
FOAL 2003 Proceedings
Foundations of Aspect-Oriented Langauges

Workshop at AOSD 2003

Gary T. Leavens and Curtis Clifton (editors)

TR #03-05
March 2003

Keywords: Aspect-oriented programming, modular reasoning, alternating transition systems, compo-
sition, inter-aspect dependencies, AspectJ, aspect classification, aspect reuse, composition graphs, model-
ing, modular transition systems, aspect inheritance, TinyC2, code instrumentation, compilers, interpreters,
denotational semantics, superimposition, model checking, Bandera, verification aspects, superimposition
validation, binding interference

2000 CR Categories: D.1.m [Programming Techniques] Miscellaneous—aspect-oriented programming,
reflection; D.2.1 [Software Engineering] Requirements/Specifications—languages, methodology, theory, tools;
D.2.4 [Software Engineering] Software/Program Verification—class invariants, correctness proofs, formal
methods, programming by contract, reliability, validation; D.3.1 [Programming Languages] Formal Defini-
tions and Theory—semantics; D.3.3 [Programming Languages] Language Constructs and Features—control,
data types and structures; F.3.1 [Logics and Meaning of Programs] Specifying and verifying and reasoning
about programs—assertions, logics of programs, pre- and post-conditions, specification techniques; F.3.m
[Logics and Meaning of Programs] Miscellaneous—reasoning about performance.

Each paper’s copyright is held by its author or authors.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1041, USA

Table of Contents

Preface .ii

Composition Graphs, a Foundation for Reasoning about Aspect-Oriented Composition 1
István Nagy, University of Twente
Mehmet Aksit, University of Twente
Lodewijk Bergmans, University of Twente

A Formal Model for Cross-cutting Modular Transition Systems .9
Henny B. Sipma, Stanford University

On Composition and Reuse of Aspects . 17
Jörg Kienzle, McGill University
Yang Yu, McGill University
Jie Xiong, McGill University

TinyC2: Towards Building a Dynamic Weaving Aspect Language for C .25
Charles Zhang, University of Toronto
Hans-Arno Jacobsen, University of Toronto

Interference Analysis for AspectJ .35
Maximilian Störzer, University of Passau
Jens Krinke, University of Passau

Compositional Reasoning About Aspects Using Alternating-time Logic .45
Benet Devereux, University of Toronto

Model Checking Applications of Aspects and Superimpositions . 51
Marcelo Sihman, Technion–Israel Institute of Technology
Shmuel Katz, Technion–Israel Institute of Technology

Understanding AOP through the Study of Interpreters . 61
Robert E. Filman, NASA Ames Research Center

Adding Superimposition to a Language Semantics . 65
Ralf Lämmel, CWI and Vrije Universiteit

i

Preface

Aspect-oriented programming is an emerging paradigm in software engineering and programming languages
that promises better support for separation of concerns. The second Foundations of Aspect-Oriented Lan-
guages (FOAL) workshop was held at the 2nd International Conference on Aspect-Oriented Software Devel-
opment in Boston, Massachusetts, on March 17, 2003. This workshop was designed to be a forum for research
in formal foundations of aspect-oriented programming languages. The call for papers announced the areas of
interest for FOAL as including, but not limited to: semantics of aspect-oriented languages, specification and
verification for such languages, type systems, static analysis, theory of testing, theory of aspect composition,
theory of aspect translation (compilation) and rewriting, and applications of such theories in practice (such
as language design studies). The call for papers welcomed all theoretical and foundational studies of this
topic.

The goals of this FOAL workshop were to:

• Make progress on the foundations of aspect-oriented programming languages.

• Exchange ideas about semantics and formal methods for aspect-oriented programming languages.

• Foster interest in the programming language theory communities concerning aspects and aspect- ori-
ented programming languages.

• Foster interest in the formal methods community concerning aspects and aspect-oriented programming.

In addition, we hoped that the workshop would produce an outline of collaborative research topics and a list
of areas for further exploration.

The papers at the workshop, which are included in the proceedings, were selected from papers submitted
by researchers worldwide. Due to time limitations at the workshop, not all of the submitted papers were
selected for presentation.

The workshop was organized by Gary T. Leavens (Iowa State University) and Curtis Clifton (Iowa State
University). The program committee that selected papers consisted of Leavens and James H. Andrews (U.
Western Ontario), William Cook (Allegis), Tzilla Elrad (Illinois Inst. of Technology), Ralf Lämmel (CWI
and Vrije Universiteit), Oscar Nierstrasz (U. of Berne), Jens Palsberg (Purdue U.), Kris De Volder (U. of
British Columbia), and Mitch Wand (Northeastern University). We thank the organizers of AOSD 2003 for
hosting the workshop.

ii

class Point1 extends Object{
private int _x, _y;

void setX(int x){ _x=x; }
int getX() { return _x; }

void setY(int y){ _y=y; }
int getY() { return _y; }
...

}

class Subject{

private Vector observers;

public Subject() { /* … */}

public void attach(Observer o)

{ observers.add(o); }

public void Notify()

{ /* foreach observer.update() */}
...

}

Composition Graphs: a Foundation for Reasoning about
Aspect-Oriented Composition

- Position Paper -

 István Nagy Mehmet Aksit Lodewijk Bergmans
TRESE Software Engineering group, Faculty of Computer Science, University of Twente

 P.O. Box 217, 7500 AE, Enschede, The Netherlands
+31-53-489 3767

{ nagyist, aksit, bergmans }@cs.utwente.nl

ABSTRACT
Aspect-oriented languages offer new modularization concepts and
composition approaches to provide more flexible solutions for the
separation and integration of concerns. There are significant
differences among aspect-oriented languages, due to the specific
language constructs that they adopt. In this paper, we propose a
common model, called Composition Graph, to represent different
aspect-oriented approaches in a uniform way that can serve as a
basis for the comparison of aspect-oriented languages. We also
present a transformation language which can be used to model
different weaving operations in our model.

1. INTRODUCTION
During the last several years, a considerable number of Aspect-
Oriented Languages (AOLs) has been introduced. Some AOLs
may be particularly suitable to program certain application
categories. We think that in order to compare and evaluate AOLs,
it is important to understand their underlying concepts.

An important characteristic of an AOL is its aspect composition
mechanism. This is the mechanism to incorporate aspects with
other aspects and/or with traditional programming abstractions.

In this paper, we focus on the aspect composition mechanisms of
languages. To this aim, we introduce a generic model, called
Composition Graph (CG), in which different aspect-oriented
composition mechanisms can be expressed uniformly and can be
compared with each other.

The structure of the paper is as follows. Section 2 presents a
simple composition problem through an illustrative example. In
section 3 we provide solutions to the problem in two different
models, namely in AspectJ[1] and HyperJ[2]. Section 4 describes
the approach. Section 5 outlines the notion of Composition
Graphs exemplified by the solutions explained in the previous
section. Section 6 demonstrates how the composition mechanisms
can be represented by graph transformation rules. In section 7 we
discuss some important related work. Finally, section 8 gives a
conclusion and presents future work.

2. An Example Problem
AOLs use several composition techniques, such as method
composition, introductions, merging of different program
elements, etc. combined with new modularization concepts to
cope with the phenomena of tangled code and crosscutting.

In this section, we introduce a method composition problem that
we will use as an instructive example in the subsequent sections.
This example is based on the Observer design pattern [3].

In Figure 1, class Point1 implements a geometrical point with x
and y coordinates as instance variables and get/set as methods.
Class Subject is the part of the Observer pattern that maintains the
list of observers for each subject, using the vector observers. This
class is responsible for the notification of the observers by the
method Notify.

Figure 2 displays a possible enhancement of class Point1, labeled
Point2, to incorporate the subject role using inheritance. This class
has the following responsibilities: a) After the execution of each
method that changes the state of the object, the notification of the
registered observers must take place. This is shown by the lines
(2) and (3). b) This class inherits from class Subject to make the
method Notify accessible for class Point1. As the source shows,

1 Obviously, this is only one possible implementation of the

Observer pattern.

Figure 1. Definition of classes Point and Subject

Gary T. Leavens
1

Figure 2. Adaptation of Point1 to support the Observer
pattern

the adaptation of the subject role results in crosscutting code. To
avoid this problem, other modularization and composition
techniques should be used.

3. Aspect-Oriented Implementation of the
Problem
In this section, we provide a simple aspect-oriented solution to the
previous example both in AspectJ and HyperJ.

3.1 Composition in AspectJ
Figure 3 displays a possible implementation of the composition of
class Point1 with class Subject in AspectJ.
Line (1) implements the language construct introduction. Here,
the superclass of class Point1 is changed from the root class
Object to the pattern defined class Subject. The pointcut
specification shown in line (2) designates the methods setX and
setY. In line (3) an after advice is bound to this pointcut
specification. This means that the code “s.Notify()” specified in
the advice will be performed after the execution of the designated
methods.

Figure 3. Definition of the aspect Notification

This problem could be solved using more sophisticated features of
AspectJ, such as abstract pointcuts [4]. For the sake of simplicity,
however, we consider this solution adequate to explain the
problem.

3.2 Composition in HyperJ
Figure 4 displays a HyperJ control file that implements an
extension of class Point1 to integrate the subject role of the
Observer pattern.
In line (1) we list the classes to be incorporated. The lines
between (2) and (3) represent the concern mapping, where

program entities are assigned to different hyperslices2. Here, class
Point is assigned to the hyperslice Feature.Kernel, while class
Subject is assigned to the hyperslice Feature.Observing. The
hypermodule specification in line (3) consists of two important
parts: identification of the hyperslices (4) that are to be integrated,
and integration relationships (5). These specify the details of the
desired composition. The line marked by (6) shows the general
integration strategy that has to be specified. Finally, the operation
bracket selects the methods to be composed from class Point (7)
and specifies that the method Notify has to be performed after the
execution of these methods (8).

Figure 4. HyperJ control file

4. Our Approach
We explain our approach using the figure at the top of the next
page. In this figure we can distinguish the lower base level and
the meta level; the models at the base level are expressed in terms
of the metamodels. We will discuss the picture from left to right,
roughly corresponding to the general process of creating and
transforming CGs.
On the left side, at the base level a number of boxes is shown
which represent actual programs. Typically these programs can be
represented by source code, byte code or an exchange format such
as XML. Each individual program follows the rule of its
programming language metamodel. The figure shows two
example programming language metamodels: AspectJ and
HyperJ. Our goal is to reason about the semantics of the
programming languages, in particular their composition
mechanisms. However, we choose to do so by considering the
semantics and compositions of actual programs as well, rather
than staying at the meta-level only.
Our approach is based on the application of a single metamodel
which is capable of representing programs from a wide range of
programming languages and paradigms: this is the Composition

2 A more detailed specification of HyperJ can be found in [2].

-hyperspace
hyperspace DemoHyperspace
composable class test.*; (1)

-concerns (2)
class Point1 : Feature.Kernel
class Subject : Feature.Observing

-hypermodules (3)
 hypermodule ObserverDemo

hyperslices: (4)
Feature.Kernel,
Feature.Observing;

relationships: (5)

mergeByName; (6)

bracket "Point1"."set*" (7)
after (8)

 Feature.Observing.Subject.Notify();

 end hypermodule;

aspect Notification{
declare parents:

Point1 extends Subject; (1)

pointcut stateChange(Subject s):
this(s) &&
execution(void Point.set*(..)); (2)

after(Subject s): stateChange(s){ (3)
s.Notify();

}
}

class Point2 extends Subject{ (1)
public void setX(int x)

{ _x=x; Notify();} (2)
public void setY(int y)

{ _y=y; Notify();} (3)
...

}

Gary T. Leavens
2

Edge &
Node Types:
OO model

Edge &
Node Types:
OO model

Program
B_AJ

Program
B_AJ Program

B_HJ
Program

B_AJ

...

Program
A_AJ

Program
A_HJ

Progr.Lang.
e.g. AspectJ

Progr.Lang.
e.g. HyperJ

Edge &
Node Types:

AspectJ

...
Composition

Graph
A_HJ

Edge &
Node Types:

HyperJ

Composition
Graph

Metamodel

Composition
Graph
A_AJ

Edge &
Node Types:
OO model

Composition
Graph
A_OO

Composition
Graph
A_OO

Composition
Graph

Metamodel

Composition
Graph

Metamodel

transformation rules

m
et

a-
le

ve
l

ba
se

-le
ve

l

Graph metamodel (the box appears repeatedly at the top right of
the picture).
For example, imagine two versions of the same program A, each
written in a different programming language (such as AspectJ and
HyperJ): by translating these two programs into Composition
Graph representations (these are the boxes in the middle of the
bottom row of the figure), we can start to compare the structure of
these programs, since they are represented in the same universal
format. The differences between the programming languages are
further visible through the different types of edges and nodes in
each CG.
We expect a number of benefits from these representations of
programs using CGs:

• Since CGs emphasize the (composition) structure and
dependencies of programs, we may use them to reason about
properties such as degrees of coupling and cohesion, e.g. by
defining metrics.

• Since programs in different programming languages can be
easily compared, we may be able to infer properties of the
programming languages (in the form of “programming
language 1 can express problem/program A with less coupling
than programming language 2”). Note that making general
assumptions based on one or a few concrete examples must be
done with great care.

• We believe that the process of representing programs in the
universal format, requiring one to define the composition
structure of the programming language as types of nodes and
edges, will yield increased insight in the workings and
essence of aspect-oriented approaches, perhaps leading to new
or generalized composition mechanisms.

A further step in defining and understanding the semantics of the
composition mechanisms can be made by translating the program
representations into CGs for a generic model: this could be a
‘traditional’ model such as the OO model, or alternatives such as
a generic AOP model. Specifying the translation has several
advantages:
1. It provides us insight into the ability to actually express a

particular functionality, and how composition mechanisms
really work.

2. If the resulting CGs are different, it will be fairly
straightforward to see whether they are equivalent
‘refactorings’ of the same program, or in fact programs with
(slightly) different semantics.

3. Defining general transformation rules, which can transform
any CG in language A towards a CG in language B, is a way
to define the precise semantics of the programming language3.

4. Hence, the essential differences in composition mechanisms
can be observed by looking at the differences between the
transformation rules.

The remainder of this paper will focus on the concept and
representation of composition graphs and transformation rules,
exemplified by the example that we introduced in section 2 and 3.

5. Composition Graphs
Composition Graphs (CGs) are used to represent certain aspects
of programs. They are especially useful to represent the structure
of programs and reason about composition mechanisms.
CGs, like abstract syntax trees (ASTs), denote structural
dependencies between different program units represented in the
program. However, CGs are different from ASTs in several
ways; they do not necessarily represent the full syntax of
languages: certain parts of programs can be compressed into one
node of the graph. CGs can also be used to explicitly represent
certain composition relationships between various program units,
such as classes, methods, advices, hyperslices, etc.

5.1 Structure of Composition Graphs
A Composition Graph consists of a set of nodes, labeled edges
and attributes. Nodes represent the program units, which may be
affected or used by the aspect weaving mechanism of the
language considered. A node can refer to other nodes or attributes
through labeled edges. An attribute refers only to its parent node
and contains information about it.
Figure 5 depicts a part of the CG of class Point1 which was shown
in figure 1. Nodes are illustrated by small circles. The left
uppermost node (1) denotes the whole class. Three attributes –
illustrated by ovals - are connected to this node through the edges

3 Note that the precision of this semantic specification depends on

the level of abstraction of the target language.

Gary T. Leavens
3

name, visibility and meta. In corresponding order the first two
attributes are the name and visibility of the class, while the third
one is a meta-attribute. Each node can have a special edge called
meta that holds meta-information about the type of the node.

Figure 5. Part of class Point represented as a Composition

Graph
The node marked by (1) has two edges that are connected to two
other nodes. The edge with the label member refers to the node
(2), which represents the method setX of class Point. This node
has also some attributes (meta, name, visibility, type of return
value) and relations with the two other nodes: the upper one (4)
corresponds to the argument of the method, while the node
marked by (5) denotes the implementation (body) of the method.
This latter node has a meta attribute and an edge, which is
connected to an assignment statement. This is the only statement
of the method. The edge called superclass refers to a node (3) that
denotes class Object, the superclass of class Point. Due to lack of
space, we have not unfolded this node completely; This node is in
fact a subgraph that has similar structure to the subgraph denoted
by (1).
Note that figure 5 shows only the part of the Composition Graph
of class Point. Other methods are represented like the method
setX, but are not shown.
The same type of representation can be applied for aspect-
oriented languages. Figure 6 illustrates a part of the aspect
Notification as a CG. The node marked by (1) corresponds to the
introduction statement in figure 3. Here, the introduction
statement is represented as a literal. This is a way to hide the
details if necessary. In fact, this node could have been expanded
to several nodes as it is illustrated by the node marked by (4). The
node at (2) illustrates the pointcut specification and also shown in
a compressed form. The node marked by (3) illustrates the advice,
which was shown in line (3) of figure 3.

Figure 6. Part of the aspect Notification shown as a CG

5.2 Setting up Composition Graphs
Composition Graphs can be derived from various software
artifacts, such as programs expressed in different languages (Java,
AspectJ, HyperJ), XML documents and UML models.
As a first step, the files that contain the source code have to be
parsed to build up their syntax tree.
In the next step, the syntax-tree is transformed into an initial CG
by adding the cross-reference relationships as edges where
necessary. For instance, in figure 5 the edge superclass is a
typical cross-reference relationship. In a syntax-tree, the name of
the superclass is an identifier, whereas in the CG, the relation
superclass denotes to the actual representation of that class (see
figure 5). In other words, in CGs every program unit which is
relevant from the point of view of weaving is uniquely
represented.
The third important step is the resolution of the nodes that contain
composition (weaving) specifications. These are represented in
CGs through additional edges and/or nodes. Figure 7 illustrates
the aspect Notification in this way. Three new edges – illustrated
by the broken arrows - are shown in figure 7. Edges marked by
(1) and (2) represent the combination of the after advice with the
methods setX and setY. The edge marked by (3) represents the
introduction, which was shown in figure 3.

Gary T. Leavens
4

Figure 7. CG of the AspectJ program after the third step

Figure 8 shows the CG representation of the hypermodule
ObserverDemo, which was described in figure 4. The edge
marked by (1) is for the mergeByName relationship between the
two hyperslices. The bracket relationship is represented by three
new edges. The first two edges marked by (2) and (3) represent
the combination of the methods setX and setY with the call
Notify(). The third edge marked by (4) denotes the change4 of the
superclass of class Point from the root class Object to the class
Subject of the Observer pattern.

4 Looking at the AST description of the woven classes in HyperJ,

we realized that the bracket relationship also changes the
superclass of the class that contains the bracketed methods to
the class of the ‘bracketer’ method if the two classes have not
been equated previously. The weaver has to enforce this
inheritance so that the method Notify can be accessed from the
class Point.

For a given language specification, there is a closed set of types
of edges and nodes. For example, in case of Java we define a fix
set of edges and nodes, which represent the conventional object-
oriented relationships. In case of AspectJ or HyperJ, we define
nodes and edges, which represent the modules and composition
constructs of these languages.

Figure 8. CG of the HyperJ program after the third step

Although languages may require specific kinds of nodes and
edges, they are all expressed using the same CG notation. This is
the key property in evaluating and comparing different AOLs.
We would like to uniformly interpret the CGs representing
programs expressed in different languages. For this purpose, we
transform the CGs that represent the aspect-oriented programs, to
the CGs that represent the object-oriented implementations of
these programs. We therefore transform every AOL specific edge
and node to the equivalent object-oriented edge and node.
Figure 9 illustrates after the transformation a part of the CG that
represented the introduction statement at (3) in figure 7. As a
result of the transformation, a new edge named superclass has

Gary T. Leavens
5

been created between the class Point and Subject, while the edge
parent-extends and the original superclass edge have been
deleted.

Figure 9. Transformation of the introduction statement

The result graph of the transformation of the after advice,
illustrated at (1) and (2) in figure 7, is shown in figure 10. Only a
new call statement has been attached to the body of the methods
setX and setY. However, this method has no return value and we
had to handle only one exit point inside the implementation of the
methods. If an after advice is combined with an execution
pointcut designator and the designated method has several return
statements then we have to see after another solution that handles
each exit point.

Figure 10. Method setX after the transformation

Note that the result graph of the transformation itself does not
provide too much information for us. However, if we contrast the
source graph of the transformation with the result graph in respect
to the related edges and nodes we can see how the composition
mechanisms of different languages differ from each other. For
example, we can recognize that only one composition structure of
an aspect-oriented language is able to implement a complex
composition problem, which results in at least three or more

standard object-oriented relationships, while another aspect-
oriented language needs at least two or more composition
structure in order to achieve the same realization.
We propose a transformation language to formulate the
transformation processes that practically correspond to the
weaving operations.

6. TRANSFORMATION LANGUAGE
In this section we outline a transformation language by which we
can describe how the result graphs can be obtained from the
source graphs.

6.1 Selecting Graph Fragments
To transform a set of edges and nodes of a graph into another set
of edges and nodes first we have to be able to designate certain
nodes and edges in the graph that serve as an input of the
transformation. We experienced that aspect-oriented language
abstractions are typically represented by multiple nodes and edges
in Composition Graphs. Therefore, we initiate a query-based
technique to select multiple nodes from CGs based on their
relationships.

The queries employ formulas of predicate logic with free
variables. We used set notation to highlight the free variables. The
general form of a query expression, similarly to the tuple
relational calculus, is

{t | P(t)}

where t is a free variable and P is a predicate. The variables can
be quantified: ∃(there exist), ∀(for all). In our model predicates
are parameterized propositions that formulate statements whether
an edge between a node and an attribute (or between two nodes)
exists or not in the CG. The skeletons of the propositions look like
these: node.edge=value and node.edge→node. Predicates can be
composed of other predicates by using logical connectives. The
result of the query is a set of references to the nodes that satisfies
the predicate if they are substituted with the free variables.

As a simple example, let us see the following query expression:

{ X | X.meta = class AND X.name = Point }

This query will select each node that has a meta edge referring to
the attribute class and a name edge referring to the attribute Point
In other words, the result of this query is a set of references to
such nodes that denote classes with the name Point (e.g. two
classes with the same name can be placed in different packages or
hyperslices).

A more complex example is the following:

 {Y | Y.name=setx AND ∃X∃Z(X.member→Y AND
 X.superclass→Z AND Z.name = Subject)}

This query will designate each method with the name setX placed
in a class that inherits from the class Subject.

By default, the query is executed against the whole graph. There
are situations, however, where the scope of the query should be
narrowed to only one or more subgraphs of the complete graph.
For this purpose, we use scoping expressions that determine a set
of subgraphs in order to narrow the scope of the query.

Point
Object

name

superclass <deleted>

name

class meta

meta class

member

Subjectname

class

member

meta

parent-extends <deleted>
superclass <new>

Gary T. Leavens
6

The general form of a scoping expression is

 <N1, E1> [on <N2, E2> on … on <Nn, En>]

where N is a query expression and E is a set of labels of edges
from the original graph. Nodes selected by N denote the root
nodes of the subgraphs, while labels in E indicate those edges
only which are allowed to connect the nodes in the subgraphs.
Scoping expressions can be defined recursively on other scoping
expressions.

As a simple example, let us see the following scoping expression:

 <{ N | N.meta = method AND N.name = foo }, {statement}>

In this example the node that corresponds to the method foo will
be the root node of the subgraph and the nodes in this subgraph
can be connected through only one type of edge that has the label
statement.

An application of this scoping expression is shown by the
following example:

 {RS | RS.meta = return-statement} on

 <{ N | N.meta = method AND N.name = foo }, {statement}>

In this example a query expression is combined with the previous
scoping expression that selects every return statement from each
method called foo in the whole CG.

Based on the structure of CGs not only different types of program
units but also program statements, such as calls, field
reading/writing, etc. can be designated in an elegant manner.

6.2 Transformation Rules
The general form of a transformation rule is
 {Identifying pattern}
 {Context pattern} > Transformation Statement
where the identifying pattern and context pattern are query
expressions, and the transformation statement is the application of
a modification type on the nodes selected by the identifying and
context pattern. Typical modification types are adding a node or
edge to a graph, removing a node or edge from a graph, changing
an edge to another one, etc. The identifying pattern identifies
those edges that should be eliminated from the CG by the
transformation. Sometimes, in the context of the identifying
pattern, additional nodes and edges have to be used as input of the
transformation. The context pattern designates these ones. The
identifying pattern therefore can be regarded as a part of the
context pattern.
The following example shows a simple transformation rule:

 {X,Y | X.parent-extends→Y} (1)

{} > Change(Y.superclass→X) (2)
The query expression (1) designates a set of pairs of nodes which
are connected via a parent-extends edge with each other. The
transformation statement (2) changes the edge parent-extends
between each pair of nodes to the edge superclass. Figure 9
illustrates the application of this transformation rule. We did not
have to select additional nodes and edges for the transformation,
thus, the place of the context pattern left empty.

The transformation rule which is intended to eliminate the after
edges in figure 7, at (1) and (2) looks like this (the woven
methods have only one exit point, no return value):

(1) {X,Y | X.after→Y}

(2) { MB, S | Y.body→MB AND ∃A∃B(X.member→A AND

A.meta=advice AND A.body→B AND B.statement→S
)}

(3) > AppendAfter(MB.statement→S)
The identifying pattern (1) selects pairs of nodes connected
through the edge after. The context pattern (2) selects the node
that denotes the body of the method (MB), and the nodes that
denote the statements in the advice (S). The transformation
statement (3) appends these latter nodes to the former one.

Naturally, there may be nodes and edges that cannot be directly
transformed into the desired form of graph in only one step. In
this case a sequence of transformation rules has to be applied in
order to achieve the CG with the proper characteristics. For
example, merging two hyperslices typically requires the
application of more than one transformation rule. On the top level
the merge relationship is denoted by only one edge between the
two hyperslices. In the first transformation step this edge is
processed and a new merge edge is created between each pair of
nodes that denote the units of these hyperslices. If some of these
units are classes than the merge edge between those classes has to
be processed again; in this way, the merge relationships are
pushed down to the level of methods of those classes. This
process ends up with the merging of methods.

This latter process is known as derivation sequence in the
terminology of graph transformation systems. We actually found
that this graph transformation language falls into the category of
algebraic graph transformation approaches [5].

7. RELATED WORK
In [6], the authors propose a framework by which the core
semantics of five aspect-oriented tools, namely AspectJ,
DemeterJ, HyperJ, Open Classes, QJBrowser, can be modeled in
terms of nine properties. These properties cover, among others,
the language the input programs are written in, how the input
languages indentify join points and how the input languages
contribute to the semantics at the join points. The authors also
provide a definition for the term crosscutting in terms of the
model. However, they had difficulties to achieve a common
weaver structure for all five models. Without a common
representation the evaluation of AOP languages is difficult. In our
approach we will try to provide a more generic model that can
help to understand the composition mechanism of these
languages.
Assman in [7] presents a GRS-based (Graph Rewrite System)
aspect-oriented programming approach, in which aspects,
joinpoints and weaving have well-defined and precise semantics
in terms of graph-rewriting. In GRS-based aspect-oriented
programming aspect composition operators correspond to graph
rewrite rules, weavings are direct derivations, and weaved
programs are normal forms of the rewrite systems. In accordance
with this approach we use a common graph transformation system
to model the different types of composition mechanisms of the

Gary T. Leavens
7

existing aspect-oriented languages in a uniform way. However, in
our work we focus on the evaluation of the aspect-oriented
languages and we regard the graph notation only as a means that
helps to reason on the composition mechanisms.
QJBrowser [8] is a code exploration tool by which various
program elements can be extracted from a source model and
presented in a hierarchical view. A selection criterion determines
what elements should be extracted from the program. This
criterion is defined as a query in terms of first order predicates.
The query is executed against the source model and results in the
tuples of the selected properties. In our approach we use a similar
technique to select certain nodes of the CGs.
Mens in [9] presents conditional graph rewriting as a domain-
independent, formal approach for managing unanticipated
software evolution. He proposes labeled typed nested graphs to
represent complex software artifacts and graph rewriting to
control the evolution of these artifacts. Similarly, we would like
to use CGs as a domain independent formalism to model different
program units and graph transformation as a formalism to
describe weaving operations.

