition MonitoringAsm {
aspect CommonAsm {
/**
* @observable
* LOCATION[beforeCall] beforeCallLoc;
* LOCATION[afterCall] afterCallLoc;
*/

void around(BC C): target(C) &&
execution(* BC.*(..)) {

beforeCallLoc:
proceed(C);
afterCallLoc:
}
}
properties {

alwaysFinishProp: forall [bc:BC].
{BC.EM.beforeCall(bc)} exists globally;

singleNoCallAfterFinishProp: forall [bc:BC].
{BC.*.beforeCall(bc)}
is absent after {BC.EM.afterCall(bc)};

}
}

Figure 2: Monitoring’s Asm superimposition

A property that both Mutable and Constant assume about
basic classes is that the basic method that is bound to the
EM parameter is called exactly once, where the EM param-
eter must be bound to the last method that is called in the
basic object. In the sequel, the basic method bound to EM
is called bound EM. Another property that both Mutable
and Constant assume is that bound EM is the last method
called in every instance of the basic class.

As explained in Section 3, in a usual Bandera verification
session we write the specification of the temporal proper-
ties to be checked in a separate specification file. However,
in SuperJ, we write this specification in a new properties
section of the verification superimposition. We have writ-
ten a preprocessor that supports this design decision, which
separates the definitions in the properties section from the
rest of the superimposition code and then prepares a new
verification session for running the verification.

The specification of the properties assumed by the generic
aspects need to use two location predicates that must be
defined in the basic classes. These two predicates are defined
in the verification aspect by the same advice, as shown in
Monitoring’s Asm superimposition, seen in Figure 2.

The single Asm verification aspect must be applied over
all the basic classes to be bound to Constant and Muta-
ble. In the bounded buffer example, they are applied, in
turn, over Element and BoundedBuffer. The two predicates
defined in the verification aspects are associated with two
locations in each method of every basic class bound to Con-
stant or Mutable (e.g. Element and BoundedBuffer). Each
of these predicates is true during execution when the aug-
mented program reaches the control points where they were
defined, i.e., in an execution path. The control points asso-
ciated with these predicates (beforeCall and afterCall) are
right before the first and after the last commands executed

in the basic methods of Element and BoundedBuffer.

After having defined the two predicates needed for the verifi-
cation, we can write the two properties that, if satisfied, will
ensure that the basic program satisfies the two assumptions,
which are required by both Mutable and Constant. These
two properties are written in temporal logic using BSL, and
appear in the properties section of the Asm superimposition.

The first property, which is called alwaysFinishProp, checks
that bound EM is eventually called. However, that is not
enough, since we want this method to be called exactly once,
and no other method to be called after that. Therefore, the
second property (singleNoCallAfterFinishProp) checks that
no basic method will be called after bound EM is called.

We put a ‘*’ character in the place where we should write
the name of the basic method where beforeCall was defined.
The ‘*’ character fits every method of the basic class. Un-
fortunately, BSL does not support this special ‘*’ character.
In a usual Bandera specification, we need to write separate
temporal properties for each method of the basic class. How-
ever, our preprocessor overcomes this limitation, generating
all the properties needed for every method of the basic class.

In the example seen, both Mutable and Constant shared
exactly the same requirements, so in this particular case
we can use the same Asm aspect for both generic aspects.
However, if the assumptions required by two distinct generic
aspects differ, then we obviously need to write them in two
separate aspects. Moreover, Monitoring does not assume
any global property about the basic program, so there is
no Asm aspect for checking if the global assumptions are
satisfied.

At this stage, we are able to apply the verification super-
imposition over the basic program. We then create a new
verification session for checking the superimposition assump-
tions, and then run the verification in Bandera.