8. CONCLUSION & FUTURE WORK
In this paper, we have introduced the concept of Composition
Graphs as a means for reasoning about (aspect-oriented)
composition. We have illustrated how CGs can be used to
represent a simple example program, expressed in Java, AspectJ
and HyperJ, respectively. Subsequently, we demonstrated how
composition (or weaving) mechanisms can be represented by
transformation rules upon CGs.

This paper aims at laying the foundation for further work in
reasoning about composition mechanisms.

• We may use CGs to reason about properties such as degrees
of coupling and cohesion, e.g. by defining metrics.

• We believe that we can define the semantics of composition
mechanisms effectively by specifying general transformation
rules, which can transform any CG in language A towards a
CG in language B. Hence, the essential differences in
composition mechanisms can be observed by looking at the
differences between the transformation rules.

• We expect that the application of CGs to represent a variety
of programs in different AOLs will yield increased insight in
the workings and essence of aspect-oriented approaches,
perhaps leading to new or generalized composition
mechanisms.

Although we have already gained some experience in modeling
programs in different AOP languages as CGs, there are still
several issues left to be addressed as future work. First of all, we

have to refine the structure of the graphs in case of each language.
In other words, we want to enrich the set of types of nodes and
edges that represent AO composition structures. Besides, the
transformation rules also have to be specified in order to reason
about the corresponding composition mechanism.
Further issues that we plan to address shortly:

• Improving the representation/visualization of the CGs

• Address the ability to model both static composition and
runtime composition.

• Define metrics to judge certain characteristics and quality
attributes of programs represented as CGs.

• Analysis and comparison of existing composition mechanisms
and identification of new composition mechanisms

We intend to explore the application of transformation rules to
create code generators.

9. REFERENCES
[1] Kiczales, G. et al., An overview of AspectJ, in Proceeding

ECOOP 2001, LNCS 2072, J.L. Knudsen, Editor. 2001,
Springer-Verlag: Berlin. pp. 327-353.

[2] Ossher, H. and P. Tarr, Hyper/J: Multi-dimensional
separation of concerns for Java, in Proceeding 23rd
International Conference on Software Engineering. 2001,
IEEE Computer Society. Pp. 729-730.

[3] Gamma, E. et al., Design Patterns: elements of reusable
object-oriented software. 1995, Addison-Wesley.

[4] Hannemann, J. and G. Kiczales, Design pattern
implementation in Java and AspectJ, in Proceeding OOPSLA
’02. 2002, ACM SIGPLAN Notices.

[5] Rozenberg, G. (ed.), Handbook of Graph Grammars and
Computing by Graph Transformation, vol. 1., 1997, World
Scientific.

[6] Masuhara, H. and G. Kiczales, A Modeling Framework for
Aspect-Oriented Mechanism, in Proceeding ECOOP ’03.
2003.

[7] Assman, U. and A. Ludwig, Aspect Weaving by Graph
Rewriting, 1999, Generative Component-Based Software
Engineering (GCSE), p. 24-36.

[8] Rajagolopan, R. and K.D. Volder, QJBrowser: A Query-
Based Approach to Explore Crosscuting Concerns. 2002,
submitted for publication.

[9] Mens, T., Conditional Graph Rewriting as a Domain-
Independent Formalism for Software Evolution. 2000,
Lecture Notes in Computer Science, Springer-Verlag.

Gary T. Leavens
8

A Formal Model for Cross-cutting Modular Transition
Systems

Henny B. Sipma
�

Computer Science Department
Stanford University

Stanford, CA. 94305-9045

sipma@cs.stanford.edu

ABSTRACT
�����������	���
����
��	����
���������
�����
��������	�	����������

����������������
�	��	������
�������	
�����
�����	���������	�	����������

�����	�
��������
�	��	��������������������	�
�������	��
	����	���
����	����	�	���������	���
����
�
������
��

��������	����	����
�	
�������������
�������
���

��
����������������	���
	������!�����	�������������

�����
���
������
��	���	����������
"������#�
����
��

��	���
����
����	�����	�����������	���	�������������
���
���
�	
�����
��������������	$��	���������
����
	���

1. INTRODUCTION
����
��������
�����
���	����
��	%�����������������
���
����������	����
��	%������������������
����	�����

������������������	���������&'#
()
�
����	��������

��������
�����������
��
�
�����
���	����
��	%���#
����
���������
��#

	����
���������
������������	�	��
�������#���!�����

	��#
���������������������	���
���
�	��

��������
����	�	��������������������	��������

�������	�����
����	�	�	���
��
���
��	%���#
	�
���	��	��

���	���
��������	��*��	
��������������	��������������

�
�����������	
��	���
����
��#��
�	����	�	���������	��*

��	
��������������������������	�
������������	��
��������������
��

��������������	�������
����	�����

�����������!��
����������	�����������	��	��	���	���
��������������	
��	���
����
����	�������
��	%����

��������������
������	������������	
�����
�����	���
�����������������

����
��
��	������
�������������

�������	����������#

	������
����	�	��������������#��
�

���	
��!	��	������������#
	�
���	�������	������������

�+�	�������
�������������	�������,-.������//0�
11�22134�225���//0�2565427#

���0������8��851�
25�5�2'67#��

����09�:�.
�����
��.77(5;�22�/�5(17
���.77(5;�11�/�7254�

<���
+�����������	�
��	����������������
���	�
���	���
������
�	���������������	����������������
	���#��
������	
�	������������������������������	����

������	��
����=�
��
����
�����	
��	��
����������
����
�������������������	��������
��������
�	�����

�����	
�	���

�������������	�����
�	��	��������������������	�

��������	�#�

������	
��	���
����
����������������	�
�	����������������������
�����������
��	����
�	
��

������
�	���
���
�	�����������
>�
�����
���������	

���	��
���������#������
	��������
������
������������

�����	��
�������������	���	
����
���
����	�����
��
�����������
�������	���	���	����
���������
���
��������

+�������	������	$����
�������
�������!���
�	����	��

�����
����
�������	����������
�����	�	������������

���������	������������	���������������
�	����������
����
�	��7���������������������	�����������	
��

������
�#��
�	���
�	��4��	����������������	
�����

��
�
������
��
�����������	���������
����	���������
�������
����
�	��;�����	�	��������	��	��	����
���

������
������	����!��
������������������������
����������#��

���
�	��(
��
������	����	�
���	���

���������
��	����
����������������
��
����������

2. PRELIMINARIES
2.1 Computational Model: Transition Systems
������	

�������	���������	������
�?@ABCD?DEBCFC?GH
&1)IJKL#
MNOPQ
RSQ
TU
#�
����PVW	����	������
�����

���	����������
������	����������
���	�����W#
RS	�

��������	��I����������
������L
����
���	$	�����	�	�	��

������#��
�T	����	������
�����	�	����

�C?A?GX	���
	����������	���
W#�

�	
����	�������
����	����YZW�
�����X&Y)����	������	�[\��������������
����������

�

�����	�	��]ZT	��
��
�	��]*\̂_6̀#��
���
������

	�]IXL	�
������]���

������
X�
���������������	�	��

]	�GBAabGc��X	
]IXLdNe#��
����	��]	�cDCAabGc��X�

f

f,��������������
�����	�	���
���%�����������������
����������	���������	�	���

�������	�	�������	�	���

&1)�������������	�	������	����	�������������������	�
�	���

�	������

���������������������
�	�����	���	�
�����#
	�	����	�����	����	�
����	�	����
������

�����	�
�	��#
	����	�
��	���
�������������	�	�����������������	�

�������
����
�����	
��	�	���

Gary T. Leavens
9

��
������	�	��]ZT
�������
�	����������������

��������IPQP�L#
��������?@ABCD?DEB@GbA?DEB#�!�����	��
��������	���������������X�������
	��]���

������
X�Z]IXL�����IPQP�L�������	�������	����
������	�����
��
����������	�X��������	�������	�����
����������
	�X��.���!�����#���
��������N��5�������������
�����	�	��
��
�	��	���	
��������
]���

�������
������
X�	��X&�)N�
����	�����������X���
�����X�&�)N��5

������
���������
�@�B�*X	QXfQ

�
������	�	��������M	���	���	��
��%���
��
��������
��������
�����	�����
���	�	���
����

��
�������
�������������	�	�	�	��#����	�X	�NRS[
���
�������
�
����
���2#��������X��f	��]�
��

������
X�
������]ZT�

+�������	���
�������M	�	����	����	��	������
����#
����������IML�

2.2 Modular transition systems������������	�	��������������	$�������	�	��������	���
�����	�	�������������
����
�������	�������������
������������
�������!�����	���&7)�

����	��������
�����������
���������
�������!�����	���#

������
���	
������������������������	�	���������
���	��	���

����	
�������
�������	���������#���������	
������

���	����
��DB?G@ A!G"*OP�#$%&QP'%&$%&QP()*+,-U��
���	��
���	�������	�����P�#$%&#��	
�
�������	����������
�������#
�����������������	����
#�

�����������	�����
P'%&$%&#����������
��������������������������
����#
���
�����������	��������������	����
#��

����
���������	�����P()*+,-#��	
�
������������������	�
���������������#��

��aEcF.*OP/QR/QT/U
����	�	��
�������
���	�������
�������������#��

	�	�	��
���	�	��#
��������
�����	�	����

.��������
	��������	
��
���
��������
�����	�	��������������
����&7)#��

	�	����
�	��
��������������������	�����
��	�������

2.3 SPL programs
���������������
�������
�	����	��
�����������������
�	�	���������#��

	������������
������������
�	�����	�	�
�	��
���	�	����������	�	�������	���#

	�	������������

�����	�������������������������������	���������
�
�������������	�����������	��������������������	
�
	�������
�����	�	����������

���	�����K01I-	����
9�������	��2�������L��	����	������	����������	��
�������������
�	��������������	�	���������&1)�

34�567�.	����5������������89:;<=#������������
	���������2������>�?A@G@FAbAE@D?BH
���������!
���
�	��&3)#
���
	��	���
���K01�������#Cf���CD�+�	�

�������
��������������	����������������	�	��������
�	���������Ef���ED�+����������������	����
�
��

"fNOFGDHQFGfHQeU"DNOFGfHQFGDHQeU
�����
�	����#��

<�
�	������GD	�����������Cf#������
���	�����Cf#���Gf	����	�����Cf#���������	���

Cf*

I
JJJJJJJJJJJJJK

���Gf*�
��L�MNO�M�GfN2�
GD*�
��L�M
P	*NO�7�QR�I
JJJK

Pf*
�
�M�����7PD*Gf*NGD�5PS*�N���IGDN2TGfUGDLPV*�M�����7PW*Gf*N2

X
YYYZ

P[*

X
YYYYYYYYYYYYYZ

��

CD*

I
JJJJJJJJJJJJJK

���GD*�
��L�MNO�M�GDN2�
Gf*�
��L�M

\	*NO�7�QR�I
JJJK

\f*
�
�M�����7
\D*GD*NGf�5
\S*�N���IGfN2TGD]GfL
\V*�M�����7
\W*GD*N2

X
YYYZ

\[*

X
YYYYYYYYYYYYYZ

�̂L�M�_�̀ M�LM�589:;<=

����������������#��
������������������
��������

CD�+�����	���
�����������������	�����
.fNOFafHQGfN2bafNP	QTfU.DNOFaDHQGDN2baDN\	QTDU

�����Tf���TD
����	���������	�	���
���������	����
�������������	���
�������#���!�

��	���������

��
����������	���K01������	�����
	�����	���c@GbEd
!A?DEB#	����	��������������
������������#��������
cEC?bE!A?DEBC�+���
�������E��
���������	����a�	�
�����#����
	�������������
��
��	���	����������#��

�
	�	�	��	$������������
��	���
����������������	����
�������

��
����������
�����������	��������	�	���
�

���	������������	�	��������	
��
��
�����������

.��
�!�����#�
��������������������PD	���������������

�����	�	���	�������	�	�������	��

afNPDbIGDN2TGfUGDLba�fNPSbG�fNGf
��	�����������������������P	
�����������������

e
fffg

afNP	b
II?@�Gba�fNPfLTI AbCGba�fNP[LLb
IG�fNGfbG�DNGDL

h
iiij

���������	�����
�����������	�����������	����
���
���
���	��G�fNGf#����	����������	����	����������#���
����������������������	������������	����	���������
�	�	�������	���������������

+���#
Tf���TD��
�
����	��	!�����	�	���#���
����
�
����������

.�������	������
�	��	���
���������	
��
K01	�������

�����	�	���������#�

��������	���
�������&1)�

Gary T. Leavens
10

������!������	�-�
�	��4���	��������
��
�	���������
�����X�����������	������
����������	�������
��	�����
�����
������
��	���#�����
�

	����#�
�����������
�������

��	���	�������	��������
������<���
������������#��
����������������	�	��������	
��

.���!�����#���
���IPf*

Gf*NGD�5LNPf#�����X����IP	*Gf*N2LNFPfQP[H#����
��������
��	��P[�������
������	����������P	����	�
�����
��
�	������
����������	�&1)�

3. ASPECTS
������
�	���������������
�����	���������������
��������	�	���������	���������������	�	����������

+��
���	�
��	���������
�����������������������	�	��
������	�
����������	�	���
�����������
������������
����������������#�����
�

	����#�
��	������
�	���
���

�����	�	���#��
�������	�
��	���
�!	��	�������	�	���D���

����
�	����
�	����������
���������	�����#����
	����	��

��	�	�	��
���	�	��#��
���	���
����
�
�
���#���

����
�

������
����	���	������������������#���

	
�	��������

�	�	���������������	�
��	�������
��������

���	�
��	���
�����	�	�������	���	��
�	�������
���	�
���	���

���	�	����������
�	����������	
�	���

+����	�	��
�����	�������	������������
�	��
���	�	�����������
���
�������
�	����������
���	���������
	�����	�����
���
�	�	���
������
�	��	�
��������������	
�	��*��������	�	��

�����	����
����������	�	����������	�	��������	�	�������
�	��	���	��������	
�	��
���	�	�����
����	����	�����
����
	���������	
�	��������	���

+��������
��
�����
�����	��	�	����������	�.	����6�
+����	�	�������
�����	����
���������	�����������
������
������
�	���

+�	����	���������
���������	
�
�	��#����
	�����	�	���	������������
�����	�	���������

�����	����

�������	�	���
������
����	���	��������
�����!����
�	������������	�&4)#�

�	
����
���
�
���������������

��������������������������������������!	�
���	�
�	���	���������������

3.1 Definition
��ACcG!?�*OP�QR�Q�fQ

Q�#U	�������
�����	�����
������������������	�	���������	*OEfQ

QE#U
���
�	��	���
��������#�	��

E�*OOP�
�#$%&QP�
'%&$%&QP�
()*+,-UQOP�QR�QT�UU
+������
�
���	����
���
�����	��
���������*

�P�*���	������
����������
����	�����#�	���	��
���
������	�����	�	[

�R*�������
�	�	�	��
���	�	��#��������	������P�
���������������	�����	�	[

��fQ

Q�#*��	���
����
�
�
����
D����	����������������������
�������	
�����������
����
����[�	������	���
�������!����	�������������
��
��	������
������������

A_1

A_m

M_1 M_2 M_n

module module
variables

module
variablesvariables

aspect
variables

variables
aspect

facet
aspect

�̂L�M�����O�5����M�6M���
�����
�
��6����667��
�����

������
�
�
��	�������
����
��������
�����
�	������

��������	���
���������	����	����
.	����7�	����

�
�����	
�����������	���
��������	����	������������
�����������
�����������	�	���
����
�
�
����

������
�
�
����*OP��QR��QT��Q��Q��U
���	����
���
���
���	��
���������*

�P��*�����
���	�������
�������
�
��#�	���	��
���
������	�����	�	[��������	�����������������
���
��
����������	������������	�	��������������
�

�
����

�R��*�������
�
�
��	�	�	��
���	�	��#��������	��
����P���P��P�#������	�	�	��	$������
��
�
��
���	������

�T��*���	������
�����	�	�������������	
����	�
�����	�P��P���P�
'%&$%&�P�
()*+,-�P�#���	����	�
�	��#���
������������������
���	�����	�P�
�#$%&�

���*���	������
����
�
�
��������
�	��	�����
�	���#
�������
�	�����
�	�����NI���Q���L	����	�
���
�	��	���
��������	�����������������������	
��	��
	���
���	�����
�	��#��

������
���	������������
�����
�������
��������	�	��	�
�����������	�	��
�����	��	���	���������	
��	�	��
���	�	��[

���*���	������
����
�
�
�������	
�	��	�����
�	���#
�������
�	�����
�	�����NI���Q���L	����	�
���
�	��	���
��������	�����������	���������	
��	�	��
�
���	�����
�	��#��

���������	���������
����	���
�	����������	�	�������	��	�
�����������	�	�������
�	��	���	���������	
��	�	��
���	�	���

3.2 Semantics
�	���������
��*OP�Q

R�Q�fQ

Q�#U�����������
�����	�	��������	*OEfQ

QE#U�������	
��	���
���
	
#��
	�����I	L#

���������������������	�	��������
	�*OE�fQ

QE�#U�	��

E��*OOP��
�#$%&QP��
'%&$%&QP��
()*+,-UQOP��QR��QT��UU
�	�����
�����	��������

Gary T. Leavens
11

a) original set of behaviors b) set of behaviors after abstraction c) set of behaviors after restriction

�̂L�M����
��6��������5��
����
�
����M�����
�
RM���M�����

�+��	����������������	������
��������������	�
��
������*

P��
�#$%&NP�
�#$%&���P��
'%&$%&NP�
'%&$%&
�+������������
����	��������	�
�����	����������
���	������
��
�������#��

�	����������	������	�	�
���������������*

P��
()*+,-NP�
()*+,-�P�

�+����
�����	������
��
�����
�
�
�����	�
�����	�
�����
�����	������
���
���������	��������*

P��NP��P��

�+������������
�	�	�	��
���	�	������������
�
�
��
	�	�	��
���	�	���������
����	����	�����������
	�	�	��
���	�	��*

R��NR�bR�bR��

�+���������
�����	�	���T��
���	����
���������
�����	�	���#����

	������	��������
�
��������
�	��
��������	
�	��	�����
�	���#��

����
�
�������	�	����
2��]ZT���������������	�	���	�������	�	�����
���	����#�������NFI�fQ�fLQ

I��Q��LH�����
����
������
�	��	�����
�	����
����
�
�
�����+���
���������
��������	�	��]���������	�	�������	��

��
��
�����

�N�
�	

��

�����"	����	���!���
����	�	�����	��	
���
���
������
�	��	�����
�	��������
���	�	��	�	���	����
��������	�	�������	��#�

���	�#

"NF��5U�U������_��H
+���������	���������
	�����	�������������
�	��
	�����
�	��������
���	�	��	�	���	������������	�
�	�������	����������
�������
��������	�	�������
�	���

-	�	�����#
����NFI�fQ�fLQ

QI��Q��LH���������

�����	
�	��	�����
�	���
������
�
�
�����+������
������
�����������	
��������	�	��]�
��������	�	��
�����	��

��
��b�
�	

��

�����

"NF��5U�U������_��H
	����	���!���
����	�	�����	��	
���
��������	
�	��

���	�	���	���	������������	�	�������	���
.���!�����#
���

	���������	�	��]�	�������	�	��
�����	��

��*aNPfb��2ba�NPD
���������
�	����������	
�	��	�����
�	���

�*FIaNPfQFa�HLQIaNPVQF�HLH
�*FIaNPfQa�NPWLH

/��������	���	���������������
�	��
���	�	��	��#
�����������
���#��

���������a�	������
������#
������	��	���������
��������	�	��]��	�������	�	��
�����	��

���*aNPfb��2
-����%��������	
��	���
��������	
�	��
���	�	������
�������	���������	�	��]�
�	�������	�	�������	��

����*aNPfb��2ba�NPW
+���#�
���=�
��
�������]	������	��
����
������

<���
]��������
��	���
��	���������������	��#����������
�����	�	���
T��
��������	�����
T��NF]��
��]ZT�H�T��

4. ASPECT EXAMPLES
+������
������	������
��	��������	�����
�	��	��� �

	������!�����	������������������
�������
�
������
��
����	����
�	
�������������
�������
��&()�

����	���
�
�	����������������!�������
��������
������
��
��
�������������	����������

Gary T. Leavens
12

I
JJJK

P	*

Pf*

PD*XPS*

PV*

X
YYYZ�

I
JJJJJK

P	*

Pf*

P#�f*X#,�PD* XPS*

PV*

X
YYYYYZ

E ��#(,+&IEL

�̂L�M����
��M��
L������5�
���
�M��L���
������
5�
�X

Insert Before
+������
���������
��
�	��	���	������
����������
������������
���I���
���L��	�������������

�	�������
%����	��������������������������������������	*
OEU�	��
���������	����a�	�������P	

P##���
������
	������
�	�����������	�	��]#,��	��I�����
	���L�����	�
�	�������	���#,�������
�����	������������X�

��#(,+&NOeQ?@�GQ�U
+������
���������	�����	��������������������������
����	������
��#��

����������������	
�	��������������
	�	�	��
���	�	���

+����	��������
�
�
��#

�NOeQ
?@�GQF]#,�HQ�Q�U

+������
��
�����	�����	��������������	���
�����
�����	�	�	��
���	�	���

S+��
�
�������	�	���	�
�������
�����	�	������	������
��#]

#,�
�
+��������
�	��
���	�	��

��������������
���������	�	�������	���
������������
��
���X�����������	��
�	���

�������������������	�
�	��*

�N�Ia�Nc@GbE!IXLQ�a��L�
����	�#���
	����a�	������
������
��������	�	�������	���

	���	
����
���������	����	��������������
��	���

���������X�
.	�����������	
��������������	�	������	��
�

���������������������
��	��P#�f#����

���	��	����
�������

�N�Ia�Nc@GbE!IXLQa�NP#�fL�
+�������	�	�������	���
�����������	�	�������
����

�����*�#,�baNP#�fba�Nc@GbE!IXL
����	�#�
����������	�	��	�����
	�����	������������

������
��	�����	��������
��	��	���������
��	���
���
�	������������X�

.	����4���������=�
��
�������
�	�K01����������
���	���
,�������������������
�	������������
����

������	����	�
������
��
�������������	�����������

�����	���	��	=������	����	���I
���!�����#
	
�������

������������	
����������
���
���������	����L�

Logging
�	����������	*OEfQEDU#���
�����	������
�
�����
���
�����������������	�����*

�	'

�#
NOF��HQ��N2Q�fQ�DU
S.���	���	
	��������������X	��������������������
�
E[
	�	��������������	
����	�	�	��
���	�	���

��	������
�������������
����	������#	�	�	��	$����2#��
��
�������������

���������	�
������������
�
�
���
�f
D*

�f
D*FeQ?@�GQeQeQ�H
����������	��	�
���
��������	���������	
�	��	�����
�
�	��

�N�I?@�GQI��dN�_���N���5LbI��N�_���N��LL�
������=�
�	��������������
�����
�����������	�	���
	�Ef
D#	�
������	���������	����	���#�������	��	�
��
������������	���

����������	�������	
�	��	�����
�	��	�

�N�I��dN�Q���N���5LQI��N�Q���N��L�
��	
�#�
�������	��
�����������
������
�	��#���

��
������������
	�����������

"������#
	����	�������

��	�	������
	���������������	�	�������	��	���	�����
�����	
�	��
���	�	���#�

�	
�#
	��������#�����

�����
	��
�����

Adding synchronization
/���	����������	*OEfQEDU�	����������������
�����
�	��
���������	�����af
D����	���������������
��	���P	

P#���\	

\������
�	����#���������������
�

������%�	������������!
���	���

����

+��
�����	�����
��
����������
�	���
���������
���	�����?A@G@F����

����	$��	����
���	�������	�-�
�	��6�
�,��	%(�'#NOFGfQGDHQGfN2bGDN2Q�fQ�DU
+�����������	��������	������
��#

����	�	�	��	$����2�
+���������
�
�
��������������
������*

�f*OeQ
?@�GQF]ffQ]fDQ]fSHQ�fQ�fU

�	��

����*afNP#�fba�fNP#�DbG�fNGD�5����*afNP#�Dba�fNc@GbE!I
fLbIGDN2TGfUGDL����*afNP#�Sba�fZcEC?bE!I
fLbG�fN2
�����P#�f

P#�S���������������
��	�������

���	��
	������������

+��������
�	��	�����
�	��	��	�����

�fN
�IafNc@GbE!I
fLTa�fNc@GbE!I
fLQ�a�f�L�

��	�	���	�����
������<��
�����������������	�����
������
�#��
���������
��	�������������������������

������
��
+�������	
�	��	�����
�	�������������
������

<��*

�fN
�Ia�fNc@GbE!I
fLQa�fNP#�fLQ
IafNc@GbE!I
fLba�fZcEC?bE!I
fLQa�fNP#�SL

�

-	�	�����#

�DNOeQ?@�GQF]DfQ]DDQ]DSHQ�DQ�DU
�	��

����*aDN\��fba�DN\��DbG�DNGf�5����*aDN\��Dba�DNc@GbE!I
DLbIGfN2TGD]GfL����*aDN\��Sba�DZcEC?bE!I
DLbG�DN2
����	�	�������	�	���
���D����D��������
.	����;���������=�
��
�������
�	�K01����������
���	���

Gary T. Leavens
13

I
K
P	*

Pf*
fI�X�X
LPD*

X
Z��

I
K
\	*

\f*
DI�X�X
L
\D*

X
Z

I�L	*]EfQED���	��������������
�

I
JJJJJJJJJK

�O�M�RGfQGD*�
��L�MNO�M�GfNGDN2P	*

P#�f*Gf*NGD�5P#�D*�N���IGDN2TGfUGDLPf*
fI�X�X
LP#�S*Gf*N2PD*

X
YYYYYYYYYZ

��

I
JJJJJJJJJK

�O�M�RGfQGD*�
��L�MNO�M�GfNGDN2
\	*

\��f*GD*NGf�5
\��D*�N���IGfN2TGD]GfL
\f*
DI�X�X
L
\��S*GD*N2
\D*

X
YYYYYYYYYZ

I�L�,��	%(�'#I	L�����	�����������!
���	���

�����

�̂L�M����RR�
L��
�OM�
������

I
JJJJJJJJJJJK

P	*�*N6Pf*NO�7��]�R��PD*�&�)*N�I�&��5)Q�&�)Q�&��5)LPS*�*N��5 �
PV*�*N5PW*NO�7��]��5R��P[*�&�)*N	I�&�)LP
*�*N��5�P�*

X
YYYYYYYYYYYZ

�̂L�M���̀ M�LM�5K;<
;K
Loop Fusion
���������
����
��	���
	������!�����	�������������
����
��	��#������

�����	���
������
��	�	�������
����
	�������	�	$�
�
�����
�����
��

/���	����������K;�<
;K�����	�.	����(��������������������
������
���	����a�	�������2

3#��
�����aN�����
������	�
����
��	��P��
+��
�����	������
�����������������������	����Pf���PW*

� �CDEBNOeQ?@�GQ�U

�	��

�NOeQ
?@�GQF]HQ�Q�U

�	��������
�	��	�����
�	��

�N�IaN5TaN6TaN'Q�a��L�
��������	
�	��	�����
�	��

�N

���IaN5QI�]�ba
�N6LTI���ba�N3LL

IaN6Qa�N1L
IaN'Qa�N7L ���

+�������	�	�������	���
��������	������
�������	�	��	�

��*aN1ba�N(b��N��5

I
JJJJJJJJJK

P	*�*N6Pf*NO�7��]�R�I
JJJK

PD*�&�)*N�I�&��5)Q�&�)Q�&��5)LP�*�*N��5P[*�&�)*N	I�&�)LP
*�*N��5PS*�*N��5

X
YYYZ

P�*

X
YYYYYYYYYZ

�̂L�M���� �CDEB�K;<
;K�
+���������
�����	��� �CDEB���������K;<
;K	������
	�.	����'�

5. ANALYSIS OF ASPECTS
9������	���
���
�	�������������
������
	���	�����

����
�����������	
�

.���!�����#�
��������������	�

���������������	������������
���������	���������
����!
���52
�������
	���������	���������������	

I1J1L
������ �

I�U52L
��������

�
���������������������������������������

��������������	��������������������
���	�	�������

������������
�������I��L#����������
���	�	��������
���	��������
���	�	��������I���L�+�����
	��������	
�
�
1J1
����
����	�&1)����	
�	�������������M���	��������
	�
��	���!�������
����1J1
�������#���������	����

M�N�

���	����
����	���������������������	����
M���	�
�
�
#�
���	�

�IML �I�L
������I�L	��������
��������	���I	���	����%���
���

������L�������	�
���

Gary T. Leavens
14

Property Inheritance
+������	�	���
�
�����������	
��
����
�����������
���������%����	����
�������

	�N�Q

�I	L�N�

�����������������������[����	�#�
��������	
�	�����

����
��������������������	���
�������������	���
.��

�!�����#
	�	��������������
����	�����
������������

	�N�Q��NeQT�Ne
�I	L�N�

�������Ne������
����Ne
���������
�
����������
	��#��
��	�	�����#
T�Ne������
��T�Ne
���������
�

���������
/�������������
��	���	
���������
�	��	�

����	��#�
���	�#���������

�����	��������������������
���#��
�����������	�	������	������
��#�

�������������
�����
������������

,��������	�������������	��������
������������������	
�	������	����������	�	�����
������
���
�	������������

��������������	�������������������	����	�	��&;)#
����
��
����
����	��������	�	����	���
��������	���

.��
�!�����#���
��

�	��	���	��HEBD?E@DBA����
��#��	
�����

����������������	����������
����������������������

�������	��#@GA�bA?E@F����
��#��
����������	��������#
��	
����������
�	�
�������	���	���
�	�����#��

�����

�����	�������������	�������	������#��

������������
��
��#�
�	
�
�����������������������

���!��
�����
���������������
����	�
��	��
����	�����
�����

Property SuperImposition
-	�	�����#������

�����������	���
����
�����	�
�	��
���
��	��������	�����������	�	�����������	
�	���������
���������������%�	������������������������	��������
���	���������������#�

���	�#��
�������
���	�	���
����

���������

��N�Q

�I	L�N�

Aspect Interaction
+����	��%����	������
��������	��	���	�
��������	�
����
�	�����
�	��#�

���	�#��
�������
���	�	����������

�����	������*

�I�fI�DI	LLLN�I�DI�fI	LLL
+���	�#
	����������
�����	������
���	��	�
����

6. DISCUSSION AND FUTURE WORK
Extensions
+����������������	���	������	�������	
���������
��	
���	���������	����������!����	����

��������	��
�����!����	��	����������	$��	���

�����
����������
�
���
�	��	����������#���

	�����#���
�	
������������	�	���

���������
	����	��������
��	������	���
�������!����	��

���������
����
�	��	���������������������
������
���������	$�������
���������������	��	��������
�

��������#��

����#���
�T
�
�����
�������	���!����

�	��	���������
����	�	���

�������

����!���#

��

�!�����#����
	���	�����
���

+��
��������������	����������
�����������
�	��#���
����	����
���	���������
�����	�������������������
��
������#�
������	��	�����������������������������

���	���
�����
��������	�����	���	������������������

���	���������
�	����
���������	��������������
�	��
&6)

������������	�
���������

���
��
���������
�	��	��
���
������

.�������
�!���	�	����������	����
�	�����	���	�������
+�	�����	����	����	���
���������	����	�	���
�	������
�������	��#

�	������������	���	����������	�
������

Constructing systems
+������������������
������������	��
�����
���
����
�����������
�������
�����������������

���
����
�	����������	
�	���������������	�	������
	�����
���	�	���
���	���	
��	���������	�����	�����	
��	�	���

��
����!����������������	���	
��	���������
	��������

������
��
��
���������	�������	����������	����	
�

������
��
�����!�����������
	�����
���	�	����
��

���
��������	��������	���
������
�	��������	�-+�9
I-���
���+�������9�����L&5)#��

	����
	�	�����
������
����
	������	
��	�	��#

���!���	�����	��������	���
���
����
���

7. REFERENCES&5)���<�;<���	���<
��;����

1�
�����
�
�:8;
�;<�����9��9����	
0�9������9��
�<
8;�Q������	
�	�����������������	���
���
�	��
�������*�-+�9�����	���

�E@HAb�G?BEcCDB�FC?GH
�GCDAB��#7I����6222L#66'�6'2�
&6)

1�
�������9���<
8;�Q����������	��
��	��������������
�	����
���
�	�����������	��
��
	�	�����
�������

���@E!�52&) B?b�!EB G@GB!GEB
!EHc�?G@"DcGc#G@D$!A?DEBI����5113L#����"�����
�
%
�
����	#����#����546'�
&'!�#-��	�����������#
���
617�724�

&7)�
�:8;
�;<�����9��9����9��	
0�9�����
8���
�	�����	�
��	���
���������������

��
!EHcECD?DEBAbD?F()BG�DABD$!AB?�D*G@GB!G+
!,��,�-./I8�
�

5113L
#
�
��
9
�
��0�����#

"
�
2������
�#�����9����	#����#����5;7(�
&'!�#
-��	�����������#���671�6';�
&4)�
K1;<�0��9��0<
K1�9�2<J1
�	��������
���	�
��	���

���������	����������
��������	���

��
 B?G@BA?DEBAb!EB G@GB!GEB�E�BcA?DEBCE �E ?3A@G
4BADBGG@DBAI6225L�
&;)09J5�	�������	����	�	��
������
������
�
��
�	���	�������������

"!�)@ABC�
�@EA�&ABA��FC��6#

6I���	�5117L#
77'�7;(�

&()0
7591;K�8���
1K�91;�����292�
��:��0;<KJ;��
�
��
;91��:��9��8<
K�
1��<�����	���������
�	������
���

!EHH�BD!A?DEBCE ?BG"!�==#52
I�
�����6225L#

;1�(;�

&')0
7591;K�8��>9�0
�9�:���;��1;:9<����
�9;�9�
��>
0;K�
��>

�9J
;<�:��9��?<�
��:�
����
����	�������������	���

���@E!GGcDBACE ?BG
4�@EcGAB!EB G@GB!GEB,a@G!?d,@DGB?Gc�@EA@AHHDBA
A4!,,�BI511'L

#��
�
�
5645�
&'!�#

-��	������������

Gary T. Leavens
15

&3)>9�0
<J�>����������	���
8	������>�
��
������
��������	����������

!EHH�BD!A?DEBCE ?BG"!�
�/
#
3I51'4L
#
47;�4;;�

&1)�9��9����9��;�2;1
���)GHcE@Ab#G@D$!A?DEBE
�GA!?D�G�FC?GHC(�A G?F�-��	�����������#,��%���#
511;
�

Gary T. Leavens
16

On Composition and Reuse of Aspects

Jörg Kienzle, Yang Yu, Jie Xiong

School of Computer Science
McGill University

Montreal, QC H3A 2A7
Canada

contact: Joerg.Kienzle@mcgill.ca

Abstract

This position paper investigates the possibilities of sepa-
ration, modularization and reuse offered by aspect-orienta-
tion, concentrating not on the technical or syntactic
problems, but on the inherent issues resulting from inter-
aspect dependencies. An aspect is defined based on the ser-
vices it provides, on the services it requires and on the ser-
vices it removes from other aspects. A classification of
aspects is established based on the way they interact with
each other and on the way their functionality is triggered.
Composition rules and the weavability criteria are defined
based on this classification. Moreover, the impact of the
dependencies of aspects on the level of achievable reuse is
analyzed. Finally, the paper shows how the general ideas
apply to the aspect-oriented programming environment
AspectJ.

1 Introduction

Separation of concerns is a fundamental principle of
software engineering that in its most general form refers to
the ability to identify, encapsulate, and manipulate those
parts of software that are relevant to a particular concept,
goal, task, or purpose. The benefits of a successful modu-
larization of concerns during the implementation phase are
obvious: simpler code structure resulting in improved read-
ability of program code, program code that is easier to cus-
tomize and adapt to new situations, increased possibilities
for reuse.

In order to help developers, software development
methods, e.g. the Unified Process [1], define a step-by-step
process that leads the development team from an initial
requirements document through to the final implementa-
tion [2]. Most approaches start by analyzing the system
requirements based on use cases, which capture the expec-
tations that the final users of the software may have. In a
sense they focus on the different concerns of the end-users.
During the design phase however, most approaches con-
centrate on elaborating an object-oriented design, i.e.
decomposing the system into objects, each of them provid-

ing a well-defined part of the main functionality of the sys-
tem. As a result, secondary functionality, e.g. distribution
support, is often poorly encapsulated. This phenomenon is
known as the “tyranny of the dominant decomposition” [3],
and aspect-orientation [4] might be a possible way to
counter it.

Of course, the notion of main functionality is relative. It
has never been precisely defined, but is usually used to
denote what is particular to a certain piece of software.
These days, general mechanisms, for instance mechanisms
that deal with concurrency and failures, distribution, or
security, are considered secondary functionality.

This classification into main and secondary functional-
ity, often also referred to as

functional

 and

non-functional
aspects

, is very unfortunate. It somehow conveys the feel-
ing that there are important concerns and less important
concerns during the development of a piece of software,
which often leads to the mistake that only the functional
part of an application is developed following software
engineering principles, and the non-functional part, e.g.
fault tolerance, is added later on.

It is our firm belief that there are no such things like
non-functional aspects. Every concern of a certain piece of
software is important, is part of its functionality. During
design all concerns must be considered and integrated in
order to obtain an elegant solution.

What are called non-functional aspects are actually con-
cerns that are more general, i.e. they are likely to be present
in other applications as well. Of course, it is tempting to
separate these aspects from the other functionalities of the
application and make then “generic”, meaning that modu-
larize them in such a way that they can be easily reused in
other contexts and applications. The idea is very legitimate
and it does not take long to convince any sensible program-
mer that such a separation would be great. Aspect-orienta-
tion might just be the right way to achieve this kind of
separation.

This paper investigates the possibilities of separation
and reuse offered by aspect-orientation, concentrating not
on the technical or syntactic problems, but on the inherent
issues resulting from inter-aspect dependencies. Section 2
defines the essence of an aspect based on the services it

Gary T. Leavens
17

provides and on the services it requires from other aspects.
Section 3 classifies aspects according to the way they inter-
act with each other. Based on this classification, Section 4
provides composition rules for aspects and Section 5 exam-
ines reusability issues. Section 6 illustrates how the pre-
sented ideas apply to one of the main-stream aspect-
oriented development environments, AspectJ. Section 7
takes a closer look at circular dependencies. Section 8 pre-
sents recommendations for aspect developers, and the last
section summarizes the results of this work.

2 Aspects

For the subsequent discussion, it is important to specify
clearly what we mean when we talk about an aspect.

From our understanding, an aspect at the design and
implementation level is a main abstraction that encapsu-
lates that part of the design solution that addresses a certain
concern expressed at the analysis level. On on hand, the
aspect provides a certain functionality: it implements the
concern. We’ll designate the set of the services it provides

P

. Services can be seen as the entry points or interface
offered to the rest of the system. On the other hand, the
aspect may depend on functionality offered by other
aspects. The set of services it depends on is named

D.

Optionally, an aspect might remove functionality of other
aspects. The set of services it removes is named

R

. Obvi-
ously,

R

 is a subset of

D

. An aspect is therefore categorized
by the three sets

P

,

D

, and

R

.
What is needed to accurately describe a

service

 is inten-
tionally left open. On one end, specifying the complete
semantics of an aspect is a challenging task, and out of the
scope of this paper. One the other end, object-oriented pro-
gramming languages often just use method signatures to
specify their interface to the outside world. Applying this
idea to aspects would mean specifying the signatures of

P

,

D

, and

R

.
If we want to use UML to depict an aspect, we might be

tempted to use the representation of a class or interface.
Unfortunately, these constructs only show what a compo-
nent provides to the environment, and not what it requires
from others. UML stereotypes make it possible to extend
the base UML concepts and add additional meaning to
them. Fig. 1 shows an

<<aspect>>

 stereotype with three
new compartments:

Provides

,

Depends On

 and

Removes

. It
is not clear if an aspect should be seen as an extension of
the UML class, of the UML package or rather an extension
of the UML collaboration. Discussions are still in progress
[5, 6].

3 Aspect Interaction

In this section we attempt to classify aspects according
to the way they interact with each other. We have estab-
lished two classification criteria: the

activation mechanism

and the

dependencies

.

3.1 Activation Mechanism

The activation mechanism of an aspect is determined by
analyzing

when

 the aspect delivers its functionality. There
are two different kinds:

autonomous

 and

triggered

.

Autonomous

: An aspect is autonomous if it can act on its
own, i.e. it does not need to be stimulated to deliver its
functionality. It typically performs its duties continuously
or periodically.

Triggered

: Initially, a triggered aspect is passive. It waits
for some other part of the application to activate it, and
only then it delivers its service.

This classification is similar to the one found in object-
orientation, where one distinguishes active and passive
objects [7]. Active objects act autonomously, whereas pas-
sive object must be triggered, i.e. only execute methods
when they are called from the outside.

Of course this classification is not absolute. An aspect
may provide autonomous services and triggered ones, sim-
ilar to the Time-Triggered Message-Triggered Objects pre-
sented in [8], which provide periodically executing
services as well as services triggered by messages. For the
sake of clarity, however, such mixing of activation mecha-
nisms is discouraged.

3.2 Dependencies

We essentially distinguish three different kinds of
dependencies:

orthogonal

,

uni-directional

 and

circular

.
The functionality that an

orthogonal

 aspect provides to
an application is completely independent from the other
functionalities of the application. The only thing it might
depend on is activation time (see Section 3.1 above), or
general application-independent information provided by
the run-time environment, e.g. information on the virtual
machine, current method name, etc.

Fig. 1: UML Representation of an Aspect

<<aspect>>
Aspect_Name

Provides
Set of Services P

Depends On
Set of Services D

Removes
Set of Services R

Gary T. Leavens
18

Unfortunately, such aspects are not very common. An
example of an autonomous orthogonal aspect is a clock
counter. Every second, the counter is increased by one. No
explicit triggering is needed (probably the counter is imple-
mented using an independent thread or interrupts), and
there are no shared data structures between the clock aspect
and others. Measuring the time elapsed between two events
can be seen as a triggered orthogonal aspect. One might
think that there is a semantic dependency of such a timing
aspect on the part of the application it actually performs
timing on. This is, however, not true. The dependency is
only on the fact that the aspect has to be triggered twice:
once to start the timing, and a second time to stop it.

One of the most popular orthogonal triggered aspects is
logging. For debugging purposes, a logging aspect can be
applied to various places in an application to print out stack
traces, etc.

A

uni-directional

 aspect depends on some functionality
(service or data) offered by other aspects in the application.
Without this functionality, it can not deliver its services.
Among uni-directional aspects, we can further distinguish
between

uni-directional preserving

 and

uni-directional
modifying

 ones.

Uni-directional preserving

 aspects provide new services
based on services of other aspects, but do not alter or hide
the other services in any way. The properties and function-
alities of the other aspects are preserved.

[9] presents an example of two triggered uni-directional
preserving aspects. It describes an aspect-oriented imple-
mentation of a telecom application that handles phone
calls. In order to set up correct billing, the elapsed time of
long distance phone calls must be measured. The long dis-
tance timing aspect uni-directionally depends on the call
aspect, adding timing information to the calls. It is not
orthogonal, because it has to associate timing with calls,
and therefore depends on the existence of the call aspect.
The billing aspect in turn depends on the call and the tim-
ing aspect, for it has to know the calls source and destina-
tion city, and the elapsed time in order to calculate the total
cost. In the same context one can imagine an aspect that
periodically collects statistical information on long dis-
tance calls, e.g. the average length of calls. This is an
example of an autonomous uni-directional preserving
aspect that depends on the call and the timing aspect.

A

uni-directional modifying

 aspect replaces or modifies
functionality of some other part of an application, but it
does this transparently; the other aspect is not aware of
this, and therefore does not have to behave differently. In a
sense, a uni-directional modifying aspect wraps around or
encapsulates some services provided by other aspects. As a
result, some of the original services might not be provided
anymore.

As an example of a uni-directional modifying aspect,
imagine a typical banking application. Some banks (at least
Swiss banks) allow good clients to overdraw their account.
Clients with a bad credit history on the other hand are not
be allowed to do this. The desired effect can be achieved by
encapsulating in one aspect the account behavior, and
design an additional aspect that denies withdraw requests
in case of insufficient funds. The additional aspect removes
the withdraw service from the account aspect.

Circular

 dependency is the strongest form of depen-
dency. It occurs when several aspects are mutually depen-
dent. The simplest form is encountered when two aspects
depend on each other, i.e. the first aspect requires some ser-
vice provided by a second aspect, which, in turn, can only
deliver its service with the help of the first one. Another
way of looking at this from the perspective of an aspect
that you are adding to an application is the following: if in
order to make the overall application work with the new
aspect it is necessary to modify other aspects, then there is
circular dependency.

An example of a circular aspect has been presented in
[10]. In this example, a transaction aspect is added to a pre-
viously non-transactional application, allowing the applica-
tion to deal with concurrency and failures. The aspect itself
provides the run-time support for transactions, making it
possible to execute methods transactionally. However, the
application must state which method calls it wants to make
transactional, and what actions should be taken in case a
transaction aborts due to a failure.

Circular-dependent aspects are so tightly coupled that
one might argue that it makes no sense to consider each
aspect separately. This first impression will be confirmed
when considering composition and reuse later on. It is
often simpler to treat them as a single aspect. The set of
services the single aspect provides is the union of the ser-
vices the individual aspects provide, and likewise for the
set of services it depends on and the set of services it
removes. In the following sections we do not consider cir-
cular-dependent aspects, they will be revisited in section 7.

The following table summarizes the classification estab-
lished in this section:

4 Composition Rules

In AOP, the so-called

aspect weaver

 composes the dif-
ferent aspects to form the final application. This composi-

Class of Aspect Restriction

Orthogonal D = ø

Uni-directional preserving R = ø

Uni-directional modifying no restriction

Table 1:

Classification of Aspects

Gary T. Leavens
19

tion can be done statically, i.e. at compile-time, or even
dynamically during the execution of the application. Imple-
menting such an aspect weaver is far from trivial, and there
are lots of technical issues that need to be addressed when
composing aspects. In this section, however, we will con-
centrate on the more fundamental problems of aspect com-
position. Even though a set of aspects might be technically
composable, it might be conceptually impossible.

In order to simplify the discussion, we introduce the
notion of an

aspect group

. Aspects in an aspect group all
have some dependency relationship. An executable appli-
cation consists of at least one non-empty aspect group,
containing at least one autonomous aspect. Initially, the set
of aspect groups that forms the final application is empty.
Step by step, additional aspects are added. The set of aspect
groups that form the final application is called a

configura-
tion

.
If we represent aspects as nodes, and dependencies as

directed edges, the representation of a configuration takes
the form of a directed acyclic graph (short DAG) as shown
in Fig. 2. We’ll call it the

configuration dependency graph

.
Each

component

 of the dependency graph forms an aspect
group.

The composition rules for aspects in this section is
based on the classification presented in the previous sec-
tion.

Orthogonal aspects are very flexible — due to their
orthogonality there are no restrictions on composing such
aspects with others. When adding an orthogonal aspect to
the final application, a new aspect group is created, i.e. a
new component is added to the graph.

Uni-directional aspects must be added to an already
existing aspect group. The set of services that the aspect
requires must be provided by the aspects that are already in
the group. It is also possible to combine aspect groups, i.e.
join previously separated components of the graph, in
order to obtain the required set of services.

4.1 Weavability

An interesting problem is the

weavability problem

, i.e.
determining if a given set of aspects can be composed in
such a way that all service requirements are fulfilled.

In graph theory, this is equivalent to solving a multi-
commodity flow feasibility problem [11] with additional
node constraints. The graph to be analyzed contains one
node for each aspect and is fully connected. Every type of
service will be considered a separate flow. An aspect that
provides a certain service is a source for the flow (provides
one flow unit). An aspect that removes the service is a sink
(consumes one flow unit). Aspects that depend on the ser-
vice are mandatory transshipment nodes for the corre-
sponding flow. They can be modeled by an additional
constraint that states that the sum of incoming flows for
this node must be equal to one.

If and only if there exists a feasible flow, then the appli-
cation is weavable. By calculating the flow distribution that
uses the lowest number of arcs, and then inversing all arcs,
we obtain the dependency graph of the final application.

5 Making Aspects Reusable

One of the major encouragements for using AOP is
reuse. After having identified a certain concern, the idea is
that AOP should allow one to modularize and implement
this concern in an aspect. Later on, this aspect should be
usable in every application that exhibits the need for the
concern. Again, there are technical issues that must be
solved in order to make aspects reusable, e.g. how to spec-
ify the required, provided and removed services in a con-
cise way. In this section, however, we will concentrate on
the obstacles introduced by aspect dependencies.

An even stronger form of reusability is

genericity

. What
we want to achieve in this case is to write an aspect in such
a way that it can be added to an application without dis-
turbing the already existing structure. In other words we
want to add support for a certain concern to an application
just by adding the aspect that implements the concern to
the configuration.

The difficulty of providing such a form of reusability
increases depending on the class of aspect.

Orthogonal aspects can be reused in any context. They
are generic per se. They do not depend on any other
aspects, and therefore do not remove any existing services.
They do not disturb any existing aspect group configura-
tion, since they always start a new group. In the depen-
dency graph, orthogonal aspects will show up as sinks. In
Fig. 2,

Aspect A

 and

Aspect B

 are orthogonal aspects.
Uni-directional preserving aspects also make good can-

didates. Since they do not remove any services, they can be
added to any aspect group that provides the required ser-

Fig. 2: A Configuration Dependency Graph

Aspect A

Aspect D

Aspect B

Aspect C Aspect E

Aspect F Aspect G

Gary T. Leavens
20

vices. Of course, when moving a uni-directional preserving
aspect from one configuration into a new one, any aspects
it depends on must be either moved as well, or equivalent
services must already be available in the new configura-
tion. In the dependency graph, new uni-directional aspects
shows up as a source nodes. For instance, in Fig. 2, the uni-
directional aspects

Aspect E

,

Aspect F

 or

Aspect G

might just have been added to the configuration.
Uni-directional modifying aspects are hard to reuse,

since they modify the services of aspects they depend on.
They can only be added to an aspect group if it remains
weavable, i.e. the new aspect does not remove services that
are needed by other aspects.

6 AOP Mechanisms

This section analyses the support of the concepts pre-
sented above provided by AspectJ [12], one of the main-
stream aspect-oriented programming environments.

6.1 Interface Specification

Somehow, aspect-oriented programming environments
must provide a means for specifying what services an
aspect provides, what services it depends on, and what ser-
vices it removes. This has been an area of research for a
long time, and elegant solutions to this problem still have
to be found.

AspectJ takes the Java approach. The services provided
by a class or aspect are determined based on Java visibility
rules. Inside visible code, all potential joinpoints are advis-
able, meaning that they can be used as triggers or points of
extension for adding additional behavior.

There is no special part where dependencies are speci-
fied. An aspect potentially depends on all other modules
that are visible or that it imports. By looking closely at the
code, the services it actually uses can be determined.

The services that an aspect modifies or removes are very
hard to determine. Potential candidates are the destinations
of

around

 advice, but also

before

 and

after

 advice that
modify the behavior of the class or aspect they are advis-
ing.

6.2 Activation Mechanism

Just as conventional object-oriented environments,
aspect-oriented development environments support autono-
mous aspects. The autonomy of aspects is typically imple-
mented by the underlying operating system. Autonomous
aspects are either separate processes, or implemented
based on threads.

AOP is however particularly well suited for implement-
ing triggered aspects. They are usually activated by the

aspect-oriented run-time, which in turn is stimulated by
intercepting some specific event.

In AspectJ, for example, pointcut designators allow a
developer to specify when an aspect is to be activated. For
instance, it is possible to intercept calls to / and execution
of methods, throwing and handling of exceptions, and
reading and writing of fields. It is also possible to activate
aspects based on control flow information.

6.3 Aspect Semantics

There are several mechanisms that allow an AspectJ
programmer to write uni-directional aspects.

First of all, aspects are subject to the same visibility
rules as normal Java classes. They can call methods, or
read from / write to fields depending on their respective
mode (public, protected, private) and the package they
belong to. As soon as an aspect makes an explicit reference
to some other class or aspect, a dependency is created.

Next, aspects can use static

introduction

 to add new
fields or methods to classes or aspects at compile-time. If
explicit names are used, then again a dependency is cre-
ated. However, the introduction mechanism allows a pro-
grammer to use pattern matching rules to defer the
destination of the introduction to weave-time.

Finally, aspects can add code

before

 or

after

 any join-
point defined in the code they are advising. It is even possi-
ble to wrap code

around

 a joinpoint, optionally replacing
the code that would have been executed at this point.

6.4 Composition

At some point, AOP environments must perform the
weaving, i.e. composing all aspects of an application to
yield the final application. Logically, the composition
ordering is determined by the configuration dependency
graph. In order to obtain a possible sequential composition
order, topographical sort [13], also known as linear exten-
sion, can be applied to the configuration dependency graph.

In current aspect-oriented environments, the depen-
dency graph information is in general encoded by the
developer in a separate configuration language, or in the
aspect language itself.

The latter is true for AspectJ. The pointcut designators
in an aspect specify the set of joinpoints to which the
advice must be applied. If several advice apply to the same
joinpoint, then the developer can specify an ordering
among them by using the

dominates

 primitive. If some
aspect A is specified to dominate some aspect B, then
advice in A take precedence over advice in B. In a sense, A
wraps around B (or B is nested in A). In this case, the exe-
cution order of the advice is:

• before advice in A

Gary T. Leavens
21

• before advice in B
• original code at joinpoint
• after advice in B
• after advice in A

 If around advice are used, the ordering takes the follow-
ing form:

• around advice in A
(optional around advice in B

(optional original code at joinpoint))

6.5 Drawing the Line for Dependencies

As we have seen in the previous section, in order to
achieve high reusability or even genericity, a developer of
an aspect should strive for low dependencies. As strange as
it might seem, dependency does not only depend on the
nature of the problem, but also on the power of the weaving
mechanism. Surprisingly, some dependencies can be
replaced by exploiting the activation mechanism in a clever
way.