After having demonstrated the second step of the new ver-
ification feature, we now go on to the third step, where we
check that the superimposition does not cancel any of the de-
sired results of the basic program. Initially, we need to apply
the superimposition over the basic program, e.g., Mutable
over BoundedBuffer and Constant over Element. Finally, we
apply the Spec verification superimposition - containing the
verification definitions needed for checking the basic pro-
gram’s specification - over the augmented program. Here
we do not show the Spec superimposition, since we show
its verification definitions interleaved with the code of the
bounded buffer in the Appendix, together with its specifi-
cation file. We then supply all the data that Bandera needs
for the desired check and run the verification. If the aug-
mented program passes the verification, then we are assured
that the superimposition does not cancel any desired result
of the basic program.

In the fourth and last step of the verification process, we
want to check that the augmented program has all the de-
sired results specified by the superimposition. For this pur-
pose, we apply the superimposition over the basic program
(Monitoring over the bounded buffer program), and then

superimposition MonitoringRes {
/**
* @observable
* EXP Eq: (totCalls == (totConCalls + totMutCalls));
*/

aspect GlobalRes {
/**
* @observable
* LOCATION[beforeConMC] beforeConMCLoc;
* LOCATION[afterConMC] afterConMCLoc;
*/

void around(Coordinator C): target(C) &&
execution(void Coordinator.conMethodCount(int)) {
beforeConMCLoc:
proceed(C);
afterConMCLoc:

}
/**
* @observable
* LOCATION[beforeMutMC] beforeMutMCLoc;
* LOCATION[afterMutMC] afterMutMCLoc;
*/

void around(Coordinator C): target(C) &&
execution(void Coordinator.mutMethodCount(int)) {
beforeMutMCLoc:
proceed(C);
afterMutMCLoc:

}
}

aspect ConstantRes {
/**
* @observable
* LOCATION[beforeConFieldSet] beforeConFieldSetLoc;
* LOCATION[afterConFieldSet] afterConFieldSetLoc;
*/

before(): set(* Element.*) &&
!cflow(initialization(Element.new(..))) {

beforeConFieldSetLoc:
}
after(): set(* Element.*) &&

!cflow(initialization(Element.new(..))) {
afterConFieldSetLoc:
}
properties {
totCallsEqBeforeProp: forall [c:Coordinator].
{Eq(c)} is universal
before{Coordinator.conMethodCount.beforeConMC(c) ||

Coordinator.mutMethodCount.beforeMutMC(c)};
totCallsEqAfterProp: forall [c:Coordinator].
{Eq(c)} is universal
after{Coordinator.conMethodCount.afterConMC(c) ||

Coordinator.mutMethodCount.afterMutMC(c)};
until{Coordinator.conMethodCount.beforeConMC(c) ||

Coordinator.mutMethodCount.beforeMutMC(c)};
conObjTermIfSetProp: forall [bc:BC].
{BC.*.afterConFieldSetLoc(bc)}
is absent after {BC.*.beforeConFieldSetLoc(bc)};

}
}

Figure 3: Monitoring’s Res superimposition

we apply the Res superimposition over the augmented pro-
gram, where the Res superimposition checks that all the
desired results of Monitoring are present in the augmented
program. The complete Res verification superimposition is
shown in Figure 3.

A desired result that the superimposition requires the aug-
mented program to satisfy is that the value of Coordina-
tor’s field totCalls must be always equal to the value of its
totConCalls field plus the value of its totMutCalls field,
except when the augmented program is executing one of
the two methods of Coordinator that change the values of
these fields (conMethodCount and mutMethodCount). We
need to define four predicates in the Coordinator class be-
fore specifying the required property in BSL. In addition, an
instance predicate must be also defined, stating the desired
result itself. Thus, the Res aspect associated with Moni-
toring must contain the definition of the instance predicate,
and two advice declarations defining the other four predi-
cates needed.

Moreover, Constant has one desired result and Mutant has
none. The desired result of Constant is that the augmented
program terminates if a field assignment is tried in the basic
object bound to Constant. Therefore, we must write a Res
aspect associated with Constant. Mutable does not need a
separate Res aspect beyond the global required result of the
Monitoring superimposition.