To illustrate this idea, consider a typical bank account,
implemented as an aspect. In addition, there is a security
policy that states that the account balance should not drop
below zero. This policy is implemented in a separate secu-
rity aspect. At first one might think that the security aspect
is uni-directionally dependent on the account aspect, for it
must monitor all changes to the state of the balance of the
account.

It turns out that this is not necessarily true. The security
aspect can be turned into a orthogonal one that prevents
any numerical value to drop below zero. It is the weaving
mechanism that links it to the account, i.e. activates the
security aspect on every change of state of the account bal-
ance.

In AspectJ, for instance, the account would be imple-
mented as a normal Java class with a balance field. The
security aspect would be implemented as an aspect con-
taining a before advice that verifies that the field value is
higher than the amount passed to the withdraw method.
The dependencies on class fields can be removed by using
AspectJ run-time information. The triggering of the aspect,
i.e. intercepting every write access to the balance attribute
of the account, is done in the pointcut definition.

7 Circular Aspects Revisited

After having examined composition, reuse and support
mechanisms we can now reexamine circular-dependent
aspects. Several reasons push to believe that they should be
considered a single aspect:

• Composition: When composing an application, a set
of circular-dependent aspects must be added to an

configuration as a whole. Moreover, it is only possi-
ble if the configuration provides the union of the ser-
vices needed by each circular-dependent aspect.

• A set of circular-dependent aspects can only be
reused as a group. The added services are the union
of all services provided by the circular-dependent
aspects.

• During the weaving process, a set of circular-depen-
dent aspects must conceptually be woven at the same
time. This may actually lead to implementation prob-
lems, similar to the problems encountered when com-
piling mutually dependent source files.

However, in certain situations it might make sense to
consider them separately, e.g. if one aspect of the group is
fairly generic. This is the case in the previously mentioned
example [10], where transaction support has been imple-
mented as a separate aspect in AspectJ. Transactions are a
generic concept that can be applied to parts of an already
existing application. However, the application wants to be
aware of this, especially when a transaction aborts due to
some underlying failure. In this case, the application might
want to try the same transaction again, or decide to perform
some alternative computation, and / or inform the user of
the failure, etc. As a result, the application and the transac-
tion aspect are tightly coupled.

What we suggest in this case is to try and extract that
part of the application aspect that deals with transactions
and make it a separate aspect. As a result, the two circular
dependent aspects (application and transaction) can be
transformed into an orthogonal and two uni-directional
ones (the application without transaction handling, transac-
tions, and the application-specific transaction handling
part). This is illustrated in Fig. 3. The feasibility of such a
transformation again depends heavily on the expressive-
ness and power of the weaving support. If this can be
achieved for the transaction example using AspectJ
remains to be explored.

Of course, programmers must be aware that the new
application aspect and the application-specific transaction
handling aspect have very tight semantic dependencies,
although physically separated. Modifying the application
aspect most probably also requires modifying the transac-
tion handling one.

8 Discussion

As we have seen in the previous sections, the dependen-
cies of an aspect have a profound impact on the ways it can
be composed with others and on the possibilities of reuse.

Therefore, when developing an aspect that is to be made
reusable or even generic, a programmer should first deter-
mine the semantic nature of the concern that is to be modu-

Gary T. Leavens
22

larized. This will provide a hint on what degree of
decoupling might be achievable. Next, the developer
should try and classify the aspect according to the rules
mentioned above.

Orthogonal aspects are most flexible, followed by uni-
directional preserving ones. Uni-directional modifying
aspects are not easily reusable, since adding them to an
application may compromise weavability. Circular-depen-
dent aspects should, if possible, be transformed into several
uni-directional ones.

The weaving mechanism offered by the aspect-oriented
environment has also an important impact on the depen-
dencies. If it is not powerful enough, or the weaving lan-
guage is not expressive enough, then additional
dependencies might be artificially introduced into the sys-
tem. On the other hand, exploiting the power of the aspect
weaver and aspect run-time information might make it pos-
sible to remove dependencies. Imagine an aspect that mon-
itors some data, and triggers some action if the data
changes. Such an aspect would fall into the autonomous
uni-directional category, since it is dependent on the data it
monitors. However, if the aspect run-time allows activation
of aspects based on data changes

1

, then the dependency
can be removed from the aspect. In a sense, the depen-
dency is re-introduced later at weave-time, when the actual
configuration is assembled. As a result, the monitoring
aspect now is triggered and orthogonal, and hence can be
reused in a straightforward way.

Based on these observations, we encourage designers of
aspect-oriented programming environments to conduct fur-
ther research in this direction. For instance, the decision for
adding new features such as new pointcut designators to
AspectJ should be based on whether or not such a new fea-

ture would make it possible to remove a certain kind of
dependency.

9 Conclusion

In this position paper we have investigated the possibili-
ties of separation, modularization and reuse offered by
aspect-orientation in general.

We have defined an aspect based on the services it pro-
vides, on the services it requires from other aspects and on
the services it removes. Furthermore, a classification of
aspects has been established. Aspects can be

autonomous

or

triggered

, depending on the activation mechanism. The
dependencies lead to a categorization into

orthogonal

,

uni-
directional preserving

,

uni-directional modifying

, and

cir-
cular-dependent

 aspects. The influence of the power of the
weaving mechanism on dependency has been highlighted.

Composition rules have been established based on these
criteria, and the notion of weavability has been defined
based on flow feasibility analysis. Likewise, the impact of
the semantic nature of aspects on the level of achievable
reuse has been analyzed.

Finally, we have presented how the general ideas of this
paper apply to the aspect-oriented programming environ-
ment AspectJ, and made recommendations for determining
the usefulness of new features.

10 Acknowledgments

The authors would like to thank the anonymous review-
ers of the FOAL and SPLAT workshop committees for
their detailed comments.

11 References

[1] Jacobson, I.; Booch, G.; Rumbaugh, J.:

The Unified
Software Development Process

, Addison Wesley,
Reading, MA, USA, 1999.

[2] Hutt, Andrew T. F.:

Object Analysis and Design –
Description of Methods

. Object Management Group,
John Wiley & Sons, Inc., 1994.

[3] Tarr, P. L., et al.: “N Degrees of Separation: Multi-
Dimensional Separation of Concerns”. In

Proceedings
of the 21st International Conference on Software
Engineering (ICSE’1999)

, pp. 107-119, IEEE Com-
puter Society Press / ACM Press, 1999.

[4] Elrad, T.; Aksit, M.; Kiczales, G.; Lieberherr, K.;
Ossher, H.: “Discussing Aspects of AOP”. Communi-
cations of the ACM 44 (10), pp. 33 – 38, October
2001.

[5] First International Workshop on Aspect-Oriented
Modeling with UML. Held at the

First International

1.AspectJ, for instance, allows triggering aspects
when a field of a class is modified.

Transaction
Support
Aspect

Transaction
Aware Application

Aspect

Transaction
Support
Aspect

Application
Aspect

App-Specific
Transaction

Handling Aspect

Fig. 3: Transforming Circular-dependent Aspects into
Uni-directional Ones

⇔

Gary T. Leavens
23

Conference on Aspect-Oriented Software Develop-
ment

, April 22-26, 2002, Enschede, The Netherlands.

[6] Second International Workshop on Aspect-Oriented
Modeling with UML. Held at the

Fifth International
Conference on the Unified Modeling Language - the
Language and its Applications

, September 30 - Octo-
ber 4, 2002, Dresden, Germany.

[7] Briot, J.-P.; Guerraoui, R.; Lohr, K.-P.: “Concurrency
and Distribution in Object-Oriented Programming”,

ACM Computing Surveys

30

(3)

, September 1998,
pp. 291 – 329.

[8] Kim, K.H.; Masaki, Ishida; Liu, Juqiang: “An Efficient
Middleware Architecture Supporting Time-Triggered
Message-Triggered Objects and an NT-based Imple-
mentation”. In

Proceedings of the second IEEE CS
International Symposium on Object-Oriented Real-
time Distributed Computing (ISORC’99)

, pp. 54 - 63,
St. Malo, France, May 1999.

[9] The AspectJ Team:

The AspectJ Programming Guide

,
Xerox Corporation, February 2002.

[10] Kienzle, J.; Guerraoui, R.: “AOP — Does it make
sense? The case of concurrency and failures”. In

Pro-
ceedings of the 16th European Conference on Object-
Oriented Programming (ECOOP 2002)

, pp. 37 - 54,
Malaga, Spain, June 2002, Lecture Notes in Computer
Science

2374, Springer Verlag, 2002.

[11] Cook, W. J.; Cunningham, W. H.; Pulleyblank, W. R.;
Schrijver, A: Combinatorial Optimization. John Wiley
and Sons, Inc. 1998.

[12] Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersen, M.;
Palm, J.; Griswold, W. G.: “An Overview of AspectJ”.
In Proceedings of the 15th European Conference on
Object–Oriented Programming (ECOOP 2001), pp.
327 – 357, June 18–22, 2001, Budapest, Hungary,
2001, Lecture Notes in Computer Science 2072,
Springer Verlag, 2001.

[13] Aho, A. V.; Hopcroft, J. E.; Ullman, J. D.: Data Struc-
tures and Algorithms. Addison-Wesley, Reading, MA,
USA, 1987.

Gary T. Leavens
24

TinyC 2: Towards building a dynamic weaving aspect
language for C ∗

Charles Zhang and Hans-Arno Jacobsen
Department of Electrical and Computer

Engineering
and Department of Computer Science

University of Toronto
10 King’s College Circle

Toronto, Ontario, Canada

{czhang,jacobsen}@eecg.toronto.edu

ABSTRACT
The runtime behaviors of software systems are often subject
to alteration or intervention after their development cycles
for various reasons such as performance profiling, debug-
ging, code specialization, and more. There are two separate
domains related to the instrumentation of software systems,
one being various performance measurement and instrumen-
tation tools, the other the new aspect oriented programming
(AOP) paradigm. This paper describes TinyC2 language, a
language approach which experiments with the idea of im-
plementing an aspect oriented language based upon existing
system instrumentation techniques. Like other aspect ori-
ented languages, TinyC2 uses new language constructs to
allow programmers to intentionally compose systems in the
dimensions of both components and aspects. In this paper,
we discuss both the grammatical features and the compiler
architecture of the TinyC2 language. Through the TinyC2

implementation, we demonstrate that a language approach
can well bridge the gap between the AOP paradigm and
the existing system instrumentation technologies. It greatly
simplifies code instrumentation effort and provides runtime
optimization at the application level.

Keywords
Aspect Oriented Programming, Compiler, Dynamic Instru-
mentation, Dynamic Weaving, Source-to-source translation
Proceedings

1. INTRODUCTION
Programming methodologies have evolved from direct machine-
level coding to object-oriented programming. Good modu-
larization capability in the programming language design

∗In: Foundation of Aspect Oriented Languages Workshop in
conjunction with 2nd AOSD Conference 2003, Boston, MA.

allows software architects to successfully tackle two issues:
the ever growing complexity of software systems and the
increasing diversity and volatility of the execution environ-
ment. Besides improving language designs, there has also
been extensive work on finding better compiling techniques
to provide effective adaptations for software systems and
to efficiently support a wide spectrum of hardware plat-
form and computing resources [6, 5] that change dynam-
ically. However, compiler-based program adaptation and
optimization techniques are powerful but limited if the op-
timization involves changing the functional behavior of the
system. These optimization tasks include adaptations to
many domain specific characteristics, such as state valida-
tion conditions, synchronization strategies, logging strate-
gies, and many others. It is very difficult to build compilers
to make such application level decisions flexibly.

To overcome this difficulty, it becomes necessary to perform
post-development transformation to large software systems
according to specific usage scenarios. The post-development
transformation mainly includes modifications made to soft-
ware systems after their development cycles. A major stream
of manipulation techniques includes tools that provide source-
code level instrumentation, as in SvPablo1, and post-
compilation instrumentation techniques as in jContractor2

and Vulcan [4]. Dyninst [7] and the Paradyn3 performance
tools provide runtime instrumentation to C/C++ systems.
Another stream of program manipulation techniques mainly
belong to the aspect oriented programming paradigms [9],
where “instrumentation” has the first-class status in the lan-
guage design and can be used to compose system functional-
ity. AOP advocates composing systems using different sets
of models and leaving the integration work to the AOP com-
piler which is also referred to as the aspect weaver.

Code instrumentation techniques and aspect oriented pro-
gramming are two fields that are developed independently.
We think that those two domains are fundamentally com-

1SvPablo: A Graphical Source Code Browser for Perfor-
mance Tuning and Visualization http://www-pablo.cs.
uiuc.edu/Project/SVPablo/SvPabloOverview.htm
2Java Implementation of Design By Contract for the Java
Language http://jcontractor.sourceforge.net/
3Paradyn. http://www.cs.wisc.edu/~paradyn/

25

patible as they both perform a certain type of after-the-
fact transformation to the existing software systems. An as-
pect oriented language provides a more powerful approach
in terms of methodology. We think that the various code
instrumentation techniques can be treated as means to real-
izing the methodology in practice. The main motivation of
our work is to experiment with such ideas by developing an
aspect language using existing code instrumentation tech-
niques. The advantage of using a hybrid language is two-
fold. Firstly, a hybrid language design which decouples the
language semantics from the backend implementation plat-
form can increase the configurability and the adaptability of
the aspect language. The compiler is able to readily take ad-
vantage of the advances in the code instrumentation domain
by selecting different lower-level implementation strategies
to instrument the system, i.e. to weave aspects, under dif-
ferent circumstances. Secondly, since a language provides a
high level abstraction of the instrumentation semantics, it is
easy to understand, to change, and to maintain the instru-
mentation code. This technique is also applied in [3] and
[8].

The second motivation of our work is that for most of the
AOP languages today, including AspectJ4, Hyper/J5, As-
pectC6 and AspectC++7, the transformation of programs is
done statically either at the source-code level or at the byte-
code level. To maximize the benefit of multi-dimensional
programming, it is desirable to have the support for dynamic
transformation since a lot of platform specific parameters
are not available until runtime. HandiWrap [1] is a runtime
weaving aspect language for Java. In the C/C++ program-
ming domain, we are not aware of any previous work in
aspect languages that provide dynamic weaving. The run-
time weaving property is directly supported by the Dyninst
library. We are interested to see how an aspect oriented
language can take advantages of platforms like Dyninst in
supporting dynamic adaptations.

We have developed the TinyC2 language, which is a proto-
type aspect language. The language is designed to be an
extension of the C language with new language constructs
to enable the composition of aspect programs. This is also a
common language design approach used in AspectJ and As-
pectC++. The compiler of TinyC2 is essentially a source-to-
source translator that translates C statements to the API in-
structions of the target instrumentation tool. We construct
the compiler to be independent of any particular instrumen-
tation techniques, thus, give the compiler the flexibility of
switching to different instrumentation tools. Currently, we
have implemented support for the Dyninst runtime instru-
mentation platform. Due to the runtime instrumentation
nature of Dyninst, TinyC2 can be treated as the runtime
weaving aspect language.

The rest of the paper is organized as follows: Section 2
presents the related work regarding aspect oriented language
designs. Section 3 presents a detailed description of the new
language features of TinyC2. The architecture of the com-

4AspectJ http://www.aspectj.org
5HyperJ http://www.alphaworks.ibm.com/tech/hyperj
6AspectC http://www.cs.ubc.ca/labs/spl/projects/
aspectc.html
7AspectC++ http://www.aspectc.org

piler is also discussed in this section. Section 4 uses three
case studies to demonstrate the effectiveness of the dynamic
weaving nature of TinyC2 in addressing runtime crosscut-
ting concerns. Section 5 presents runtime characteristics of
TinyC2. Section 6 concludes the paper.

2. RELATED WORK
There are a number of aspect oriented programming lan-
guages in C and Java flavours. AspectJ adds an aspect
oriented extension to the Java programming language. As-
pects are AspectJ’s units of modularity. They are defined
in terms of pointcuts, advice, and introductions. By adding
these simple constructs, AspectJ enables the clean modu-
larization of crosscutting concerns such as synchronization,
context-sensitive behavior, and multi-object protocols.

Hyper/J is developed by IBM. It also supports multi-
dimensional separation of concerns for Java. It provides the
ability to identify concerns, specifies modules in terms of
those concerns, and synthesizes systems and components by
integrating those modules. It operates on standard Java
class files, without need of source, and produces new class
files to be used for execution.

AspectC++ is an application of the AspectJ approach to
C++. It is a set of C++ language extensions to facilitate
AOP with C++. It provides language features that allow a
highly modular and thus easily configurable implementation
of monitoring tasks and supports reuse of common imple-
mentations. AspectC++ offers virtual pointcuts and aspect
inheritance to support the reuse of aspects. AspectC is an
extension to the C language based on the AspectJ technolo-
gies. It is being developed concurrently with the a-kernel8

project at UBC.

MDL [12] is a language built by the authors of Dyninst. It
is specifically designed for performing runtime instrumenta-
tion using the Paradyn runtime code generation platform.
The language is specialized for writing instrumentation re-
quests in terms of performance metrics. The MDL code is
parsed and translated to Paradyn instructions. Although
the authors of MDL do not mention AOP, since their lan-
guage can capture crosscutting concerns, we categorize it as
one type of aspect language.

3. THE TINYC 2 LANGUAGE
The design goal of the TinyC2 language is to provide a lan-
guage perspective in terms of code instrumentation, and, at
the same time, to establish a framework for implementing a
post-compilation weaving aspect language that uses the C
syntax and a third party instrumentation tool as the back-
end. The rest of the section describes the language in detail
from both the syntactic point of view and the compiler ar-
chitecture perspective.

3.1 Language Features
Using aspect oriented programming terms, the component
programs of TinyC2 can be composed in the C language.
The aspect program is composed using TinyC2. Similar
to AspectJ, TinyC2 implements standard C grammar rules

8a-Kernel http://www.cs.ubc.ca/labs/spl/projects/
a-kernel.html

26

with the addition of a few new syntactic constructs. Pro-
grammer can use the regular C syntax to compose code
blocks. However, the basic modularization units in TinyC2

are not functions as in C but “snippet”s. A snippet is a
unit of aspect implementation. It encapsulates a code block
and defines the “weaving” points in the component program
where the aspect code is inserted. Snippets are functionally
equivalent to the “joinpoint” and “advice” concepts in an
“aspect” module in AspectJ.

void trace(char ∗); 1

onentry Service(int size) : (int totalsize) 2

{ 3

trace("function service is called\n"); 4

if(size>0) 5

{ 6

totalsize=totalsize+size; 7

} 8

9

} 10

onexit int retv Service(int size) : (int totalsize) 11

{ 12

trace("function service is exiting\n"); 13

if(retv<0) 14

{ 15

totalsize=totalsize−size; 16

} 17

18

} 19

20

Figure 1: Snippet: onexit and onentry constructs

Let us look at the constructs of “snippet”s more closely
through Figure 1. This code snippet illustrates how to im-
plement the typical logging and tracing functionality as an
aspect program in TinyC2. This aspect program, like in
regular C programs, first declares the prototype of the func-
tion trace (Line 1). The first section of the program (Line
2-10) traces the invocations of the function Service in the
target system. That is, before the Service is executed, a
message is logged (Line 4) and the size is added to a total
size (Line 7) if the size is bigger than zero. More specifically,
the onentry construct is defined as follows:

onentry FunctionName (formals list) : (formals list)

The construct binds the following identifiers in the com-
ponent program: 1. function names and these formal pa-
rameters (arguments); 2. global variables in the component
program designated by the formals after the “:”.

The second code segment (Line 11 - 19) presents an example
of the construct onexit. This snippet logs a message before
the function Service returns. It also performs some post-
invocation checking so that, if the Service function returns
a negative value possibly meaning an error, the service size is
subtracted from the total size. The onexit construct can be
used to insert new behavior after a certain function finishes
executing. We define the syntax of onexit as follows:

onexit formal list FunctionName (formals list) : (for-

mals list)

The difference of the onexit construct as comparing to on

entry is that onexit allows us to bind to the return value
of the function which is designated by the formal before the
function name. The formal grammar definition of these two
“snippet” constructs are defined using EBNF in Figure 2
and Figure 3.

onentry 1

: TK onentry ID LPAREN 2

(formalParameter (COMMA formalParameter)∗)? 3

RPAREN COLN LPAREN 4

(formalParameter (COMMA formalParameter)∗)? 5

RPAREN 6

block 7

8

Figure 2: Grammar definition for onentry

onexit 1

: TK onexit (formalParameter)? ID 2

LPAREN 3

(formalParameter (COMMA formalParameter)∗)? 4

RPAREN COLN LPAREN 5

(formalParameter (COMMA formalParameter)∗)? 6

RPAREN 7

block 8

Figure 3: Grammar definition for onexit

Currently, the TinyC2 provides a simple pattern matching
mechanism based on the prefix of the function names and
their return types. In addition, the wildcard character “*”
can be used to match all functions. The prefix-based match-
ing can be extended to the regular-expression-based match-
ing. The pattern can be defined using the “group” keyword
as follows (the vertical line denotes an OR relationship):

onexit | onentry formal list group prefix of function |

* (formals list) : (formals list)

Currently, TinyC2 supports integer and character compu-
tations. It supports conditional statements such as if and
else. The for and while loops are also supported by the
language.

3.2 Compiler Architecture
Generally speaking, the compiler of TinyC2 is essentially a
source-to-source translator built on top of the ANTLR9parser
generator tool, formerly known as PTTCS. ANTLR uses a
LL(K)-based language parsing scheme to parse a grammar
file and generates the corresponding parser. The TinyC2

compiler consists of three main components: the grammar
file for the language, the lexer and parser generated from the
grammar file, and the backend code translator and genera-
tor. Programs written in TinyC2 language are translated
by TinyC2 compiler to a source file written according to

9ANTLR: ANother Tool for Language Recognition.
http://www.antlr.org

27

Figure 4: Compilation process of TinyC2

the application programming interface of the target instru-
mentation platform. The generated source file then can be
compiled again using the common language compiler of the
runtime platform. It is the responsibility of the instrumenta-
tion platform to integrate the generated aspect system and
the component program together. That process is illustrated
by Figure 4.

The grammar understood by ANTLR is very similar to the
extended BNF grammar rules with additional manipulation
options that can be defined together with the grammar.
Therefore, during the evaluation process of the grammar
against a source code file, a large number of customized tasks
can be carried out by ANTLR to perform specific analysis
tasks regarding the target language, such as tree walking,
code translation, and many others.

The TinyC2 compiler is entirely composed in Java. The
most fundamental component of the translator is the Snippet
class which is the abstraction of the generated code for a par-
ticular language element in TinyC2. The extended or sub-
types of the abstract class Snippet provide concrete code
translation for a specific code instrumentation platform. As
the parser finishes parsing the entire source code file, a parse
tree is built consisting of various levels of snippets. A hier-
archy of snippet objects corresponds to the structure of the
source program which is defined by a finite set of grammar
rules. The creation of a snippet hierarchy is illustrated by
the following example.

In TinyC2, the following rule defines the conditional if

statement.

statement: 1

| TK if LPAREN iexpr RPAREN statement 2

(TK else statement)? 3

iexpr: ID (GRT|LET) expr 4

Figure 5: Grammar definition for if statement

The rule in Figure 5 defines that an if statement consists of
a token “if” followed by “(” (LPAREN), then by an inequality

expression, the token “)” (RPAREN), and a statement. The
product of the rule itself is also a statement. The iexpr rule
defines that the inequality statement is in the form of an
identifier followed by either “>” (GRT) or “<” (LET) symbol,
and then by a compound expression. Although those rules
are indifferent from the C grammar rules, ANTLR allows
us to directly place program code to get executed when a
matching of the rule occurs during parsing. The code is then
placed verbatim in the generated parser code. Figure 6 is
the same rule given above embellished with Java code.

statement 1

returns [Snippet s = null] 2

{Snippet subexpr, ifexpr,elsexpr;} 3

| TK if LPAREN subexpr=iexpr 4

RPAREN ifexpr=statement 5

{ 6

s = new DyninstSnippet("if"); 7

s.addSnippet(subexpr); 8

s.addSnippet(ifexpr); 9

} 10

(TK else elsexpr=statement 11

{s.addSnippet(elsexpr);} 12

)? 13

Figure 6: Defining parsing behavior for if statement

To look at code example in Figure 6 more closely, line 2-3
instructs ANTLR to generate and to return a Snippet class
for statement after finding a matching of the statement

rule. Line 3 declares three sub-snippets that a snippet for
the if statement consists of: the snippet for the condition
statement, the snippet for the code block of the if branch,
and the snippet for the code block of the else branch. Line
6-9 is the inserted code to actually create the snippet object
of type if which knows how to generate the code for if

statements. The three snippets representing the three parts
of if blocks are inserted into the if snippet at line 8, 9 and
12. For example, to parse the statement: if(a>b) b = b *

a;, a hierarchy of Snippet objects are built as illustrated in
Figure 7. The left of the figure is the parse tree of the if

statement. On the right is the image of the composition for
the Snippet representation. Each box is the boundary of a
Snippet object. The label denotes the type of the Snippet.

28

Figure 7: Snippet construction

And the symbol in the bracket represents the token(s) that
the corresponding Snippet is responsible to translate into
the target language. The labels following the arrows are the
actual class types in the target instrumentation API that
each corresponding snippet is translated to.

The design of the Snippet follows the Composite [11] ar-
chitectural pattern since a complex grammar rule can be
treated as a composite of the basic rules. To provide specific
code translation functionality, extensions to the abstract
Snippet class need to be defined. A concrete Snippet class
extends the abstract method getCode to generate the actual
target code for the corresponding language segment. In our
current implementation, the translation from the TinyC2

code to Dyninst API is carried out by the DyninstSnippet
class. The code generation is initiated by invoking getCode

at the top of the Snippet hierarchy which is the outer most
box in Figure 7. The invocation then recursively traverses
through all snippet classes after the parsing is finished. Al-
though the instances of the DyninstSnippet class are created
directly in the parser, it is easy to decouple the generated
parser from any knowledge of the concrete Snippet class by
using a Factory [11]. Therefore, the TinyC2 compiler can be
made backend independent by seamlessly switching to any
other specialized Snippet class at class loading time.

3.3 Dynamic Weaving Mechanism
The current implementation of the backend code generator is
targeted at the Dyninst runtime instrumentation platform.
Therefore, the TinyC2 code is firstly translated into C++
code in the Dyninst library API. The translated code is then
compiled by a regular C++ compiler to generate a binary
executable which is linked to the Dyninst instrumentation
library. The executable is started with the process informa-
tion of the target running system. The Dyninst library is
responsible for properly inserting the code into the address
space of the target program. The insertion mechanism is
based on system services used by debuggers. Detailed infor-
mation on how Dyninst works can be found in [7].