The four predicates - defined by the global Res aspect - are
associated with the augmented program’s control points be-
fore and after the conMethodCount and mutMethodCount
method, respectively. The Eq instance predicate defines the
property that must be satisfied in the augmented program.
The two predicates - defined by the Res aspect associated
with Constant - will be true before and after a field assign-
ment is tried in the basic object bound to Constant (an
instance of Element).

We write the specification of the superimposition desired re-
sults, using BSL, in the properties section. In the two first
properties seen, we specify that the Eq property must hold
from the beginning of the execution of the augmented pro-
gram until either conMethodCount or mutMethodCount is
called, and after finishing to execute either one of them un-
til calling one of them again. The third temporal property
specifies that if the augmented object bound to Constant
(an instance of Element) reaches the control point right be-
fore a field assignment, then it will not reach the control
point right after the field assignment.

Above, we have seen a demonstration of the complete pro-
cess of verifying the correctness of a superimposition over
a basic program. The augmented program that we get
from applying Monitoring over the bounded buffer program
passes all the stages of the verification process. However,
some slight changes in the bounded buffer program could
cause it to not satisfy the assumptions required. For ex-
ample, if we substitute an infinite loop in place of the for
loops of InOut1 or InOut2 that take and add an element
from the buffer one hundred times, the model checking pro-
duces a counter-example and shows incorrectness. This is
because the finish methods of the buffer and its elements

would never be called, violating one of the assumptions of
the Monitoring superimposition.

If the Monitoring superimposition could change the indices
of the buffer of the underlying bounded buffer program, a
counter-example would be produced when Spec were model
checked for the augmented program (in stage 3), because
the assertions involving the indices would be violated.

6. DISCUSSION: SUPERIMPOSITION VAL-
IDATION

The separation of verification annotations into the different
verification superimpositions described above allows a clean
application of instances of model checking for combinations
of superimpositions and basic programs. Note that when
a verification superimposition is woven either with a new
basic program or with the augmented program obtained af-
ter weaving the application superimposition and the basic
program, the weaving process binds classes, methods, fields,
and pointcuts of the generic verification superimposition to
those of the application. No change is needed in Asm or
Res themselves. Of course, the specification of the new ba-
sic program, Spec needs to be produced, and expressed as a
verification superimposition.

Once the bindings have been determined, the entire pro-
cess is in principle automatic, ignoring practical restrictions
of the tools involved. When a superimposition is woven
with a basic program, SuperJ’s preprocessor generates As-
pectJ code, and AspectJ’s preprocessor is used in the mode
which generates source Java code. Then for each of the
four steps described, the appropriate verification superim-
position is woven with the basic or augmented program, as
appropriate, and the processing of SuperJ and AspectJ are
again activated, to obtain ‘Bandera-ready’ Java. Bandera
then is applied to generate input to a model checker such as
SMV, and the algorithmic model-checking either succeeds
in verifying or generates a counter-example.

Therefore, although it might seem expensive to model check
every combination of a superimposition with a basic pro-
gram, this is in fact a viable alternative to the inductive
(non-algorithmic and therefore very difficult) proof that a
superimposition is always correct. The time-consuming, and
difficult manual creation of the BSL annotations only needs
to be done once for each superimposition, even though the
model checker is used for each combination.

Such an alternative is analogous to the idea of translation
validation, first seen in [13], where assertions are generated
and automatically checked whenever a compiler is applied
to a source program. The correctness of the assertions im-
plies that for this activation the translation of the compiler
is correct. This is instead of a full verification of the cor-
rectness of the compiler, which is too difficult for non-toy
compilers. As here, the key to its practicality is that the
generation and verification of the needed assertions is com-
pletely automatic for each compilation, and only takes sec-
onds to perform. Similar ideas are seen in some versions of
proof-carrying code, that show there are no memory leaks
for a particular instance of an applet.

In this paper we have shown how superimposition validation

can be similarly applied whenever an application superim-
position is woven, if the needed verification superimpositions
have been prepared. The other alternative - of a full cor-
rectness proof for a superimposition - is, of course still a
desirable research goal. However, due to the inductive proof
involved, doubt remains that such results can be applied in
practice. In any case, the direction seen here does provide
the first pathway to practical machine proofs for combina-
tions of aspects and superimpositions with basic programs.