Leveraging the dynamic instrumentation capability of Dyn
inst, TinyC2 can be classified as a dynamic weaving aspect
language. The language can be used to perform traditional
non-functional activities such as tracing and performance
analysis. Moreover, benefiting from the modularization ca-

pability of the language, it is convenient to develop, to main-
tain, and to evolve sophisticated aspect programs to inten-
tionally change the runtime behavior of the system in a
systematic manner. To understand the applicability of the
dynamic weaving aspect languages, we present three case
studies of the language in the following section.

4. CASE STUDIES OF TINYC2

We can use dynamic-weaving aspect languages to increase
the portability, the adaptability and the reusability of shared
libraries. The reusability and the portability of libraries
can be greatly improved by maintaining the properties of
domain-independence and platform-neutrality. However, in
practice, domain specific or platform specific constraints al-
ways require adaptations in either the library code or the ap-
plication layer. Some of these constraints require changing
the code in a crosscutting fashion and, thus, can be modeled
by aspects. The problem with statically composed libraries
including those built on static-weaving aspect languages is
that it is not possible to pre-configure different versions of
the shared code for every application domain or platform.
And it is not safe to assume that the domain or platform spe-
cific runtime constraints are always properly addressed by
the applications. Thus, runtime adaptation of libraries can
be a very attractive feature especially for migrating code and
dynamically configured systems. In this section, we present
three case studies to illustrate such adaptations and the kind
of problems these adaptations solve.

4.1 State Validation
Libraries are often shared among different application do-
mains at runtime. Same results computed by the library
might subject to different interpretations and different def-
initions of validity depending on the domain-specific com-
puting requirement. We use an example to illustrate this
scenario. Suppose that we want to develop a math library
that provides a collection of functions to perform various in-
teger related mathematical computations. For example, in
mathematical or scientific applications, there can be no lim-
itation to the operating range of integer values. However, in
some particular computing domains such as our hypothetical
statistical application for populations, there can possibly be
some constraints regarding the operating range of integers
and, thus, a negative result should trigger an application er-
ror. Since the goal of library design is generality, one must

29

not hardcode the data validation logic into the library. One
possible solution is to apply the validation code at every call
site of the library functions that return integers. This causes
the same checking code to scatter all over the places. The
bloated code greatly degrades maintainability.

A more elegant and powerful solution is to compose the vali-
dation layer in TinyC2 as aspect programs. This layer can be
“woven” into the library dynamically in runtime as needed.
This layer is unloaded when the library is linked into other
applications. In TinyC2, this runtime adaptation layer can
be composed using the 7 lines of code in Figure 8.

onexit int retv group ∗ : 1

(int errorno, char ∗ errormsg) 2

{ 3

if(retv < 0) 4

{ 5

errorno=ILLEGAL RESULT; 6

errormsg="Result cannot be negative"; 7

} 8

} 9

Figure 8: Domain specific validation in TinyC2

We use the onexit construct to apply the validation (line 1).
The onexit construct binds all the functions in the target
system that return integers by using the wild card (“*”)
matching capability of the group keyword. The variable
retv binds the specific return value of these functions. Line
2 binds global variables errorno and errormsg in the target
system assuming the target system supports system wide
error code schemes similar to the errorno of Solaris. The
body of the onexit construct is very straightforward. It sets
the errorno to the error code ILLEGAL RESULT and assigns
the error message in the target system.

If we save the file in t.c, we can invoke the compiler as java
tc t.c > Mutator.cpp. The output Mutator.cpp is dis-
played in Figure 9. Lines 1-11 attach to the running process
identified by its process name and process ID. Lines 12-14 in-
voke the findGroupProcedurePoints method to obtain the
instrumentation points for all the functions that return in-
tegers. All the instrumentation points are collected in an
object of type BPatch pointgroup. Lines 20-25 create three
variables to hold two global variables and the variable for
the return value of the function. Lines 26-43 contain a while

loop which iterates through every instrumentation points in
the collection and inserts the if statements at these points
in the address space of the target program.

This example shows that, although Dyninst API can be used
directly by programmers, it is tedious to implement even a
simple functionality. The program in Dyninst is consider-
ably more complex and lengthy (24 lines) than our aspect
program (7 lines) in TinyC2. More importantly, the TinyC2

program greatly improves the reusability and the adaptabil-
ity of library code since no changes are made to both the
math library and the application code.

#include "BPatch.h" 1

int main(int argc, char∗∗ argv) 2

{ 3

BPatch bpatch; 4

char∗ name = argv[1]; 5

int pid = atoi(argv[2]); 6

printf("Attaching to %s pid %d\\n", name, pid); 7

BPatch thread ∗ appThread = 8

bpatch.attachProcess(name, pid); 9

appThread−>continueExecution(); 10

BPatch image ∗appImage = appThread−>getImage(); 11

BPatch pointgroup 12

∗star exit=appImage−> 13

findGroupProcedurePoints("*","int",BPatch exit); 14

if (!star exit | | (∗star exit).size() == 0) 15

{ 16

printf("Unable to find exit point to \"*\""); 17

exit(1); 18

} 19

BPatch variableExpr ∗errorno = 20

appImage−>findVariable("errorno"); 21

BPatch variableExpr ∗errormsg = 22

appImage−>findVariable("errormsg"); 23

BPatch variableExpr ∗retv = 24

appThread−>malloc(∗appImage−>findType("int")); 25

while((BPatch Vector<BPatch point∗> ∗point= 26

star exit−>getNextPoint())!=NULL) 27

{ 28

appThread−>insertSnippet(BPatch arithExpr(29

BPatch assign, ∗retv, BPatch retExpr()), 30

point); 31

appThread−>insertSnippet(BPatch ifExpr 32

(BPatch boolExpr (BPatch lt, ∗retv, 33

BPatch constExpr(0)), 34

BPatch arithExpr(BPatch assign, 35

∗errorno, BPatch constExpr(1))),∗point); 36

appThread−>insertSnippet(BPatch ifExpr 37

(BPatch boolExpr (BPatch lt, ∗retv, 38

BPatch constExpr(0)),BPatch arithExpr 39

(BPatch assign, ∗errormsg, 40

BPatch constExpr("Result cannot be negative") 41

)),∗point); 42

} 43

exit(1); 44

} 45

Figure 9: Mutator.cpp:A mutator program in full
Dyninst API

4.2 Adaptive Character Encoding
The bit format for representing characters has evolved from
ASCII-based single-byte encoding to multi-byte character
encoding such as Unicode. For legacy systems built on the
single-byte character encoding, processing information en-
coded by multi-byte character sets can produce erroneous
results. There exist several solutions to support different
character encodings in legacy code. One solution aims at
providing a translation layer in between applications and
the legacy code. Microsoft introduces MSLU10 to handle
the encoding translation between Unicode windows appli-
cations and windows 9X operating systems which do not
support Unicode. A second solution relies on smart com-
pilers to convert the character encoding. It requires re-

10http://msdn.microsoft.com/msdnmag/issues/01/10/
MSLU/default.aspx

30

compilation of the system. For example, gcc11 users can
use the -fshort-wchar switch to generate 16-bit characters
rather than the default 4-byte characters.

In a dynamic setting, both solutions fall short because they
require the prior knowledge of the target platform and the
pre-configuration of the system before the application can
run. During runtime, a library could possibly be dynam-
ically linked into several multi-byte applications, some use
one type of encoding and some use another type. It is not
possible to know what type of encoding to deal with un-
til the application is running. In these situations, we can
use TinyC2 to compose the translation layer on top of the
legacy code. This translation layer can be inserted into the
library dynamically at run-time when it is needed. For illus-
tration purposes, suppose in our hypothetical library, which
only supports ASCII encoding, there is a group of func-
tions which are responsible for maintaining a global mes-
sage buffer. To prevent unpredicted results, our adaptation
layer should first convert the characters in the buffer from
a foreign encoding to the native encoding before the buffer
is processed. After the buffer is processed, the adaptation
layer should convert the buffer back to its original encoding.
This pre/post processing logic can be implemented by the
onentry and onexit constructs of TinyC2. Figure 10 shows
the TinyC2 code.

onentry group buffer : (char ∗ buffer) 1

{ 2

convert encoding(buffer); 3

} 4

5

onexit group buffer : (char ∗ buffer) 6

{ 7

restore encoding(buffer); 8

} 9

Figure 10: Encoding adaptation layer

This TinyC2 code uses the group keyword to match all func-
tions prefixed by buffer . The onentry block (lines 2-4)
invokes an external function convert encoding which is re-
sponsible for converting the buffer into the native encoding.
The onexit block (line 8) calls another external function
restore encoding to restore the original encoding. The
TinyC2 compiler generates the following code in Dyninst
API.

#include "BPatch.h" 1

int main(int argc, char∗∗ argv) 2

{ 3

BPatch thread ∗ appThread = 4

bpatch.attachProcess(name, pid); 5

appThread−>continueExecution(); 6

BPatch image ∗appImage = appThread−>getImage(); 7

BPatch pointgroup 8

∗buffer entry=appImage−> 9

findGroupProcedurePoints("buffer_","void", 10

BPatch entry); 11

BPatch pointgroup 12

∗buffer exit=appImage−> 13

11http://gcc.gnu.org/

findGroupProcedurePoints("buffer_","void", 14

BPatch exit); 15

BPatch variableExpr ∗buffer = 16

appImage−>findVariable("buffer"); 17

BPatch function ∗convert encodingptr = 18

appImage−>findFunction("convert_encoding"); 19

BPatch Vector<BPatch snippet ∗> 20

convert encoding args; 21

convert encoding args.push back(buffer); 22

BPatch funcCallExpr convert encoding 23

(∗convert encodingptr, convert encoding args); 24

BPatch function ∗restore encodingptr = 25

appImage−>findFunction("restore_encoding"); 26

BPatch Vector<BPatch snippet ∗> 27

restore encoding args; 28

restore encoding args.push back(buffer); 29

BPatch funcCallExpr restore encoding 30

(∗restore encodingptr, restore encoding args); 31

while((BPatch Vector<BPatch point∗> ∗point= 32

buffer entry−>getNextPoint())!=NULL) 33

{ 34

appThread−> 35

insertSnippet(convert encoding,∗point); 36

} 37

while((BPatch Vector<BPatch point∗> ∗point= 38

buffer exit−>getNextPoint())!=NULL) 39

{ 40

appThread−> 41

insertSnippet(convert exit,∗point); 42

} 43

exit(1); 44

} 45

Generated encoding adaptation layer in Dyninst API

In the generated code, lines 4-15 attach to the running pro-
cess and obtain two groups of instrumentation points, one
being the entry points of all function prefixed by buffer ,
the other their exit points. Lines 16-31 bind to the global
message buffer and set up the function calls to convert

encoding and restore encoding. The onentry and onexit

constructs in Figure 10 are translated to two loops which
insert the function calls at corresponding instrumentation
points of every function in the group (lines 32-45).

4.3 Adaptive Systematic Behavior
A dynamic weaving aspect language allows us to modular-
ize systematic properties and to build systems that are more
adaptive and more efficient for specific runtime conditions.
For example, middleware systems are software substrates
that provide abstractions for the distributed computing en-
tities. In a environment such as mobile computing where the
platform resources and computation requirements change
dynamically, it is highly desirable to configure a right set of
middleware characteristics during runtime. Such high level
of configurability and adaptability is hard to achieve due to
non-modularized systematic properties. A typical system-
atic property is Thread Safeness. It is important for mid-
dleware systems to ensure the accesses to shared data are
synchronized. However, synchronization is not always nec-
essary for a smaller platform such as handheld devices where
the underlying OS might only support a single-thread exe-
cution model due to power and memory constraints. Some
middleware implementations such as TAO uses techniques

31

such as strategic locking [2] to allow fine tuning of locking
schemes. These implementations suffer from performance
overhead of redundant locking and unlocking if deployed on
small platforms where the contention of resources should be
minimized or avoided. The dynamic behaviors of applica-
tions such as the migration of services require middleware
to load and unload properties such as Thread Safeness dur-
ing runtime. A dynamic weaving aspect language such as
TinyC2 can help us achieve these goals.

To illustrate the TinyC2 approach, suppose that the func-
tion Service is responsible for sending a buffer of charac-
ters to a remote entity. To ensure a valid read, the func-
tion acquires the buffer lock by invoking lock buffer func-
tion before sending. It releases the lock by invoking the
release buffer function. Figure 11 presents the simple im-
plementation in C.

int Service(char ∗∗buffer, int size) 1

{ 2

int ret = 0; 3

lock buffer(); 4

ret=network send(socketfd,buffer, size); 5

release buffer(); 6

return ret; 7

} 8

Figure 11: A synchronized buffer send

As we have discussed, statically configured systems includ-
ing statically weaving aspect implementations incur runtime
overhead if locking is not necessary. We now provide the
TinyC2 implementation using the onentry and the onexit

constructs in Figure 12.

onentry Service(char∗∗ buffer, int size) 1

{ 2

lock buffer(); 3

//perform other operations such as checking 4

//the buffer size 5

} 6

7

onexit Service(char ∗∗ buffer, int size) 8

{ 9

lock release(); 10

//perform necessary post invocation checkings 11

} 12

Figure 12: TinyC2 approach to thread safeness

The TinyC2 compiler generates Dyninst API code in Fig-
ure 13. Similar to the previous example, lines 4-8 attach to
the target process. Lines 9-14 locate the entry point and the
exit point of the function Service. Lines 15-19 locate the
function lock buffer insert the function to the entry point
of Service. Lines 20-25 load the function release buffer

and insert it to the exit point of Service. TinyC2 does not
require the functions used in the aspect program such as
lock buffer also defined in the component program. These

functions can be compiled into a dynamically shared library
and linked at runtime.

#include "BPatch.h" 1

int main(int argc, char∗∗ argv) 2

{ 3

BPatch bpatch; 4

BPatch thread ∗ appThread = 5

bpatch.attachProcess(name, pid); 6

appThread−>continueExecution(); 7

BPatch image ∗appImage = appThread−>getImage(); 8

BPatch Vector<BPatch point∗> ∗Service entry= 9

appImage−> 10

findProcedurePoint("Service",BPatch entry); 11

BPatch Vector<BPatch point∗> ∗Service exit= 12

appImage−> 13

findProcedurePoint("Service",BPatch exit); 14

BPatch function ∗lock bufferptr = 15

appImage−>findFunction("lock_buffer"); 16

BPatch funcCallExpr lock buffer(∗lock bufferptr); 17

appThread−>insertSnippet(lock buffer, 18

∗Service entry); 19

BPatch function ∗release bufferptr = 20

appImage−>findFunction("lock_release"); 21

BPatch funcCallExpr release buffer 22

(∗release bufferptr); 23

appThread−>insertSnippet(release buffer, 24

∗Service exit); 25

} 26

27

Figure 13: TinyC2 approach to thread safeness

Again, our TinyC2 implementation achieves considerable
code reduction from 25 lines to 8 lines. More importantly,
the synchronization facilities can be dynamically plugged
in and out depending on the runtime requirements. Sav-
ing redundant locking and unlocking greatly improves the
efficiency of the system.

5. RUNTIME CHARACTERISTICS OF AS-
PECT PROGRAMS USING DYNINST API

In this section, we examine the runtime characteristics of the
application and aspect programs using addition instructions
as an experiment. We are interested in two types of behav-
iors: 1. the “weaving” cost which is the time taken to insert
the aspect code into the component program; 2. the runtime
cost which is the time of computation in the dynamically
inserted aspect program versus a statically written compo-
nent program. We first measure the code patching cost of
Dyninst. It is measured as the time taken to insert a num-
ber of “add” instructions in the target program. To measure
the runtime execution overhead, we first measure the exe-
cution time of executing an increasing number of addition
instructions in the component program. We then measure
the same computation in the inserted aspect program. The
data is collected on a Pentium IV 2GHz Linux workstation.

5.1 Code Patching Cost
Figure 14 shows the time to insert the snippet versus the
number of additions in the snippet. As the size of the snip-
pet increases, the weaving time of snippet increases rapidly.
Dyninst uses the same operating system services such as

32

ptrace and /proc file system to communicate between the
application process and the mutator process. The instru-
mentation code is stored in large arrays which are loaded
into the application process. The arrays are used for dy-
namically allocating small regions of memory: one is used
for instrumentation variables; the other is to hold instru-
mentation code. A bigger snippet occupies a larger space in
the array in the application memory space. It takes longer
to fetch data from a larger memory space.

100 101 102 103 104
0

2000

4000

6000

8000

10000

12000

Number of Addition

S
ni

pp
et

 In
se

rti
on

 T
im

e

Snippet Insertion Time

Figure 14: Code patching cost

5.2 Runtime Cost
Another important factor for dynamic weaving aspect lan-
guage is the execution overhead of the aspect language as
compared to carrying the same computation task in the
component program. Figure 15 plots the runtime cost of
performing additions in the regular C programs and in the
inserted TinyC2 code.

The running time for the same number of additions in the
aspect program is significantly longer than in the compo-
nent program. This can be explained by the runtime in-
strumentation mechanism of Dyninst. The original code in
the application process branches into newly generated code
through use of trampolines [7]. Trampolines are short sec-
tions of code that provide a way of getting from the point
to the newly generated snippet. Several steps are involved
here. Firstly, one or more instructions at the instrumenta-
tion point are replaced with a branch to the start of a base
trampoline. Then the base trampoline code branches to
a mini-trampoline. The mini-trampoline saves the current
machine state and contains the code for a single snippet. At
the end of the single snippet, code is placed to restore the
machine state and to branch back to the base trampoline.
The base trampoline executes the original instruction(s) in
the application code. Therefore, there is significant manage-
ment overhead for executing the aspect program in the case
of Dyninst. Another reason is that since the aspect code is
inserted during runtime, the code misses the static compiler
optimization stage and, therefore, produces un-optimized
code.

5.3 Limitations and Open Questions

100 101 102 103 104
0

2

4

6

8

10

12

14

Number of Additions

R
un

tim
e

pe
r F

un
ct

io
n

C
al

l i
n

Ta
rg

et
 P

ro
gr

am
 [u

s]

Runtime Comparison

Component Program
Aspect Program

Figure 15: Runtime cost of TinyC2 code versus reg-
ular C code

There are many limitations of the current implementation
of the TinyC2 language. Firstly, the language is being im-
plemented as a prototype. We hope to demonstrate its ca-
pability of implementing large scale and complex aspect ori-
ented systems by our continuous extension of the language.
The second limitation comes from the limitations of Dyninst.
The API of Dyninst was not designed to support aspect lan-
guages. Features such as modifying function arguments and
their return values are not yet possible to implement using
Dyninst. We have added a number of APIs to Dyninst to
support the “group” language construct.

There are also many challenges regarding implementing dy-
namic weaving aspect oriented systems in general. The first
category of challenges is comprised of performance related
issues of dynamically woven AOP systems. Our experimen-
tal data show that the cost of computing in dynamically
inserted code is considerably high. One reason is that dy-
namically inserted code misses the optimization stage in the
compilation process which leads to un-optimized code. In-
tuitively, advanced compiler techniques such as dynamic op-
timization techniques [10] can be used to further optimized
the mutated code during runtime. However, there are sev-
eral issues regarding dynamic optimization. Firstly, from a
compiler point of view, the newly patched code might dis-
turb any optimization strategy that the compiler has chosen
for the code. Runtime code patching can also trigger subse-
quent runtime optimization, which adds a considerable over-
head to the overall runtime cost. Secondly, it is not clear to
us if the runtime optimized code still allows us to detach the
inserted aspect code on the fly as part of the dynamic adap-
tation. A third prominent issue is that current aspect lan-
guage designs require preservations of weaving points, e.g.
function identifiers in the context of the TinyC2 language,
in order for weaving to work. This is a trivial concern for
static-weaving languages. However, these identifiers in the
source code might disappear in the runtime code due to
compiler optimization techniques such as code specializa-
tion, function inlining, and many others. Certain identifiers
or symbols must be made available to aspect weavers at all
time. But does the preservation of symbols decrease the
optimization gain? Is there a measure of such trade-offs?

33

The second category of challenges concerns designing dy-
namic weaving languages is that whether there should be
language facilities to take advantage of its dynamic nature.
For example, Dyninst gives us some degree of control over
the running state of the target program during the code
patching process. Should the design of a dynamic weaving
language gives first-status concerns to issues such as control-
ling the state of the target program, runtime information of
the platform, optimization related tasks, and many others?

The third category of challenges includes issues regarding
the security of dynamic weaving languages. That is the
dynamically inserted code must comply with the security
policies of the target platform. These policies could include
execution privileges and copyright protections.

6. CONCLUSION
In this paper, we presented the work of TinyC2, an aspect
oriented language that is designed to syntactically extend
the C programming language and to use existing code in-
strumentation platforms as the backend. A prototype of
the language compiler is developed to support a subset of
the standard C language features with a couple of additional
language constructs. The backend instrumentation platform
is provided by Dyninst runtime instrumentation platform.

Through this work, we demonstrate the possibility of sup-
porting certain aspect oriented language semantics by using
code instrumentation platforms. We prove the concept that
code instrumentation techniques and the aspect oriented de-
sign goals are fundamentally compatible as one can be used
to express the other. A language approach in bridging the
two domains is viable because, as illustrated in the case
study, we are able to express higher-level programming con-
cerns in the form of TinyC2 language and to realize those
concerns through the form of code instrumentation.

It is currently not possible to have a complete evaluation
of the language approach presented in this paper, since the
full aspect language features are still needed to be developed.
We also need to experiment with a different instrumentation
tool to verify if the consistency of the language semantics can
be maintained. Finally, from the experience of this work, we
have encountered several issues regarding the viability of the
runtime weaving aspect language design. These issues are
mainly concerned with the cost of dynamically changing the
runtime behavior of the system. We expect further research
on advanced AOP compilers will develop solutions to these
problems.

Acknowledgements
We are very grateful to Michael J. Voss who pointed out to
us the similarities between runtime instrumentation tech-
niques and aspect oriented mechanisms. The initial perfor-
mance analysis and the graphs in this paper are prepared
by Yiqian Ying.

7. REFERENCES
[1] Jason Baker and Wilson Hsieh. Runtime aspect

weaving through metaprogramming. In Proceedings of
the 1st international conference on Aspect-oriented
software development, 2002.

[2] Douglas Schmidt Michael Stal Hans Rohnert Frank
Bushmann. Pattern-Oriented Software Architecture
Patterns for Concurrent and Networked Objects,
volume 2 of Software Design Patterns. John Wiley &
Sons, Ltd, 1 edition, 1999.

[3] Morgan Deters Ron K. Cytron. Introduction of
Program Instrumentation using Aspects. Proceedings
of the OOPSLA 2001 Workshop on Advanced
Separation of Concerns in Object-Oriented Systems,
pages 131–147, 2001.

[4] A. Srivastava A. Edwards and H. Vo. Vulcan: Binary
transformation in a distributed environment.
Technical Report Technical Report MSR-TR2001 -50,
Microsoft Research, One Microsoft Way,
Redmond,WA, April 2001.

[5] B. Grant M. Philipose M. Mock C. Chambers S.J.
Eggers. An Evaluation of Staged Run-time
Optimizations in DyC. Conference on Programming
Language Design and Implementation, May 1999.

[6] M. Arnold S. Fink D. Grove M. Hind and P.F.
Sweeney. Adaptive Optimization in the Jalapeno
JVM. Object-Oriented Programming Systems,
Languages and Applications, 2000.

[7] Bryan Buck Jeffrey K. Hollingsworth. An API for
runtime code patching. Journal of Supercomputing
Applications and High Performance Computing.

[8] Charles Zhang Hans-Arno Jacobsen. Quantifying
Aspects in Middleware Platforms. International
Conference of Aspect Oriented Software and
Development, pages 130–139, 2003.

[9] G. Kiczales. Aspect-oriented programming. ACM
Computing Surveys (CSUR), 28(4es), 1996.

[10] Bala Vasanth Duesterwald Evelyn Banerjia Sanjeev.
Transparent dynamic optimization. Technical Report
HPL-1999-77, Hewlett Packard, 1999.

[11] Erich Gamma Richard Helm Ralph Johnson John
Vlissides. Design Patterns. Addison-Wesley, 1995.

[12] Jeffrey K. Hollingsworth Barton P. Miller Marcelo J.
R. Goncalves Oscar Naim Zhichen Xu and Ling
Zheng. MDL: A Language and Compiler for Dynamic
Program Instrumentation. International Conference
on Parallel Architectures and Compilation Techniques,
1997.

34

Interference Analysis for AspectJ

Maximilian Sẗorzer, Jens Krinke
Universiẗat Passau
Passau, Germany

{stoerzer, krinke}@fmi.uni-passau.de

March 1, 2003

Abstract

AspectJ is a language implementing aspect-oriented pro-
gramming on top of Java. Besides modification of pro-
gram flow and state usingadvice, AspectJ offers language
elements to statically modify existing classes by changing
their position in the inheritance hierarchy or introducing
new members. This can lead to binding interference, i.e.
the dynamic lookup of method calls not affected directly
by the aspect might change.

This paper presents methods allowing programmers to
automatically check the impact of introductions and hier-
archy modifications on existing programs.

1 Motivation

Aspect oriented programming (AOP) is a new paradigm
in programming, extending traditional programming tech-
niques, first introduced in [5]. Its basic idea is to encap-
sulate concerns which influence many modules of a given
software system, so calledcrosscutting concerns, in a new
module calledaspect.

This encapsulation improves separation of concerns
and can avoid invasive changes of a program if crosscut-
ting concerns are affected by system evolution. The func-
tionality defined in the aspect iswoveninto the base sys-
tem with a so calledaspect weaver, at compile time, load
time, or even run time of the program. HereAspectJ—an
aspect-oriented language extending Java—is considered.
Main features of AspectJ are introduction, modification
of class hierarchies and advice. This paper will concen-
trate on the first two points which are designed to stati-
cally change a given system by introducing new members
in classes or modifying the structure of an inheritance hi-
erarchy.

AOP is a very powerful technique but includes new

risks, too. Changes introduced with AspectJ are not visi-
bledirectly in the source code of the base system. Aspects
are a new modularization unit usually stored in separate
files. The effect of this code can influence semantics of
the whole system. Tool support is necessary to reveal the
impact of aspect application. To motivate this necessity,
this paper presents problems related to AspectJ language
constructs which might be avoided by modifying the As-
pectJ language itself. However, impact on language de-
sign is not in the scope of this paper.

To achieve this support, methods to determine the im-
pact of aspect application have to be developed. As a first
step, a method to decideif an aspect modifies base sys-
tem behavior is presented. This analysis will be extended
to perform an impact analysis to showwheresystem be-
havior is influenced by an aspect.

Throughout this paper, the simple class hierarchy de-
fined by program 1.1 will be used as an example to
demonstrate aspect influence. This hierarchy will be mod-
ified using introduction and hierarchy modification and
some of the classes will be declared to implement inter-
faceI .

This paper describes the problem emerging from these
transformations, presents an algorithm to detect their ef-
fects and suggests how this information can be used to
reduce flaws in a software system. Organization is as fol-
lows: Each section takes a look at a AspectJ language
construct, starting with interface introduction in section
2. Section 3 presents an algorithm to detect binding in-
terference for class introduction, section 4 for hierarchy
modification. Section 5 shows how these results can be
used for impact analysis. Section 6 presents an example
application of this analysis for a given hierarchy. Section
7 briefly summarizes the preliminary implementation and
outlines future work. Sections 8 concludes and gives an
overview of related work.