7. REFERENCES
[1] R. Back and K. Sere. Superposition refinement of

reactive systems. Formal Aspects of Computing,
8(3):324–346, 1996.

[2] L. Bougé and N. Francez. A compositional approach
to superimposition. In ACM Symposium on Principles
of Programming Languages, pages 240–249, Jan 1988.

[3] K. Chandy and J. Misra. Parallel Program Design - a
Foundation. Addison-Wesley, 1988.

[4] N. Francez and I. Forman. Interacting Processes.
Addison-Wesley, 1996.

[5] J. Hatcliff and M. Dwyer. Using the Bandera tool set
to model-check properties of concurrent Java software.
In CONCUR 2001, LNCS 2154, pages 39–58, Aug
2001.

[6] J. Hatcliff and O. Tkachuk. The Bandera tools for
model-checking Java source code: A user’s manual.
Technical report, Kansas State University,
Department of Computing and Information Sciences,
March 2001. http://www.cis.ksu.edu/%7Esantos/
bandera/tut/tut-html.tar.gz.

[7] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. International
Journal on Software Tools for Technology Transfer
(STTT), 2(4), Apr 2000.

[8] G. J. Holzmann and M. H. Smith. The model checker
SPIN. IEEE trans. SE, 23(5):279–295, 1997.

[9] R. Iosif and R. Sisto. dspin: A dynamic extension of
spin. In Proc. of the 6th SPIN Workshop, LNCS 1680,
pages 261–276, Sep 1999.

[10] H.-M. Järvinen, R. Kurki-Suonio, M. Sakkinen, and
K. Systä. Object-oriented specification of reactive
systems. In Proceedings ICSE’90, pages 63–71. IEEE
Press, 1990. http://disco.cs.tut.fi.

[11] S. Katz. A superimposition control construct for
distributed systems. ACM Trans. on Programming
Languages and Systems, 15(2):337–356, Apr 1993.

[12] K. L. McMillan. Symbolic Model Checking: An
Approach to the State Explosion Problem. Kluwer
Academic, 1993.

[13] A. Pnueli, O.Shtrichman, and M.Siegel. The code
validation tool(cvt) - automatic verification of a
compilation process. Software Tools for Technology
Transfer, 2:192–201, 1999.

[14] Z. Shtadler and O. Grumberg. Network grammars,
communication behaviors and automatic verification.
In Proc. of the international workshop on Automatic
verification methods for finite state systems, pages
151–165. Springer-Verlag, 1990.

[15] M. Sihman and S. Katz. Superimposition and
aspect-oriented programming. to appear in BCS
Computer Journal. Available at
http://www.cs.technion.ac.il/~katz/cj.ps.

[16] M. Sihman and S. Katz. A calculus of
superimpositions for distributed systems. In
Proceedings of AOSD 2002, pages 28–40. ACM Press,
Apr 2002.

APPENDIX
A. BOUNDED BUFFER EXAMPLE
A.1 Introduction
The bounded buffer example is a multi-threaded Java pro-
gram introduced in [6] as an example for demonstrating a
verification session in Bandera. The BoundedBuffer class
has three methods: add(Element), take(), isEmpty(). When
the buffer is not full, the add method adds an Element ob-
ject to the buffer, which is defined as a fixed array of El-
ement objects. The take method takes an Element object
(element) from the buffer, if the last is not empty. The
isEmpty method returns true when the buffer is empty, and
false otherwise. The constructor of BoundedBuffer receives
(as parameters) the size of the buffer array and the num-
ber of threads running (using the bounded buffer), and then
initializes all the object fields.