Gary T. Leavens
35

Program 1.1Example Hierarchy
class A { void n() {

print("A.n()"); }}
class B extends A {

void m() { print("B.m()"); }}
class C extends B {

public void x() { print("C.x()"); }}
class D extends B {

public void y() { print("D.y()"); }
public void x() { print("D.x()"); }}

class E extends C {}
class F extends D {

void n() { print("F.n()"); }}
class G extends B {

void n() { print("G.n()"); }}
interface I {

void x(); void y();
}

2 Interface Introduction

Introduction is an AspectJ language construct to add new
members to existing classes or interfaces. The purpose
of interface introduction is to providedefault implemen-
tationsof interface methods which can be used to reduce
necessary work for implementation. However, if no mul-
tiple inheritance is needed an abstract superclass can often
be used instead .

Usage of this feature can result in ‘forgotten’ imple-
mentations which may introduce flaws into a program.
The compiler no longer issues an error message if a class
implements an interface but does not (re)define all default
implementations. To avoid flaws by ‘forgotten’ redefini-
tions a compiler warning should be given when a class
uses a default method implementation provided by the in-
terface.

A simple analysis of interface introductions can pro-
vide the necessary information. Given a class hierarchy
and an aspectA, an analysis could be performed in three
steps:

1. The set of interfaces for which aspectA provides de-
fault implementations has to be determined by scan-
ning A’s introductions. LetIde f be the set of these
interfaces. ForI ∈ Ide f let methods(I) be the set
of methods for which default implementations are
given.

2. The set of classes implementing an interfaceI∈ Ide f

has to be identified. LetCIde f be the set of these
classes.

A

B

C

F

D

E

G

aspect M

A

B

C

F

D

E

I
I.y

D.x
D.y

G

D.x
D.y

C.x
I.y

C.x
I.y

D.x
D.y

D.x
D.y

C.x

C.x

Figure 1: Using default implementations.

3. The set of classesCdi which do not provide an im-
plementation of all interface methods (i.e. which use
the default implementations) has to be determined.
Let methods(C) be the set of all methods defined in
ClassC. Then

Cdi = {C ∈ CIde f | ∃I ∈ Ide f : C implementsI
∧methods(I)−methods(C) 6= /0}

It is sufficient to check weather all methods in
methods(I) are implemented as other missing meth-
ods are detected by the java compiler. Note that any
subclass of an affected class is influenced as well,
unless it implements the necessary method and thus
overrides the default implementation.

The programmer must examine affected classes to check
whether the default implementation given by the interface
is appropriate.

As an example consider aspectMgiven by program 2.1,
which declares that classesC andD implement interface
I and introduces a default implementation of methody to
the interface.

Program 2.1Adding interface implementation.
aspect M {

declare parents: C implements I;
declare parents: D implements I;

public void I.y() { print("I.y()"); }
}

Figure 1 presents the effects of this modifications. Note
that classesC andE—maybe unexpectedly—use the im-

Gary T. Leavens
36

A

B

C

F

D

E

A.n

B.m

F.n

B.m B.m

B.mB.m

B.n

B.n B.n

B.n

G.n
B.m

G

Figure 2: Example hierarchy, effects of introduction.

plementation given byI.y . This fact is reported by the
proposed analysis.

3 Noninterference Criterion
for AspectJ Introduction

In contrast to interface introduction, class introduction is
more complex as program semantics may change without
modifying any class directly. These effects are described
in the following.

3.1 Impact of Class Introduction

Introducing members to classes can result in changes
of dynamic lookup if the introduced method redefines a
method of a superclass, calleddynamic interferencein
[10]. However, as the term dynamic is misleading, the
term binding interferenceis preferred. Consider the ex-
ample hierarchy defined by program 1.1 and aspectN to
be applied:

aspect N {
void B.n() { print("B.n()"); }

}

This aspect introduces a methodn to classB, which is
already defined in superclassA of B. Any (virtual) call
e.g. from classC now results in call ofB.n() and not
in A.n() as before. So, the semantics of a call ton has
possibly changed for any object of classB or any subclass
thereof without direct modification of these classes. Fig-
ure 2 indicates the changed lookups in bold.

The presented considerations abstract from Java access
specifiers: All methods are consideredpublic . Addi-
tion of access specifiers reduces the set of inherited meth-

ods (some might not be visible in the subclass), thus re-
ducing binding interference.

If the introduced methodB.n() redefinesA.n() with
respect to behavioral sub-typing [6], a (unknown) client of
a subclass ofB may still work as expected. However, nei-
ther Java nor AspectJ guarantees this kind of method re-
definition. The described problem is a special case of the
fragile base class problem[7]—subclasses change behav-
ior because of changes in the superclass. Although track-
ing down bugs introduced by changing a base class is dif-
ficult, the problem is even worse with aspect languages as
modifications of the base class are not visible if the code
is viewed in isolation (i.e. without the applied aspect). To
track bugs emerging from dynamic interference, impact
analysis of aspect application should reveal method calls
whosedynamic lookup has changed.

3.2 Detecting Semantical Changes

To detect semantical changes in the hierarchy, the inter-
ference criterion of [10]—informally stating that all vir-
tual calls evaluate to the same target as before—is applied
to aspects by reducing introduction to hierarchy composi-
tion. As a result, the correctness proof of the criterion can
be applied to aspect introduction as well.

In contrast to Hyper/J, AspectJ is much more restrictive
in the possible static modifications of the class hierarchy.
Modification of system behavior is mainly achieved by
using advice. However, introduction can be viewed as a
hierarchy composition. Let a hierarchyH be defined as
in [10]:

Definition 3.1 (Class Hierarchy) A class hierarchyH is
a set of classes and an inheritance relation:H = (C ,≤).
A classC ∈H has a name and contains a set of members.
According to this definition, members(C) does not contain
inherited members that are declared in super-classes ofC.

To indicate the members of classCdefined in hierarchy
H we write membersH (C); CH references definition of
classC in hierarchyH .

Any AspectJ introduction can be viewed as a hierarchy
composition by defining a new hierarchy induced by an
aspectA.

Definition 3.2 (Hierarchy induced by Introduction)
Let H = (C ,≤) be a hierarchy an aspectA is applied to.
Let I be the set of introduction statements of this aspect.
Elements of I have the form(C,m). C ∈ C indicates the
class where the new membermshould be introduced to.
Then:

Gary T. Leavens
37

1. ∀C ∈ H create a new empty
class namedC, add it toC ′

2. ∀(C,m) ∈ I add membermto the
corresponding classC ∈ C ′ created in (1)

3. (≤′) = (≤) (same inheritance relations as inH)

The hierarchy induced by I isH ′ = (C ′,≤′).

Informally, the resulting hierarchy contains no mem-
bers from the base hierarchy but any introduced member
and mirrors the inheritance relations. Empty classes are
possible.

As name clashes orstatic interferenceare considered
an error by the AspectJ compilerajc

∀C ∈ C ′ : ∀m ∈membersH ′(C) :
C ∈ C ∧m /∈membersH (C)

always holds for syntactically correct AspectJ programs.
AspectJ1 does not allow overriding introductions. So
only basic compositions, i.e. compositions without prior-
ity rules to choose from a set of possible method imple-
mentations, have to be considered.

The hierarchy induced by an aspect needs not to be
syntactically correct as methods introduced by the aspect
might reference methods not present inH ′ but only in
H . All these dangling references are bound after combi-
nation of the resulting hierarchies if the original AspectJ-
program was correct.

The hierarchyH ′ induced by the introductions of an
aspectA will now be composed with the hierarchy of the
base systemH by using a hierarchy composition operator
⊕s. When working with arbitrary hierarchies, the inher-
itance relations of both hierarchies can be contradictory,
e.g. if (B,C) ∈ ≤1 and(C,B) ∈ ≤2.

This is immpossible if a hierarchy induced by an as-
pect should be combined with the base hierarchy, as the
resulting inheritance relation is always conflict free (here,
they are identical), no collapsing of cycles is necessary
and the general combination operator of [10] can simpli-
fied as follows:

Definition 3.3 (Simplified Hierarchy Composition)
Let H1 = (C1,≤1), H2 = (C2,≤2) be two class hierar-
chies with conflict free inheritance relations≤1, ≤2 and
no static interference. ThenH1⊕sH2 = (C ,≤) is defined
as follows2:

1Referenced Version is 1.0.6.
2In this paper⊕ will refer to⊕s.

1. C = C1∪C2

2. (≤) = (≤1 ∪ ≤2)

3.
∀C ∈ CH : members(CH) =
members(CH1

)∪members(CH2
)

3

It is easy to see that the effect of composingH andH ′

using operator⊕s has the same effects as the introduc-
tions of AspectJ: Both operations simply add the intro-
duced members to the respective classes of the resulting
hierarchy.

Following the analysis of [10], it is now possible to ap-
ply the stated noninterference criterion for AspectJ intro-
duction as well, which informally states that all used vir-
tual calls must evaluate to the same method as before.

3.3 Finding Changed Lookups

To test the interference criterion it has to be checked,
whether the dynamic lookup for any possible call has
changed. The analysis described below only needs the hi-
erarchy and signature information as input; method bod-
ies arenot analyzed. This approach guarantees that the
hierarchy preserves its behavior ifnobinding interference
occurs at all.

For impact analysis, this information is insufficient as
the set of changed lookups calculated by the subsequent
analysis demands that behavior ofany affected class to-
gether with its subclasses has to be considered as beeing
changed. The reason is that methods defined in a class in
H might transitively use a call with a changed lookup in
their implementation.

To reduce the set of affected classes, a simple code
scanning of an affected method for calls with changed
lookup might be enough—methods only using unchanged
calls in their implementation as well as calls evaluating to
unaffected classes are guaranteed to work as before if only
these methods are called. The call graph is an appropriate
data structure to calculate all this information.

Note that newly introduced methods may very well
change the state of objects, thus altering system behav-
ior. Anyhow, introduced methods are never called by the
original system as the system would not have been syn-
tactically correct otherwise—the method did not exist in
the original system4.

3Here,members(CH j
) indicates the set of members defined in class

C in hierarchyH j . If C /∈ H j , thenmembers(CH j
) = /0.

4Keep in mind, that advice is not considered here—advice code
might call newly introduced methods.

Gary T. Leavens
38

The information necessary to check the interference
criterion as well as for impact analysis is the set of
changed lookups. In [10], calculation of changed lookups
is more precise as only calls actually appearing in the
hierarchy are examined (using points-to analysis). The
method proposed here calculates any possible change in
lookup due to aspect application. The loss of preci-
sion might be negligible as the set of changed lookups
is much smaller (explicit introduction instead of arbitrary
hierarchy combination). As an additional advantage, our
algrithm is independent of a specific client, because all
statically possible calls are examined.

This set of method calls can easily be calculated by a
modified version of breadth first search, given by algo-
rithm 3.1. Recall that a class hierarchy in Java (as well as
in AspectJ) always defines a tree. Therefore, the inheri-
tance relation≤ always containsjava.lang.Object
as maximal element. For the algorithm letC ∈ C
be a class. ThenInts(C) is the set of all meth-
ods introduced in classC. For the root object, define
∆lookup(father(root)) = /0.

Algorithm 3.1 Calculation of Changed Lookups
algorithm get-binding-interference
input: hierarchyH = (C ,≤),∀C ∈ C : Ints(C)
output:∀C ∈ C : ∆lookup(C)

queue ={max(≤)}
while queue6= /0 do

C = remove(queue)
∆lookup(C) = (∆lookup(father(C))

−members(C))∪ Ints(C)
∀D : D≤ C do: addD to queue

The changes in lookup are used as input for a sub-
sequent impact analysis (refer to section 5). However,
changes in lookup are not only due to introduction but
can have a different reason: hierarchy modification. Its
effects are examined in the next section.

4 Noninterference Criterion
for Hierarchy Modification

Besides introduction, AspectJ allows structure modifica-
tion of inheritance hierarchies, with the intention to move
classes (together with all their subclasses) ‘down’ the in-
heritance hierarchy, so that original type relations still

hold5.

4.1 Impact of Changing the
Inheritance Hierarchy

The impact of changes in the inheritance relations is
demonstrated in figure 3. The changes presented in thie
example are due to application of the following simple
aspect:

aspect O {
declare parents: D extends G;

}

At first sight any client using classes with a modified in-
heritance hierarchy should still work as any type relation
is still correct. However, there are two problems. Letd be
an object of typeD:

instanceof: In example of figure 3, classD is moved
down the inheritance hierarchy by aspectO. Any
predicated instanceof G now changed value—
from false to true. More generally, thetype of
classDhas changed. This allows additional up-casts
((G)d), which resulted in aClassCastExcep-
tion before. These exceptions might have been
caught and so control flow might have changed.

binding interference: Change of inheritance hierarchies
might possibly change the method actually executed
by a virtual call. Figure 3 gives an example of this
situation with method calld.n() : Without applica-
tion of the aspect,A.n() is called; withOapplied,
the virtual call evaluates toG.n() .

4.2 Hierarchy Modification as
Hierarchy Composition

Modification of the inheritance hierarchy can again be
viewed as a hierarchy combination. In this case, the hier-
archy induced bydeclare parents ...extends
statements contains an empty class for any class in the
base hierarchy and an inheritance relation≤′ modified by
the aspect statement as follows:

Definition 4.1 (Induced Hierarchy) Let H = (C ,≤) be
a hierarchy an aspectA is applied to. Let D be the set

5It is not possible to move classes ‘up’ in the inheritance hierarchy
(AspectJ accepts this declaration without effect).

Gary T. Leavens
39

A

B

C

F

D

E

G

A.n

B.m

G.n

F.n

A.n

B.m
A.n

B.m
A.n

B.m

B.mB.m
A.n

A

B

C

F

DE

A.n

B.m

G.n

F.n

B.m

B.m

B.m

B.m

B.m

G

G.n

A.n

A.n

A.n

aspect O

Figure 3: Effects of hierarchy modification.

of tuples derived fromdeclare parents ... ex-
tends statements of this aspect. Then≤′ is defined as
follows:

(≤′) = (≤ ∪D)

The hierarchy defined byA is H ′ = (C ′,≤′), whereC ′ =
C , ∀C ∈ C ′ : members(C) = /0.

As hierarchy modifications in AspectJ are restricted—it
is only allowed to declare that a class now is a subclass of
a sibling (or a subclass thereof)6in the inheritance tree—
the following always holds:

• (≤)⊆ (≤′)

• (D,C) ∈ (≤′)⇒ (C,D) /∈ (≤′) (no conflicts in≤′)

With this properties, the simplified hierarchy combination
operator can be applied as no collapsing of equivalence
classes due to conflicts is necessary. The resulting hierar-
chy is given byH = (C ,≤′).

4.3 Impact of Type Changes

To prove that any client still works as before, the interfer-
ence criterion of [10] is a necessary butnot sufficientcon-
dition. If a language contains statements for run time type
identification (RTTI), control flow might change although
the above noninterference criterion is met. Java contains
such statements with the predicateinstanceof , which

6If u, vare siblings⇒ (u,v) /∈ (≤∗)∧(v,u) /∈ (≤∗)∧∃w∈C : (u,w)∈
(≤∗)∧ (v,w) ∈ (≤∗), (≤∗) indicates the transitive closure of(≤).

allows to make control flow dependent of the type of an
object.

To guarantee that behavior of a client is preserved, all
instanceof statements have to evaluate to the same
value. To calculate the value of such expressions, the type
of each reference involved in aninstanceof predicate
has to be known. Approximations with points-to analysis
are possible but precise points-to analysis is undecidable.
Thus in general only a superset of the type of an object a
reference points to can be calculated.

Preservation of behavior can only be guaranteed iff
points-to sets of references involved in an instanceof-
statement before and after the hierarchy modification
evaluate to thesame single type—a very rigid require-
ment. In general, when using static analysis, many pred-
icates will evaluate to type-sets with a cardinality big-
ger than one. In this case, conservative approximation
requires to assume that the behavior of the client has
changed.

To check the impact of changes to any client of the
modified hierarchy the noninterference criterion can be
applied if RTTI is excluded. Finding the method calls
with changed lookup is easy: Only calls to methods
(re)defined in a class between (and including) the new and
the former superclass can be influenced, if those methods
are not redefined by the affected class itself.

4.4 Detection of Binding Interference
due to Hierarchy Modifications

Detection of changes in lookup due to hierarchy modifi-
cation can be achieved by a simple algorithm. The idea
is that any method call has a changed target iff now the
virtual call evaluates to a newly assigned superclass. This
change in lookup again has to be propagated to any sub-
class not redefining the affected method.

Calculation of the necessary data can be performed in
three steps:

1. Get the set of classesD affected by hierarchy modi-
fication.

2. ∀d∈D calculate the intermediate classesIC between
this class and the newly assigned superclass.

3. For any methodmknown in d, check if a call now
actually evaluates to a classC ∈ IC. If this is the
case, the behavior of the call tompossibly changed
andmhas to be added to∆lookup(d).

Again, any (transitive) subclass ofd which does not rede-
finemis affected by the change as well.

Gary T. Leavens
40

5 Impact Analysis of Changes

In [9], a method to compute impact of system modifica-
tions on a set of given test drivers has been suggested. It
breaks modifications down into atomic changes likeadd
method(AM) and add field(AF). These atomic changes
can be easily derived from the aspects; dependent changes
like change lookupare calculated by the analysis pre-
sented in sections 3 and 4.

With the set of changed lookups at hand, impact anal-
ysis can be used to choose a set of test drivers which has
to be rerun to check whether the system still works as in-
tended. Only a short summary is presented here, for de-
tails refer to [9].

The classes of the hierarchyH under consideration are
now associated with a set of test driversT = {t1, . . . , tn},
where eacht ∈ T calls a subset of methods defined by
classes inH . For each test driverti , impact analysis is
performed using the call graph ofti to determine if the
test driver (or client) is affected. This is done by checking
if ti calls (maybe transitively) any method with changed
lookup.

This check uses calculated information about changed
lookups when traversing an edge in the call graph. If
the call matches a call in the set of changed lookups
∆lookup(C) the test driver has to be rerun.

To create the call graph, the type of the calling object
at runtime has to be determined for each method call to
decide whether the call changed its behavior. This is the
case if the object reference may have a type with changed
behavior as indicated by the analysis presented above.

Unfortunately, calculation of the exact type at runtime
is undecidable. However, points-to analysis can be used to
calculate an approximation: the set of possible types for
an object reference in the test driver. If a call of any type
in this set is contained in the set of methods with changed
semantics, conservative approximation demands that the
semantics of this call have to be considered as changed.
In this case, the test driver containing this method call has
to be rerun. The results of this regression tests show if the
program still works as intended.

So, the analysis proposed here can provide different re-
sults:

• A set of introductions and hierarchy modifications
with no effecton a given setof test-drivers can be de-
termined. These changes can be incorporated safely
into the system as the semantics of the system are not
changed.

• For atomic changes modifying system behavior, the

subset of test cases which must be rerun can be de-
termined. Impact of these changes can be checked
by the results of these regression tests only.

• For the given hierarchyH , impact of static features
of aspect application on the semantics of the hierar-
chy can be determined.

This information can be used by the programmer to avoid
unexpected changes and specifically examine results of
intended changes.

6 An Example Analysis

To see how the proposed algorithms work, the analysis
is applied to an example using all static modification fea-
tures of AspectJ.

Program 6.1Combined Aspect Applied to Hierarchy.
class Main {

public static void main(String[] args) {
print("A: "); A a = new A(); a.n();
print("B: "); B b = new B(); b.n(); b.m();
print("C: "); C c = new C(); c.n(); c.m();
print("D: "); D d = new D(); d.n(); d.m();
print("E: "); E e = new E(); e.n(); e.m();
print("F: "); F f = new F(); f.n(); f.m();
print("G: "); G g = new G(); g.n(); g.m();
println();

}
}

aspect MNO {
// declare parent extends / implements
declare parents: D extends G;
declare parents: C implements I;
declare parents: D implements I;

// introductions
public void I.y() { print("I.y()"); }
void B.n() { print("B.n()"); }

public static void main(String[] args) {
print("A: "); A a = new A(); a.n();
print("B: "); B b = new B(); b.n(); b.m();
print("C: "); C c = new C(); c.n();

c.m(); c.x(); c.y();
print("D: "); D d = new D(); d.n();

d.m(); d.x(); d.y();
print("E: "); E e = new E(); e.n();

e.m(); e.x(); e.y();
print("F: "); F f = new F(); f.n();

f.m(); f.x(); f.y();
print("G: "); G g = new G(); g.n(); g.m();
println();

}
}

6.1 The System to Analyze

As a starting point, the class hierarchy defined by program
1.1 is given, together with aspectMNO, which combines

Gary T. Leavens
41

the effects of former aspects. It introduces a new method
n to classB, changes the inheritance relation (declare
parents:D extends G) and declares that classesC
and D implement interfaceI . Methods are inserted to
class interfaceI . Additionally, the aspect defines an own
main -method which is necessary to test the results of
interface declaration. Effects of aspect application are a
changed structure as well as a changed lookup for some
methods.

The classes of this example are quite simple: All meth-
ods only print their name and the class they are defined
in, but this setting is already sufficient to show how the
aspect affects the existing system. Figure 4 presents the
output of the system. The figure contains three sections.
The output of the original system without application of
the aspect is marked with ‘(a)’. The effects of binding
interference are visible in section ‘(b)’, which shows the
output of the original main method with aspectMNOap-
plied to the system. The set of known methods is identi-
cal, but the dispatch has changed for classesB, C, E, and
D. The first three classes are affected by the introduction
of n to B, classDby the change of the hierarchy.

All effects of the aspect are visible in section
‘(c)’, where the effects of thedeclare parents:
...implements I statements become visible. No
‘old’ base system code uses this effects as in the origi-
nal hierarchyC andD did not implementI . So, forC, D
and all their subclasses, methodsx andy can be called.
For classC only an implementation ofx is provided, for
y the default implementation ofI is used—as is visible in
the output.

6.2 Applying the Proposed Analysis

The analysis revealing classes only using the default im-
plementation of an interface, like e.g.E does, is quite
simple and not considered. The example concentrates on
changes in lookup. Changes due to introduction can be
found by applying algorithm 3.1. For the example hier-
archy, table 5 summarizes the gathered information. The
example application of the algorithm traverses all classes
of a given hierarchy according to a bfs-order determined
by the structure of the class hierarchyafter applying hier-
archy modifications of the aspect.

Step 7 is interesting as at this position the changed
lookup results from the change of hierarchy structure,not
from introduction (the father ofD now isG, which has an
own definition of methodm; so introduction ofmto B has
no longer any effect onD). When calculating changes in
lookup, these effects must be considered. The algorithm

reproduces the results visible when comparing sections
(a) and (b) of figure 4.

6.3 Using these Results—Impact Analysis

The calculated information about changed lookups can be
used for impact analysis to determine whether a given test
driver has to be rerun. For illustration consider the set
of (quite simple) test drivers associated with the example
hierarchy presented in program 6.3.

To decide if control flow has been changed by intro-
ductions, the call graph has to be constructed. Note that
points-to analysis is necessary as the types of caller and
callee of a virtual call has to be identified or at least re-

a) : original system
javac demo.java
java Main
A: A.n()
B: A.n() B.m()
C: A.n() B.m()
D: A.n() B.m()
E: A.n() B.m()
F: F.n() B.m()
G: G.n() B.m()

b) : changes due to dynamic
interference

ajc demo.java demo.aj
java Main
A: A.n()
B: B.n() B.m()
C: B.n() B.m()
D: G.n() B.m()
E: B.n() B.m()
F: F.n() B.m()
G: G.n() B.m()

c) : including introduction
to interface

ajc demo.java demo.aj
java M
A: A.n()
B: B.n() B.m()
C: B.n() B.m() C.x() I.y()
D: G.n() B.m() D.x() D.y()
E: B.n() B.m() C.x() I.y()
F: F.n() B.m() D.x() D.y()
G: G.n() B.m()

Figure 4: Example: Produced output.

Gary T. Leavens
42

Step v declared methods members(v) Intr(v)∆lookup(v) queue
1 - - - - - {A}
2 A n n - - {B}
3 B n, m m n B.n {C, G}
4 C n, m - - B.n {G, E}
5 G n, m n - - {E, D}
6 E n, m - - B.n {D}
7 D n, m - - G.n {F}
8 F n, m n - - /0

Figure 5: Results produced by the algorithm (x , y omitted).

Program 6.2Test Drivers for the Example Hierarchy.
class T1 {

public static void main(String[] args) {
F f = new F();
f.m(); // calls B.m()
f.n(); // calls F.n()

}
}
class T2 {

public static void main(String[] args) {
B b = new B();
b.n(); // calls B.n(), changed lookup

}
}
class T3 {

public static void main(String[] args) {
G d;
if (args.length != 0) d = new D();
else d = new G();
d.n(); // calls G.n(), caller: D or G

}
}

stricted to a as-small-as-possible type set.

T1.main

B.m

F.n

T2.main B.n

T3.main G.n

F

B

D or G

F

Figure 6: Call Graph of Simple Test drivers

To get a first impression how impact analysis works,
consider test driversT1 to T3 and their call graph. The
edge labels of figure 6.3 indicate the type of the calling
object. To evaluate the impact of an aspect using the call
graph, we need the results of table 5.

Test driver T1 is obviously unaffected by changes

due to aspect application as no lookup for anF-object
changed. Test driverT2 calls n from a B-object. This
lookup has changed fromA.n() to B.n() due to intro-
duction of methodB.n . This test driver has to be rerun.

Test driverT3 is a little more complex as here the
type of the calling object is statically unknown. Possi-
ble types areDandG. For aG-object, semantics would be
preserved, but for aD-object, the call would evaluate to
G.n() and not toA.n as in the original hierarchy. Con-
servative approximation demands to rerun test driverT3.
Certainly this is a simple example, but there is no restric-
tion to apply this analysis to real-world call graphs as it
can be done by performing this simple check for every
edge.

7 Preliminary Implementation
and Future Work

A prototype of the analysis presented in sections 2 to 4
has been implemented and produces reasonable results for
programs written in a subset of AspectJ, including the ex-
ample of section 6 presented in this paper.

However, implementation of the impact analysis and
extension of the set of analyzable programs still has to be
done. A point of interest is the handling of Javaimport -
statements as imported classes are necessary information
to built up the hierarchyH . For these classes, source code
might not be available. To solve this problem, it is planned
to reconstruct class information out of Java byte code us-
ing the BCEL API.

Evaluation of occurence of binding interference in ‘real
life’ AspectJ programs is necessary to determine if this
problem is actually relevant for AspectJ programmers.
However, even if binding interference is not very frequent,
the AspectJ compiler should issue a warning.

Gary T. Leavens
43

8 Conclusion and Related Work

This paper pointed out the problem of binding interfer-
ence emerging from usage of the AspectJ features intro-
duction and hierarchy modification. Definitions are given
how AspectJ introduction and hierarchy modification can
be interpreted as hierarchy combinations. With this defi-
nitions at hand, the noninterference criterion of [10] and
the impact analysis of [9] can be applied to check if clients
of the hierarchy under consideration possibly changed
behavior. This analysis can help AspectJ programmers
to examine the impact of aspects before application and
avoids subtle flaws in their programs.

To improve separation of concerns, several different ap-
proaches besides aspect oriented programming have been
suggested. Aksit et al. proposed composition filters [2, 1]
to route incoing and outgoing messages through a filter
queue, thus enabling similar functionality. Batory et al.
proposed layered designs [4, 3].

Especially relevant for the approach presented here is
[8]. Ossher and Tarr proposed multi-dimensional sepa-
ration of concerns, leading to a separate implementation
of different features and a composition of the resulting
hierarchies according to user defined composition rules.
Semantics of these compositions are a research topic ad-
dressed in [10].

Besides [10], very little work of program analysis for
AOSD approaches is known, although impact analysis of
[9] could be used for AOSD software as well.

Acknowledgements

Thanks to Silvia Breu for her valuable feedback.

References

[1] M. Aksit and B. Tekinerdogan. Solving the model-
ing problems of object-oriented languages by com-
posing multiple aspects using composition filters,
1998.

[2] Mehmet Aksit, Ken Wakita, Jan Bosch, Lodewijk
Bergmans, and Akinori Yonezawa. Abstracting
Object Interactions Using Composition Filters. In
Rachid Guerraoui, Oscar Nierstrasz, and Michel
Riveill, editors, Proceedings of the ECOOP’93
Workshop on Object-Based Distributed Program-
ming, volume 791, pages 152–184. Springer-Verlag,
1994.

[3] D. Batory and Y. Smaragdakis. Building product-
lines with mixin layers, 1999.

[4] Don Batory and Sean O’Malley. The design and im-
plementation of hierarchical software systems with
reusable components.ACM Transactions on Soft-
ware Engineering and Methodology, 1(4):355–398,
1992.

[5] Gregor Kiczales, John Lamping, Anurag Menhd-
hekar, Chris Maeda, Cristina Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-oriented program-
ming. In Mehmet Akşit and Satoshi Matsuoka, ed-
itors,Proceedings European Conference on Object-
Oriented Programming, volume 1241, pages 220–
242. Springer-Verlag, Berlin, Heidelberg, and New
York, 1997.

[6] Barbara H. Liskov and Jeannette M. Wing. A behav-
ioral notion of subtyping. 1994.

[7] Leonid Mikhajlov and Emil Sekerinski. A study
of the fragile base class problem.Lecture Notes in
Computer Science, 1445:355–382, 1998.

[8] H. Ossher and P. Tarr. Multi-dimensional separa-
tion of concerns and the hyperspace approach, 2000.
Proc. Symposium on Software Architectures and
Component Technology: The State of the Art in
Software Development.

[9] Barbara G. Ryder and Frank Tip. Change impact
analysis for object-oriented programs.Proceedings
of the Workshop on Program Analysis for Software
Tools and Engineering (PASTE 2001), pages 46–53,
2001.

[10] Gregor Snelting and Frank Tip. Semantics-based
composition of class hierarchies. InECOOP, page
562ff, 2002.

Gary T. Leavens
44

Compositional Reasoning About Aspects Using
Alternating-time Logic

Benet Devereux
Department of Computer Science

University of Toronto
10 King’s College Road

Toronto, Ontario, Canada
M5S 3G4

benet@cs.toronto.edu

ABSTRACT���������
	��
����������	������������������������ �!��"#�
���$�������%	��
�����&�('()*�����+	-,.	��
	�/(�0�(���������������1��243 '�	5�+	6���5� ��	5,��
	5��)����%�7/(�%893����:	5	��;�������
�����<��3���'(6���=���������
	��
����������	����>�������������?���=�;���&�('()*���58@��,�A
B �C�(�����������D�D	������ ��)*��	���������EF���������
	��
����������	����;���������������G���&	��
��)+	��
���H�%	��*�(�6	������ ���+	������I�:,(�:	��
���KJL�NMFO���P12�8F/(�*��/!�(���%Q&�*�(�K�D���
�
�
�R�(��3()*�SET�����5��)&���������+UH���%	������$)*��� ��' ������2&��)+	��
��� ��	���� ���L	��*���S)���������2
	�/ ��	4��)�)��%8F�@'(�N	��G�������
��ER,C8F/ ����/5����������� ����	S�*�N�����������(����3)��VEW���
�
�(ET��������� �5���
��	������0�(�������1��	��*�
��A B �G����QX��)����7��')����FET���Y�������������+�
	������H��)Z����������� ��� ��'(����� �$	�/(�����[������(��)R�%	������ ��A

1. INTRODUCTION\ 	@���F���D��3(���
��QX�����(����3)����^] _�`Z8F�+	�/6���������1	��a����������	����D�������������C�
�����(�6	�/H�%	�2b8F/(��)*�5���������
	��c�(�7�(���%Q&�R���C��� �(�+	������ ��)S���&�(')*�%����	a,
��EN�(��Q���)���� ���
�&	�2��+	������(��	F,��
	@8d��)�)e���:	���3)�����/ ���f/(��8g	��K�����������
��3���'�	Y���������
	��
3H�������7���������������@���0�K���&��')*���@84��,�ASO&' ��/7�����C�
�������+	��*���H��)h����������� ��� �6��)�)���8F�i���������1	��V	���3��G� ��	Y���)+,!�(�
���*��� ���
���>������)R�%	������b2�3('(D��)����;EW�����5��)*)+,jQX�
���+UH���ZAkO�'(�1/lET�����5��)�QX�
���+�
U ����	������m���K' ���
EW')dEW���$	������
	���3()+,.�(���%Q&��� �0�����������
	��(�����$��EY)*�������
����������������2n����� ����	�/(�C	�����o;������3��5�(�
���������������Z2N���H�.��)*���0EW���
����������	��*�(�$���
�
' ���Y��EN�������
�
	���A

p �����������+	������ ��)G����������� ��� �j�*�g����� ��'���������	f�(���������������*�(�l�*�f�
8d��)�)+�a'(�H���
���:	����&�7JT	�/ ��' ��/$����qC��')+	1Pe�(����3)����fAsr7�&�(')����s��E������(�
�
'(��������	h���������������h�����G3��SQX�1����U ���i�����H�%����	���)+,i	�/�����' ��/Dt�u�u�v&w�x
y
z v(t�{:t�| }ax�x[����������� ��� �6] ~%`LASM4/ �[��'(���:	�������84�V�������[�%	4	�/ �V��'�	����
	
�����@/(��8��K' ��/7��Es	�/(���Vo&� ��8F)��������c�����03��[����'(�����7ET���[�������������+�
	������H��)Z����������� ��� �5��3���'�	Y���������
	����

Mb�I3��
�����m��� �:8d�
����� �0	�/ ���K��' ���:	������Z2n84�5�(�����������6�!���
�5����	������
��EN���������1	��a����������	����7�(��������������3 �������6����t�� }ax1{�|�t�}��T| z }�{:t�| u��T}�����|
u���u�}ax1w$uKJL�SMFO&��P12&�iQ��%���*�1	-,C��EZ�:	���	��
�
�5����/ ���(�����&����) 8F/(�*��/5�
�&�
�()��*�
��	�)+,!����������������	��i/ ��8��$'()+	��*�()��$����������� �
�&	���84����o!	������
	�/(�
�
	��5��/H��� ���G	�/ �c�:,��:	����f� �V�:	��%	���2#�����1/!���()+,0/H��Q&��� ���H�%��	��*��)s�����(�
	�����)�A \ �I��'��G���&�(��)�2Z84�$	�������	c�������
�
	��G���i����� ��'���������	G�����������

� �
�&	��c8F/ ����/m/ ��QX�D	�/(�D��'(�/(�����+	-,�2S�%	C���
��	������j�����*��	���2n	��!	���oX�
�����&	�����)$���H�����&���+EW,g�(�������������:	��%	���2K����������3)+,g���
	�'(���(�*�(�>�%	
�l�(�+"#�
������	D��������	�A�M4/ �!���������*3()��;��������	��D��EG���
	�'(���>�����I�������
�:	��������(���Z2F3('(6��)�)���8�EW���7���=���������
	6���+	�/ �
�5	��.���
	�'����������&	�����)
8F/ �1���[�+	4	�����o��+	�2����4	��K��o&�*�D�c�:	���	���������	�AnM4/(���@�����5����	������4���@�
�(�+�����1	i	������ ��)*�%	��*����ER���������&���C���&	��6�6)���8@�
)���QX��)n�:	���	��$�5����/ ��� �
���&�(�
)L2X3 '(n�+	S��/ ��')*�C3��@	�/ �@�������F���4�[���&���
�L84����QX�1���a3 �������C���1�
�5����	������g] ��`L2(8F/(�
���V	�/(�[���������
	@���&���Y���484�%QX�
�D����	��G	�/ �Y����'(�����
���&����2h���H�f	�/ �
�!	������ ��)*��	����Z�e8F�+	�/!	�/ �K���(�(�+	������H��)n�*��ET�����5��	������
��E@	�/(�5��)�)�������	������m��E@�����������(����3 ��)���	������c	��f����������� �
�&	��5J��:,��:	����
��� �����������
	1P1A B �$�%���$� ��	i�(������������� �7����,0�(�
8������ �:	���' �1	��YET���
�������
�
	h)*���(��' �����
��2�3('(#����	�/(�
�s���G��� �����X���1/[�����'�	����5�%	����[�����C�
�������+	������ ��)s���H��)�,������F��En�
�����:	���� �C)*��� ��' ��������A

p �����������+	��*���H��)N�����������(�*�(�fET���G�����(��'(��������	G�:,��:	������[��EW	������(�����
�������(�F���4EW��)�)���8F���S	�/(�
���[�%���Y	-8d�$�������$' �(������	���� �G�����������(����	���2
� ��� �$�CA B �4��/ ��8lU ���:	s	�/ ��	 � �()*�������K�*�K�������������+	��*���$8F�+	�/C�
��' �+	���3)��G��3(�:	������
	������6��En�����F�����������
	���	�/ ���Z2�	�/ ��	F�����D�����������
���+	������08F�+	�/!���I��3(�:	������
	������!��E � ���[��)����D�
���������
	�A \ �7	�/ ���V84��,�2
84�C�%Q����*������� �:	���'(�
	���� �6	�/(�KEW')�)S�:	��%	��
�
���H�����C��E ��� �C2b8F/(�*��/
�5��,.�(��	K3��6���������*3()��7����	�/ �6�%Q�����)*��3()��7����������,Z�s8d�7� ��,�	�/ �
�����:	V��En/H��Q&��� �K	��$�����(�:	���' �
	V��� �6QX�1����ER,6	�/(�i��3(�:	������
	������ ��A

B �$������' �$	�/ ��	[�/(�*�i���&����)s���i�����(�
����)n���(��'(��/!	��f��)�)���8�' �Y	��
����������������	[�������)�������	����I����	��
�����1	��*��� �[��E4�����������(����	���	��6�(�
	��1���
����� �i�:	��%	��c	������ ���+	������ ��2Z���H�6,X�
	V���
�5�����!������� ��3()*�[���	�/(�i�
�&�
���:	���� �$���1	�/ �&�(�N��Eh��� ��)+,����*�d��Es��)+	��
���H�%	��*�(�c	������ ���+	������6�:,(�:	��
����2
��' ��/����K���&����)+�a��/ �
�1o&��� ��]��1`@���H�����
U � �����
�&	G��/ �
�1o&��� �.] ��`
�S���
84�
)*)����5����,l� �
8�	��
�1/(� �*��' ���c8F/ ���1/j�������
�
	5QX�
���+UH����	������j�5��,
�5��o��[� ���
����������,�A

M4/ �K������	�����3 '�	������!��EN	�/ ���[� �����
�Y�*�[�5	������ ��)*��	������!EW�������������C�
�)��D�������
�
	$)*��� ��' �����D����	��f	�/ �5�NMFOIEW�����5��)������f2h8F/(�*��/l��)�)���8F�
������'(���
�
��' ��������	����6����������� ��� ��2����H�m�.���*���
' ���������>��E[/(�%8�	�/(���
	������(��)*��	������=�5��,l3��f'(�����m	��.��/(��89	�/ ��	D���>�������
�
	D���&�(�+UH���
�5�(�����������^�
���������
	�)+,�AcM4/(�C�������
�
	i)*���(��'H�����C���i��������)*���[��5	�/ �
EW������������	N��E��V�������
	��C] �%` 8F/ ����/C���()+,$������)��n8F�+	�/�����Q������4	��V��' �(�
� ���(�i���&�(��2����H�C�(��	N8F�+	�/����&�(�+UH���%	������ �N��E�	�/(�F��)*�����d/(���
��������/�,�A
B ���1�(�()*�����.	�/ �5�(�������������;	��
�1/(� �*��' �����.�����
�(�����()���2s����Q&��� �
�(�1UH� �+	������(�i���Y� ���������Z2Z���H�0��' �������:	i	a84�D�������������+	��*���H��)N��������E
��')����@EW���Y���H��)+,(��������En���������
	��
����������	����6�(��������������A

2. EXAMPLE�V�D�����
�(�����()��0���������1	�2@84�f	���o��0�(���������H����	������(�
�1/(����o����(�(Ag�
�(���������������&�('()*���5��oX�
�7' ������E5�������� �¡>��)*�������C�������;�
)R�����

Gary T. Leavens
45

JL��P J�3HP

��� �����(�����
	���
���¡X¡��� ����
��� ���X¡����H�����������% X¡�	 ��! "#�
��$ �&%���¡&�'�)(

������ �¡+*,��¡'�)��	 ��!-"#�/.
*�0����1	a���X�% �¡���� ���������X�% �¡2�

3�3 0�4�%)56	 ��! "#�

������47�+��	 ��!8"2�/.
9 � � �;:
	8�)<�=�(>!?"�<�=�(#�
9#$ � *��� �¡&�% ��)�
9+@ �&����5��
9+A � 5CB �,�&������4

DFEHG�I�J,KML�NPO Q�RCN'S�T/U�KVI>WCE�X6G �H�����������% X¡2Y O Z[R,N\S�T/U�K^]_T�J
`ba Kdc>J,K#S�T�X>U>E ` EHT�X6efS a K+S;g6E�X6G'Q2Wbc�K#S `�h

���1	�/ �&�(�D/H��QX�!����������� �(�+	������(��2[���H�>�+EG	�/ �
,>�����I����)�)����>8F�+	�/(�
��'(�	�/(�7�(���
����� �(�+	�������/(��)*�(���(�(24	�/(���+��3���/H��Q&�����5����' � �(�
U � ���#A
B �D	���oX�i�H�������&���% �¡����C���(�6��'(�1/����1	�/ �&�Z2nEW��)�)��%8F���(��] _%`L�@�+	��
�����������H�(�+	������D���4	�/H�%	4	�/ ���������������H��	��
������QX���D�����[�(�����a�(���X�%	���QX��A
���;���������
	c���G�(�
U � ���08F/ ����/;��� ���1��	��i�1/(���1o&�i��Ed	�/ ���i����������� �(�+�
	������j3��
EW�����0����,l����)�)@	��?� ���������X�% �¡ A�M4/ �7���������
	5��o&��� �$��Q��
�
	�/(������)�)S��Ed	�/ ���(���
����� �(�+	������.���G� ��	G���
	�A \ 	c���c������' �����I	�/H�%	
� ���������X�% �¡C���4������Q���3()+,C�����������
	��s	�/H�%	4����2&�+Ee�+	d�*�d�*�&QX��oX���C'(�H�(�1�
	�/(�6������/�	��
���H���+	��*��� ��2@�+	C	��1�����*� ��	����K8F��	�/m�+	��������:	������H����	������ �
���%	����:UH���#A

M4/(��������������� ���6��/ ��8F�=���Pjh����'(���l�XJL�XP1A \ 	��D' ���1�f����	��
��E������
�
����	������ �F�c�����&Q�����2&	-8d�$�&' ���1���*��	��
�&	4UH�
)R���4���68F/(�*��/5	�/ �['(���
�
�����lUH)�)@���\kj��� �ml��
�������(��� ��	�����24���H�m�!3 '(�	����.	������%QX�6���
���5�����Y	��c	�/ �Y�����
���+UH���5)�������	������0���D	�/(�Y�����&Q�����ANM4/ �[�������������
���)+,���Q��
�$�������(�c	�/ �5	��
�&	KU ��)*�(��2N�+	��(���
�$� ��	$8@���+	��6	��0	�/(���f�
���H�m���;	�/ ���+�D�����&	��
�&	��5�%���0�(�1	��
������� ���l3�,m	�/(�f���&Q&�+����� ���
�&	
��)���� ��AI�V)�)d��	�/ �
�K�:	���	��D���$���
	��
������� ���I3�,�	�/(�D�������������fAdj ���
	�/(���S���������
	N	��[3��@�����������
	�2X	�/(�4�����K3 ���H�%	������C��EH	�/ �F���������
	N8F��	�/
	�/(�i�(�������������K' �:	@/ ��QX�Y	�/ �[EW��)�)���8F�*�(�5�(�������1��	��*�
���

n �+E 	�/(�S������������������)*)��/�H�;���������� �¡[8F�+	�/c	�/(�S���������
�s�����������(�
�(�+	������Z2h	�/ �������:	������ �(�+	������.8F��)�)43�������	����:U ������	G	�/ �CU(���:	
�(�����������9�������&	��%EW	��
��	�/ �i���&QX�����%	������f��E/�H�����������% �¡(��	�/ ���
8@����	���'(�[3��
EW�����c���������1	V������������	������b2 ���H�6��/ ��'()*�Iu�}����T�b3��
	���' �[��EW	��1�V	�/(�i���������1	V���V���(�(���

n 	�/ �d���������1	S��/(��'()R�G�(���
QX����	/�H�����������% X¡[EW������3��
�*�(�Y����)�)*���
8F�+	�/f3H���6� ���������1	��
���

�V� ����	������H��)�)+,�2�	�/ �c�(����3)�������Ed���������
	[�*��	��
�����
	������I��/ ��')*�!��)����
3��Y���(�������������#�s	�/ �
���V�5��,C3��Y��	�/ �
�@���������
	��S8F/ ���1/5��' �53��
EW������2
���G��ER	��
��2b���i��Q����I�('(�����(�5	�/(�$����������� �(�+	��������a��'H�%������	����C���������
	�A
M4/(�f�(����3)���� ��EYEW�����5��)�)+,l�����(���
������	��*�(�I	�/(�0������'(���(������(�C���
��}Ho x1{!�������
�
	��$'(�H�(�1�c8F/(���1/.	�/(�6���������
	K������	����&' ���G	��03���/ �%Q��
���f���������+U ���=���������D���*����)*���7	��l	�/(�!�(����3()���� ��EK���
�(����������	���� �
	�/(�$�:,��:	�����������'(���(������(�[' � �(�
�V8F/ ���1/0	�/(�C�������
�
	i��Ed���&	��1�����:	
3��
/H��QX���D�(�������
��)+,�2F3 '(D����� ���*�(�1����3)+,��������!��' 3�	�)*��A�M4/ ��' ��/
����	��
�����
	������g��E$���������
	��6���0���<����������	����&	6����� ���*�(�
���%	������b2Y	�/ ���
������)������*� ����,584����o7��������� ��	����@,��
	��(����)b8F�+	�/6��	�A

3. ALTERNATING TRANSITION SYSTEM
SEMANTICS\ �7	�/ ���������
	������Z2H84�G���*Q��K�C��o��
	��1/7��Es	�/ �G���������������f�����5����	�������2

'(����� �f	�/ �p�H�;���������� �¡;�
�(�����)��C	��0��)*)�'(�:	�����	��D��	�A0M4/ �5�����5�����
	������d�*�S���D�����:	S���
�������
	��@�i�:	���� � �%���5�����
����	������H��)����
�5����	������SEW���
���!�*�����1����	���QX�c)R��� ��'H�����7] q�`L2Z���()+,0���(������/ ���78F�+	�/!���(EW�����5��	������
��3���'�	Y/(�%8k���H���*Q&�*�(' ��)b��������	��$JT	�/ �i�:,��:	����f2�	�/ �i�
��Q&�+�����(������	�2

��� �!	�/(�C���������
	1PV������	�����)s	�/ �K�:	���	��K	������ ���+	������(��A B �K���
EW�
�i	�/ �
�������(�
�[���	�/(�K�:	��%	����f���
ET�
���
� �����[EW���G�CEW�����5��)h	�������	�������	�2#���H�
��)�)*'(�:	�����	��c��)�)e�(�
U � �+	������ �@'(����� �$	�/(�[�
�(�����()*��A

\ ��ET�����5��)�)+,�2s���.��)+	��
���H�%	���� �7	������ ���+	��������:,��:	��������c�7�:	���	��5�5���
��/ ��� �$8F/(�
�����$'()+	��*�()�����������	��c������/./H��QX�C� ����	��*��)S������	�����)S�%QX�
�
	�/ �K	������ ���+	�����������)*��	������ZADM4/�'(��2e���;�7����� ��)����:	��%	���2h�����1/;��������	
�5��,[�(��	s3��S��3()*�N	��Y���
UH�(�+	��*Q���)+,[��/ �������4�F��'(��������������2X3('(Z����	�/ �1�
�@���
	h��E�����������3)��d��'(�����������������e	�/(�S���
	�'H��)��:	���	��N�1/(�������[ER�����g	�/H��	
���
	i���[�
����	���� ���
�&	Y' �����I/(��8�	�/ �c��	�/(�
�G��������	��[��/ ��������AcM4/�'(��2
���0�C�����(����2 	�/(�i��������	��V�()R��,7�$�X�����[��C�����&	�����)b	�/(�i3���/H��Q&����'(�
��E@	�/(���:,��:	����fA B �C����,;	�/ ��	K������������	K/H���K�7r�tts�t�u
��� �T}��!�+EF�+	
/H�������:	����%	�����,�	��IoX���
�m	�/(�63���/ ��Q�����'(�C8F�+	�/ ���j�����1��	������j���1	
8F/ �1������QX�
��,I����������3()*�5�
�����
'(������./ ���G�������C�(�����+�����;���������
��	a,#�
	�/ �
���������H��3 ��)��+	��*�
�48F�*)�)H3��F�
�������������������!t�� }ax1{1|Ht�}��T| z y
}��Tw�x[��� z ��r
2
	��C3��G�������
����3����6�������i���0O��
�
	������?v�A

wyx+z�{H|�{~}�{~�6|������ � ����}�x#��|��)}�{~|/�m�����6|��b{�}�{H�/|m�#�6��}�x+�F�,�,�
��|�t�� }ax1{1|Ht�}��T| z }�{:t�| u��T}��L��|Cu���u�}ax1w��TuStV}�v,s��*x>�^��J����f��� � �����f�iP
� o x1{�xC

n ���Tu[t�¡n| �T}axiu�x1}4�£¢ct z x1| }�uf¤

n �g�TuitCu
x1}F�£¢[u�}
t�}ax1uf¤

n � �Tu[t5u
x1}F� ¢ct�}
��w$��rFsH{���s���u��T}��L��|(u�¤

n ���6�^¥���¦��TuCt�¢�v�|�r
}��L��|l��t�u�x
�T� �W| z u�}
t�}ax1u � �T}HoIu
x1}�u5�£¢
t�}
��w$�§r¨sH{:�ts���u��T}��L��|(uf¤

n ���)�m©-�'¥ � $fª �TuY}Ho xi}�{�t�|(u��T}��L��|I{�x
��t�}�����|2¤

��}hx�t�r�o$u�}
t�}ax¬«�­ext®�x1{��Gt z x1|(} 9°¯ �±r�o(����u
x1uF��|�x@u
x1}s� ¢�s���u�u��§u��*x
u�v#r�r�x1u�u1��{�u¨²�³ ¯ �$J_«�� 9 Pt¤s}Ho xG�T| }ax1{�u
xfr
}�����|µ´ ³�¶�· ²�³fw$v&u�}�u�xct
u��T| z �*x1}
��|2­ � o���r�of�WuY}Ho xyr�o(��u
x1|�u�v#rfr�x1u�u1��{b¸

B �6)�����ol���������>�%	C	�/ �6�(�����������C�a���������
	��������������+	������m��E¹jh�*���
'(���C��A@�4	�����,6��������	��*�7�
������'(������b2 	�/(�i���&Q&������� ������	@/ �����H�%���
	��*��)&�����&	�����)&��Q��
�e	�/(�d��QX��)�'(������c��E �:,(�:	��
���:	���	����h�+	s�5��,[��/H��� ���
	�/ �K	��
�&	iUH��)*�(�G���H�!	�/ �C3('(�	����Z2e3('(G'(�#� ��	��$��E4	�/(�C�(�����������
����' ��	��
�@���H�$	�/(�������&Q����d���d'(�C	��i	�/ �F�:,��:	����fAnM4/&' ��2X8F/(����	�/ �
���&Q&�+����� ���
�&	S���%QX���S��	4�c�:	��%	���2&�+	@�1/(���������4�c���
	4��Eb��' �����
�����������
ET���[��� �:	���� ����2#��	V�����I��/ �������c	�/(�G���
	Y��ES��)�)s�:	���	�����8F/ �
���yk0���i_
��� �-l5����º�������'(����������������2#3 '�	F��	������ �(��	��1/(�������c���(�i' � �*��' �
)�,�2
3�������' ���7	�/(�f�:,��:	���� / ����������	�����)���Q��
�C	�/ �6�(����������� �
��' ��	��
�
��� �K	�/ �F�����&Q�����ANO&,������
	���������)*)+,�2%	�/ �F�:,��:	�������/ ���������4�[���
	d�(�1�
	��
������� ���D3�,��+	��@��/ �������
��� 	�/ �V���&	��1�������
	������6��Eh	�/(�����Y	-8d�7JL��)*��� �
8F�+	�/7	�/ �[���������
	�� �V���
	������ ��P@�(���&�('(�����F�$'(� �*��' �[��'(��������������A

Me�F�����(���
������	n�SMFO&�eQ&����'H��)*)+,�2%84�S' ���S�:	���	��4���*�����������n���(� ��	��%	����
8F�+	�/0�(�
�������*���0� �&�����V3��1	-84�
���7�:	��%	�����A@M4/(�i�:	���	����V�����i)*��3��
)*)����
���+����)�����24���H�.	�/(�6���������������m� �&�����������6���5��)�)4����'H�%�����$8F�+	�/�	�/ �
�H�����$��E4	�/ �$�����
�&	c�5��o����(�D	�/(�C�(�
�������*���bA¼»V��	��$	�/ ��	i	�/(�C�(�1�
�����������I��������	��Y3��
	a84���
�I�:	��%	����i�%���$�%������� �����!�*�I��������' �
� ���GET���
	�/ �$����oX����E@Q&�*��' ��)N��)*�����+	-,�2e3 '�	[�/H�%	G�*��E����1	$��)�)d��������������� �K�����
�5�����Ku��TwKv(� }
t�|#x���v&u�� �53&,�	�/(�[��������	���2(� ���(�[/H��Q&��� �Ko��(��8F)*���(���
��E@8F/ ��	c	�/ �5��	�/(�
�K��������	��$�%���6��/ �������*�(�(A!��EW������������	$��E@	�/ �
�NMFOf	������ ��)*��	�������ET���i	�/ �c�:,��:	����¾½����������
	i�������������+	���������E¬jh�*���
'(���i�����d��/(�%8F�����°jh����'�����º&ASO���)*�*�����+����)����d�������:	���	����N8F/ �
���F	�/ �
�(����������� ���S���
	���QX��2�� ����/(���$���+����)����d�����F�:	���	��
�S8F/ �1���F	�/(�F���������1	
���[���
	���QX��A����:	��%�������f	������ ���+	������03��1	-84�
���f	-8d�D�:	��%	����Y��� �(������	��
�
	�/H�%	F�+	V���F��������/H��3)��i3�,D����)�)*��3�������	������!��Es��)�)b	�/������i��������	���A