The other classes that appear in this example are: Com-
pleteBoundedBuffer, InOut1, InOut2 and Element. The
first is the main driver class that runs the program, creating
two BoundedBuffer instances and single instances of InOut1
and InOut2. The InOut1 instance is a thread that contains
a finite loop where it takes an element from the first buffer
and adds it to the second, while the InOut2 instance has an
identical finite loop that takes an element from the second
buffer and adds it to the first buffer. CompleteBounded-
Buffer creates two elements and adds them respectively to
the first and second buffers, where an element contains an
Object instance as its only field, and has two methods that
allow changing and getting the Object instance that it con-
tains. Both BoundedBuffer and Element classes contain a
finish method that performs computation destined to be
executed when the program finishes.

Five properties are checked in the bounded buffer exam-
ple. The BoundedBuffer’s constructor parameter (for the
size of its array) must be a positive number, which is spec-
ified by the PositiveBound assertion. The add method al-
ways adds the element in correct position, which is specified
by the addPost assertion. The buffer indices (head and
tail BoundedBuffer fields) always stay in range, which is
specified by the temporal property IndexRange, which uses
the IndexRange instance predicate. A full buffer eventu-
ally becomes non-full, which is specified by the FullToNon-
Full temporal property, which uses the Full instance pred-
icate. An empty buffer must have an element added to it
before an element is taken from it, which is specified by

the NoTakeWhileEmpty temporal property, which uses the
Empty instance predicate and the takeReturn and addIn-
voke location-sensitive predicates.

A.2 Source Code
public class CompleteBoundedBuffer {
public static void main (String [] args) {

BoundedBuffer b1 = new BoundedBuffer(3,2);
BoundedBuffer b2 = new BoundedBuffer(3,2);
b1.add(new Element(new String(”1”)));
b2.add(new Element(new String(”2”)));
(new InOut1(b1,b2)).start();
(new InOut2(b2,b1)).start();

}
}

class Element {
Object obj;
Element(Object o) {· · · }
public void set(Object o) {· · · }
public Object get() {· · · }
public void finish() {· · · }
}

/**
* @observable
* EXP Full: (head == tail);
* EXP Empty: head == ((tail +1) % bound);
* EXP IndexRange: (head >= 0 && tail >= 0 &&
* head < bound && tail < bound);
*/

class BoundedBuffer {
Element [] buffer ;
int bound ;
int head , tail ;
int nThreadsRun, nThreadsEnd = 0;

/**
* @assert
* PRE PositiveBound: (b > 0);
*/
public BoundedBuffer(int b, int n) {· · · }

/**
* @assert
* POST addPost: (head ==0) ? buffer [bound -1]==o :
* buffer [head -1]==o;
* @observable
* INVOKE addInvoke;
*/
public synchronized void add(Element o) {· · · }

/**
* @observable
* RETURN takeReturn;
*/
public synchronized Element take() {
· · ·
successTake:
· · ·

}

public synchronized boolean isEmpty() {· · · }

public synchronized void threadFinished() {
if (++nThreadsEnd == nThreadsRun) {

finish();
}

}

public synchronized void finish() {· · · }
}

class InOut1 extends Thread {
BoundedBuffer in ,out ;
public InOut1(BoundedBuffer in, BoundedBuffer out) {· · · }
public void run() {
· · ·
for(int i=0; i<100; i++) {· · · }
in .threadFinished();
out .threadFinished();

}
}

class InOut2 extends Thread {
BoundedBuffer in ,out ;
public InOut2(BoundedBuffer in, BoundedBuffer out) {· · · }
public void run() {
· · ·
for(int i=0; i<100; i++) {· · · }
in .threadFinished();
out .threadFinished();

}
}

A.3 Specification
PositiveBoundAndPost: enable assertions

{PositiveBound, addPost};

IndexRange: forall[b:BoundedBuffer].
{IndexRange(b)} is universal globally;

FullToNonFull: forall[b:BoundedBuffer].
{!Full(b)} responds to {Full(b)} globally;

NoTakeWhileEmpty: forall[b:BoundedBuffer].
{BoundedBuffer.take.takeReturn(b)} is absent
after {BoundedBuffer.Empty(b)}
until {BoundedBuffer.add.addInvoke(b)};