Gary T. Leavens
46

�������

�
� � �
	 	 	

�
���

�
� � �
	 	 	

� � ����
��

������� �������

� � ���

�

�
���

� � ����

�

����������! "� �!#� �%$��"�&'��()*��)

"�� +,��-� /.0"�12 �������! "43 3576"*)�&'"�89-��: �����

D¨E~G�I�J,K<;/N D�J,Q2G>= K+X ` T�] `Ca K@?BADC ` J,Q�X�WFEHQ ` E~T�X

M4/(�f�:	���	��
�5�����f)*��3��
)*)����l8F�+	�/m	�/(�7�(����������� ��������	!J����+	�/ �
�C�*�
	�/(�G�(����������� ����	�/ �c���������
	��d8F/(��)*�G��� �G���[���1	��*Q���2 	�/(�i��	�/ �1�Y���
������' �����C	��c3��V��'(�������H�����HP12�ET��)�)���84���63&,C�c)����:	@��Eb	�/(�V�������������+�
	������H��)&Q������*��3()����s/ ��)R����� �Y���G	�/H�%	s�:	���	���AsM4/ �����@�%���@��3(�:	������
	������ �
��Es	�/ �[�
��� �1���
	��i�(����������� �:	��%	���2H���
UH�(���7���@ET��)�)���8F���

��3 �:	������
	
G �����*��3)��

H �����1���*��	������ H �
U � �+	������

I J ��������� �(�+	������0/(��)*�(� J§�LKNM�PPO!J§"QKRM�P
S T '�	�	����f�������������
���¡X¡��� +�Y¡�4����
U J ���:	��
���H���+	��*���0/ ��)R��� J���¡��8�����&PVO<J���¡��8")��"&P

�4	s	�/(�d������	�2�	�/ �4�����������������S�%	 � � 8F�+	�/C�YQ���)��*�K���(� '(�AhM4/ �4�
�(�
Q&�+�����(������	s�����$��/ �������4	��V���+	�/ �
�n�
�&	��1�nQ���)*�*�G��� � '�	N���������b2�����	��
�
���&Q���)��*�f�*�(� '�	�2H���V�(���
����	�/(�i3 '(�	����bA \ Eh	�/ �G3('(�	����7�*���(���
�������Z2
	�/(�i�:,��:	�����t�}�}ax1w�sH}�ui	�������Q���� ���V	�/ �i�(����������������'(�&	��1��	�� ��� �
/(��84��QX�1��2h	�/ �5���������
	K�*�K��3()��5	��7�*��	��
����'(�(��G�+	�2s���%Q&�*�(�7	�� 9+� A
O&��� ���i	�/ �i���(� '(����Y�:	���)�)hQ���)��*�Z2(�/ �c���������1	Y�
�����
'(����¹*��� �¡&�% ��)�(2
8F/(���1/5���
	�'(���(�4�����&	�����)�	��c	�/(�Y�:,��:	���� �%	 � � 2(��)*)���8F��� �C�+	4	��K�
�&�
�
��'(��¬�H�����������% �¡(�(�����(����	�/(�����������
	d/H���d� �i����8d�
�d	��G����	��
����' ��	
��� ���c	�/ �K����)�)n/H���i���
	�' ��)�)+,!3������!��������/ ���Z2#	�/ �c�:,��:	���� ���i��3)��
	��K��������/ � $ 8F�+	�/7	�/(�[�����:	������H����	������f����	����:UH���ZA

W ��84��QX�1��2(���D	�/ �Y���*�(�()��Y��'(3(�������2&8d�[�����[8F/H�%	F/H��� �����(�d8F/ ���
	�/(�[���&Q&�+����� ���
�&	S���&Q���)*�*�(��	����4	�/(�Y��� �('(�2(��� �5	�/(���6�������������4	�/(�
3('(�	����b�H	�/(�K���������
	V	���oX���V������	�����)L2#3('(������ ���G	�/ �G��� �('(V���Y� ��	
Q���)��*�0�+	Y�
�����
'(�����5CB �,���;����4 2#���
	�'���� ��� ��������	�����)s�%	 ��$ 8F�+	�/ ��'�	
��)�)*��8F��� �5	�/ �G�������������9	����1�(�
��'(����H�����������% X¡ A�j(������	�/ �G�:,��:�
	��
�f� �s���1���������
	���QX��2�	�/ �4���������
	N����')*�K/ �%Q��d��/ �����
�$	��[��)*)���8m	�/ ���
	������ ���+	������Z�C	�/ ���c����������3 ��)��+	-,.���K�*� �(�����%	����.3�,;�0����	�	����;	������ ���+�
	������bANM4/ �V�������
�
	d	�/&' �N/H���N	�/(�F����� ��3 ��)��+	-,���Ee������QX����	���� � � � O S
3��
�*�(�$	���' �[8F/(��)*� I ���FET��)�����A
M4/(���h	������ ��)*�%	��*���C���s�������)��+UH���#2����H�c�(�����s�(��	h	���oX�d����	��[��������' ��	
	�/(�6����������3 ��)���	a,l��E���	�/(�
�����������
	��$	���o&�*�(�!������	�����)d3���	�/l3��
ET�����

��� �l��EW	��1�C	�/ �D��' ��������	����6�������
�
	�AmO����(���D	�/(�D�SMFO&�C�����6�����C�
� ��)����fEW�������
�&�(��2�	�/(�c�
����	�����)+�'XH��8���ES	�/(�G���&�(�c���V����������������	����
' �����(�G�[�(����������������' ��	��
�SQ��%���R��3)����&/(�%8d��QX�
��2��+Ee�NMFO��N�%����'(�����
���j/(����/(�
)���QX�
)@���&�(��)�)���� �mJL���������
	��
�����*�
�&	����ZY�x1u�� z |#P12d	�/ �
�l	�/(���
������3��6����������� �����;8F�+	�/ZA j �����5��)d��' �(������	cET���C��' ��/������������l���
���(��	�/(�
�����X��)h��Ee	�/ ���@84����o�A \ 	����F� ��	��(�����������%��,7ET���F	�/ �i���&�(�
)
	��D3��KUH�(�+	��
�
�:	���	���2b���i�+	i���i/(�
����2Z3 '�	YUH�(�+	���� �����i���i�D��'(q��
�*�
�&	
�����H�(�+	������6ET���V���&�(�
)��
��/ ����o&��� �G	��C3��G�(���
�R�(��3()*��A

4. REASONING WITH ASPECTS\ �c	�/ ���n�����
	������K84�F�(������'(���sET�����5��)(�����
���+UH���%	��*���C������)+	��
��� ��	���� ���
	������V)���������2 ���H���������������+	������ ��)������������ ��� �$��3���'(@�NMFO$	������(��)R�%�
	������(����EN���������1	��a����������	����7�(��������������A

4.1 SpecificationM4/ �K�������
�
	Y8d�K�������
����3��c�*�V���&	����&��' �����f�*�0�����(�
�V	�����' ��������	����
�0�������)��D	��
����������)d����ET�1	-,����������
��	a,Z�5�+	$�*�D|#xt®�x1{0����������3)��6	��
�������1/��D�:	��%	��K8F/(�*��/!���i�D����)�)s	�� �H�;���������� �¡.J � � �*� jh����'����6��P
8F/ ��)��[�/ �V�(�����
���H���+	��*���7���@Q&����)*��	����#ASM4/ ���@���V�c�(�������
��	-,�8F/(�*��/
��/ ��')*��/(��)*�����=��)�)V�
������'(������ �5��Ei	�/(�f�:,��:	����f24�����������()������6��E
� ���H���
	��
������� ���:	����[��/ �������
��A

����)*������������)S�:	���	��C�5���1/(��� �$���&����)n��)�)���8F�G' �Y	��7�&' ����	��+EW,!�%QX�
�
����������3()*�G�
�����
'(������(��'(����� �$	�������������)#)������*�5] v�`LA \ �4	�/(�
���G���6�
�&�
����'�	�������8F/ �
���F	�/ ����������	S�*�d� ��QX�1�d���%QX��� � p �
��	������)+,�2�	�/ �F' ���1�
� �
�����(��QX�
�i���������[�/ �$3 '(�	����bA H �����i	�/ �$��������	i�H�����G	�/�����'(��/
J
�&2 º�PF���f��Q��
��,7�1�(�
��'(������H�d»V�(�n	�/ �1���G�����G������' ���(�����F��En���(� '(��
8F/ ����/l�(����QX�
�&	G	�/(�*��A����l�SMFO;���&����)d���(���&�(�
�$� ��	$���)+,;	�/(���
���(EW�����5��	������b2b3 '([��)���� � o&��r�oIt z x1| }�u$�����
�����1����	��$	��6�
������	��C���
�
������'�	������bA \ �D	�/ ���F��������2H3���	�/7��Es	�/ �i�1�(�
��'(������(�@84�i/H��QX�G�����:�
��'(�������!�����c���(EW���������!3�,7	�/(�c�
��Q&�+�����(������	V��)����(������	Y���[��3()��c	��
�(���
QX����	4	�/ �Y��������	�ER��������Q��
�F���%Q����(�(2&8F/ ��)��[�/ �[�:,��:	������K' �:	
���%QX�Y	�/(�[��������	@8F/ ���(��QX�
�F	�/(�[3 '�	�	����7���F�(���
�������ZA

B �c����,0	�/H�%	Y	�/ �c���&Q&�+����� ���
�&	�/ ���i�0u�}�{�t�}ax z �\[f�584��,f	��D���1�
����)�QX�c	�/ �K�1/(���������i��Q�����)*��3()*�K	��6�+][68F/ ����/�������QX����	��F	�/ �$�������&	
EW����� ����Q&��� ��A5�4	c����,I����QX����	��*���K�:	����.���;	�/(�C�(�����������f2b	�/ �
���&Q&�+����� ���
�&	b� �
QX�
�s/ ���h������	�����)��%QX�
�h	�/(�d����	��+���d���������������:	��%	����
���()+,K	�/(�4	-84�VUH��)*�(�N���H�K	�/(�43 '�	�	����bA W ��8m	�/ �d�����:	S��E 	�/ �@�:	���	��
��QX��)�QX���d���S' �$	��i	�/ �F�:,��:	����fA W ��84��QX�1��2X8F�+	�/5	�/(�F�:,(�:	��
� �������1�
�+UH�������S�+	S����2X	�/ ���N)*�����+	����$�
����	�����)(��'(q����
�SET���S	�/(�@���&Q&������� ������	
	��;o�������	�/ �6��������	��:	���)*)�A \ 	�������EW	����j�(�����+����3)��f	�����/(��8�	�/H��	
���&Q&�+����� ���
�&	4�(�������1��	��*�
�V�%���i�(�������1��QX���;] º�`LA

wyx+z�{H|�{~}�{~�6|<^���� �£�2}����)}�x+��{~x#���/|`_ba/�)}>c��,�,�Qd ��®�x1|�t�|
�]egfIJ�������� � � �F���iPt­NtD�:	�����	�����,°¢���{it z x1| } 9°¯ ���Tuit�w�t�s
h ³ �)��i ¥ �kj6­nu�v#r�o0}Ho(t�}�¢���{Gt��T�0l ¯ ��mDt�|>Yp« ¯ � ­
h ³ J*l�«�P ¯ �$J_«�� 9 PC¸

e6o xir�o�����r�x$�£¢ctDu�}�{�t�}ax z �?u
�6t�|�t z x1| }¨r���|(u�}�{:t��T|(uc}Ho(x�s���u�u��§u��*x
x�n�x r
v&}��L��| u�¸ d ��®�x1|�tIu�}�{�t�}ax z � h ­po`q ¯ � jsr �WuC}Ho xDu
x1}G�£¢Dt��T�
�T|b¡N| �W}ax[s�t�}Ho&u � o&��r�o�}Ho(xV{�x1w�t��T| �T| z t z x1| }�uVt�{�x[t�u��*xV}
�ir�o�����u
xC¸

�V)+	��
��� ��	���� ���L	��*���$)*�������5���$���
UH�(���I8F�+	�/;���������
�
	G	��f�:	�����	����������
��� �c	�/(�@�H��	�/(�h	�/ �
,K���
	��
������� ��A>j ���N�
�(�����)���2�����QX���$�VET�����$')*�
t �

n «vu �xw 90y9z{t �+E 9 / ���d�[�:	�����	�����, h ��'(�1/$	�/ ��	NET���@��)�)�� ��	�/ �
«�|>}�}�} ���~o q 20|Vu � t

n «vu �xw 90y D t �+E 9 /H���4�G�:	�����	�����, h ��'(�1/�	�/H�%	dEW���F��)*)#� ��	�/ �
«�| � | � }�}�}(���~o`q(2�	�/ �
���Y�*�����~�S��'(�1/D	�/H�%	�|���u � t

Gary T. Leavens
47

M4/(�[� '����������V��Es��� ���*�(�c	�/(�Y����������� �(�+	��������a��'H�%������	����[���������
	F���
	��6�������������D� �
8����������
��	a,08F/ ���1/��(�*�!� ��	G/ ��)*�I3��
ET�������[�/H�%	
	�/(�Y���&Q&�+�����(������	�r�t�| |H��}4����' �����H�������&���% �¡C	��c3��[����)*)����58F�+	�/(�
��'(F	�/ �i�����������H�(�+	������7/ ��)*���*�(�(A \ 	F�5��,D�:	��*)�)b�(�������F	�/ �[3('(�	����b2
3('(c	�/ �D�������
�
	5��)+	��
���c	�/ �D�:,��:	����f� �c����������� ����2S��o&��� � ���(�0��Q��
�
	�/(�6����)�)4	�� �H�������&���% �¡.�+E�	�/ �D�(�����
���H���+	��*���l�*�$Q�����)R�%	���� � A.�4	
	�/(�!�������0	�������2@	�/ �I�������
�
	7��/(��'()R�>�(��	6�(����Q�����	 � ���������X�% �¡
ER����� 3������ �G����)�)����5�+Eb	�/(�������������H�(�+	������D�������4/ ��)*�ZAn���6���������
	�� �
�����
���+UH���%	��*���b2�	�/(���b2H����/H����3������0��3 ���
��Q����;]+�%��`
2#����	-84��ET��)R�#�@�+	
/ ����� �
8k�(�������
��	������F	�/H��	��+	��$'(�:	F��'H�%������	�����2H��� �7��)*�f�(�������
���
	������V	�/H��	V�+	[�K' �:	��(�������1��QX��A T ��	�/I�����K�(�
�����H������	V'(�����03������(�
'(�����f��������������� �$	����K������	������1	�A

B �c�����G	������ �:EW��������� ��	�/(�c�:,��:	����f� �����&�(�i	��5�����
	F	�/(�c�����
���+U �
����	������ZADMe�f���(���&�(�5�%	i	�/ �C�:	��%	��
�
�5����/ ��� �C)���Q���)s	�/ �$ET���
	G	�/H�%	
8d�D�����D�(���*�(�f	�/ ���G8F��	�/.���<t�u�s(x r
}i����	�/(�
�K	�/ ������r��FYXxys�t�}_r�o
[j	�/H�%	f����2YEW���0���&��')*�����+	a,=��� �=�5������	����H��3 ��)��+	-,>���%	�/ �
�6	�/H���
�
���������
	��(�����B[f84�C���
�(����������	i	�/(�*�G���&����U ����	������.���i	�/(�����
	������ �
��E4��� ��	�/ �
�[�����
�&	$JT	�/ �c�������
�
	1P�8F/ ����/!�*�Y��3()*�G	��5���������$�
����	�����)
��E4	�/ �$�:,(�:	��
�f� �i�������������C�
����'(��	��
�G��	G�
�
��	������.�����*��	���2b�
������'�	��
�������i���&�(��2H���H�6	�/(���D���1	�'(���7�
����	�����)�A

4.2 CompositionalReasoningW ��8i2S	�/(���b2d�(�084�6��/ ��8�	�/H�%	$	�/(�7���������
	������1	��$3���	�/m�H�%��	��
��E[�+	��C�������
��U ����	��������^M4/ �6�������)����:	���� �����X����/l	���QX�1����ER,��*�(�I�
�������������9�*��	��5�
������	��c�CET�����5��)h���&����)e��En	�/ �i����	��+���K�������������f2
���H�;�����%QX���+	$�����1	��i��	��c���������+U ����	������ZA \ �������(�
����)S	�/ ���G�*�c� ��	
EW��������3()*�6ET���$	-84�!����������� ���DU ���:	�2S�!�:	���	��
�
�5���1/(�*�(�D	������ ��)*��	������
������8F�h�
�������(����	��R��)�)�,[�*�G�������n8F�+	�/G	�/(�S�&'(�$3��
�#��E Q������*��3()�����2����H�
����� �*�()+,D3������������dET���@	����$)*�%�����[ET������Q����*)*��3)��[����������,Z�X��������� �Z2
	�/(�0����������� ��� ��	�����oj3�������������ET����3(�*� �(���(��)+,>�������)�������	����=���H�
����� �(��	�3��G�(�
���������������6���Y�����:	����*3('(����D���0����,58@��,�A

O&���+	V/ ����3������f/(��)*�7	�/H�%	������������(��� �5��/ ��')*�73��i���&�('()*�����d���H�
	�/(�V�����:	4�:	������*��/�	�ET����84�����684��,C	��K�5��oX�@����������� ��� �K���&�('()R�%�4���
	��!ET��)�)*��8 	�/ �D���&�('()*�����:	���'(�
	�'(���D��E�	�/ �6�(�����������fAlM4/ ��	�����2
����QX���!���&�('()*�
��� ��� ���D2H8F/(���1/!����	��
�����
	V���I�5����QX���f8@��,�2H8d�
�����%QX�C	�/H�%	$�+E��?3���/H��QX�
�K�����������(��� �0	��0���������+U ����	������Z2n���f8F��)*)
�5�S��� �;�+E�� 3���/ �%Q����c�����������(��� �f	��0�����
���+UH���%	��*���b2n���f8F��)�)��;A
M4/(���[���¼r���w�s���u��T}�����|�t�� 2nwC�FY�v���t�{�����t�u�u�v&w�x
y z v(t�{:t�| }ax�xI]+��M�2e~%`
�����������(��� �(A

O&��� ���6���������1	��CET����� ���m��)+	��
��� ��	���QX�7�(���������������+	������Z2d�+	C���
�����
�������+����3()*��	��7�(�7�����������(�*�(�7	�/H�%	iET��)*)���8F�K	�/(���������
�
	c�:	���' �
	�'����
��EZ�V�������������fA�»Y��	n���()�,G8d��')*�K	�/(���hE����
�*)��+	���	��F����������� ���(�G��3���'�	
���������
	��
����������	����f����������������2H�+	�84��')*�0��)����5�(��������	��i������� X �
�&�
��3(�*)��C�
�����������+	������ ��)h�����������(�*�(�7���!�����(�
����)�2b�(���%Q&�*�(��� �D��)+	��
��� ���
	���QX�S�(�
��������������	������ �e8F/(�*��/G������/�	e3��N�������N�������H��3)��N	��F��������E-A
� '��C���X��)�2 	�/ �
�b2@���$	����(��Q���)����l�������������+	��*���H��)���������EV��')����$EW���
���������
	��
����������	����<�(��������������A M4/ �I�����5�����H���
�6��E$	�/(���7�����
	������
������������	��@	-8d�C��' ��/7���������������6��')�����A

4.2.1 Imposition Rule	 �
	�
 3��K	�/(�K���&��')���2Z���H�
��JTET����� ET���%	�'(����� PY3��G	�/ �C���������
	��
	�/(�
,m�����!�%	�	�����/ ���m' ����� �;��3(�*� �(��� ���68F/(�*��/��*������	���U �����-�����(�
�������&	��S����
 8F��	�/��$� �N��������	���'(���J����D��'(�S�
�(�����()*��2X	�/ �F����)*)��d	��
� ���������X�% �¡$�5��oX�4'(�$	�/ �@�����*��	���'�	��X��P1A p ��� ���*�(�1�SU(���:	S��� �F/H��)+E
��Eb	�/(�F��������������	������H��)H�����������(��� �i	�����o��n������' ����� ��
 ���d�����������
	�2
���H���c�*��	�/ �c���������
�
	i3 ��� �(��� ��2�84�G8F�*��/!	��D��/ ��8�	�/ ��	����$'(�:	
� \ E@	�/ �����X�% �¡I��)*�����$8d�
���5� ��	$�03)*����o;3����#2N���l���������
	$����'()R�
���(�:	������;���(���
��	c�(���������H����	������(�
�1/(����o����(�f���&�(�5�%	G	�/ �C3�������� � ���(�
��E6�H�����������% �¡(2��1/ ���(����� �$	�/(�[��)*���������������+U ����	������ZA

��� � ��%&��¡&� ��� ��� %&��¡&� ��� �
� � � �
)��:&��4������
� � $ � ��¡����H�����������% �¡>	 ��! "2�
� � @ � 0�:�¡���4��%�
� � A ��%&��¡&� � � �

DFEHG�I�J,K! /NL?°Z�W ` J,Q2S ` EHT�X �#" T�] `Ca K c>J,T�G2J;Q%=
 N � E�X/e
U>E�S�Q ` K+W Q X6T�X>U�K ` K)J =�E�X>EHW ` E�SdS a T�E�S�K

/H��QX��	�/(�6�������+�������
"#���
	�A;M4/H�%	C����2n84�58F����/l	��I���H��)+,����$�����
������)*��	������bA W ��8d��QX�
��2s�����(�����+	$���K�7������	�����)*)��
�K8F/ ����/;�������1	��c	��
�+	��4���&Q&�+����� ���
�&	�[K	�/ ���(�����������C�
����' ��	��
�4��/H��� �����4��Ee�G���&�(')��
[G�+	N����2X3�,c��	����
)�Ea2&���$�������C�:,��:	����f2���� �K�(�����(�h	��Y3��@��)��������K8F�+	�/
�������i���&����)#��Es�+	��F���&Q&�+����� ���
�&	�A

M4/ ���C���&����)4��/(��')*��3��D�����(���R���
����3()+,l���*���()��
�$	�/ ���%
 �+	�����)+E-2
����� ���c�����:	���EN	�/(�G3���/H��Q&�����[��E&
 ���Y��EN�(���*��	��
���
�:	V	���	�/ �G���:�
�����
	�[����()+,�	�/ �Y�
�&	��1���*�(�$���H�5)�����Q����(�$��E'�:���*���
��������	���ASO�' ��/6���
��3(�:	������
	������-��" �*�d��/ ��8F�6���¾jh����'����¹º��&�+	@���S� ��	d�$'(�1/��������)��
�
	�/H���6	�/(�[�(�����������f2�3('(
��X¡X¡&�� D/H���@3������7��3 �:	������
	����6��84��,f���
�+������)���Q�����	C	���	�/(�f���������
	�� �����������
�
	�� ������A>�V)�)4	�/H�%	��5��	�	��1���C���
	�/H�%	F	�/ �G��3(�:	������
	������0����)�)�� � ���������X�% �¡D�������i�&' �K3��
�@��Es	��������
8F�+	�/fQ�����,���� �$Q���)�'(���F��E�k!���H� l�A

(��QX���[�/(�*�b��3(�:	������
	������b2%84�N�����(�:	���' �
	b�+	��e�������������+	������ ��)@J�� " �*�GP1�
� ��	��C	�/H�%	i	�/ �C�������������+	������,+ �K' �:	i3�����3 �:	������
	����.���c8d��)�)�[
����� ���I	�/ �!��������	���'�	��6�����5���*�=	�/(����������2Y3('(D	�/ �-�:���*���
��������	��
���l�0��������	���'(K�����6�(�+"#�
���
�&	K���%
 ��� �7�#"fAIM4/ �5����������	����&	
�(�������
��	-,f��En	�/ ���[�������������+	������!���Y	�/H�%	[�+	[���������
��QX�
�i��)�)h	�/ �c���%�
�H��3 ��)��+	��*�
�V��E.�$�N	�/(�[�:,��:	���� ���V��3 �:	������
	����Z2 3 '�	/�$� �F3���/ ��Q��������
�����S� ���+	�/(�
�h�
��� ���H�����[� ���h����� �:	������*�(���ZAnr7�����SEW�����5��)*)+,�2%84�S����,
	�/H�%	[�#)@J�� " �0�GPe���N���¼�4yat�u
u�}�{�t�r
}�����|f��E1+$J2
 �3�GP4�$2�8F/ ����/K84�
8@���+	����

��)4J�� " �3�GP&5 j +$J2
V�3�GP
��� �Y	�/H�%	b	�/(�S���������
	b/H���b	�/ �s�������n����� ��3 ��)��+	������4J����>�F�a���&'(��Q���)*�
�&	1P1�

��)FJ�� " �0�GP65 j +$J2
V�f���GP
B �4���1ET�
�S	��[�/ ���n��������������	������6���N	�/(�Gt�u
u�}�{�t�r
}dt�u�s(x r
}�2&	��YET��)*)���8
	�/ �n	��
������� ��)�����,[��E �V�������
	����%3 '(e� ��	��N	�/ ��	h�+	e�*�e� ��	b	�/ �S���������1	
8F/ ����/78@���F3������0��3 �:	������1	����17

8 ������)�)�	�/H��	s	�/(�4� �18j���������
��	a,G84�48F����/C	��[���������(�:	�����	��@���s	�/H��	
	�/ �5���&Q&�+�����(������	G�����.3��5������QX����	�����ER����� ����)*)���� �-�H�����������% X¡
8F/ �
��	�/ �$�(���������H����	������.���c'(� ���%	��*�:U ���Z�e	�/H��	G����2h	�/ ��	i	�/(�C�:,��:�
	�������� �I���������
	[������
	�/(�
�i������������QX����	�	�/ �c����)�)h8F/ ��	���QX�1�[�/ �
���&Q&�+����� ���
�&	c��������A \ E@8d�D�����m�(������� �:	����%	��C	�/ ���cEW���K	�/ �D��3��
�:	������1	$���������
	�2h���H�I��/ ��8�	�/H�%	G��	i	�/(����3(�:	������
	c���������
	c/H���c��)�)
��EV	�/ �6�:,(�:	��
� ��� �j���������
	5�����H��3(��)*�+	������5��EV	�/ �7EW')�)F�������������+�
	������Z2d84�7�����j�����(��)�'H�(�6	�/H��	$	�/ �6EW')�)F�������������+	��*���������1	��C�+	��
���������+U ����	������ZA

M4/&' �@84�i�:	��%	��i��'���U(���:	���������������	������H��)Z����������� ��� �C��'()���2 8F/(�*��/
84���)�)b����)�)#	�/ � \ ���������+	������ 8 ')���2�'(�����D	��K�(���%QX�Y	�/ ��	����7���������1	
��' �������&	��
���Y�K����� ��3 ��)��+	-,<w_��� � y�t ��E��m���H�-�G�

��)4J�� " �3�GP�u � w_���f� y�t ��)4J�� " �3�GP&5�9 j;: <>= +$J2
V�3�GP
+$J2
 �3�GP�u � w_�>�f� y�t

M4/H�%	4����2&�+E#	�/ ����3(�:	������
	4���������
	d�����
	��n	�/ �F���������+U ����	�������t�|%Y$�+	
���N���°�>�f���a��3 �:	������1	��*���$��E�	�/ �dEW')�)(�
�����������+	������K8F��	�/K�����������
	s	��
�d2�	�/(���K	�/(�dET'()*)��������������+	������C��)����i�����
	��h	�/ �d���������+UH���%	������bA T ,
����� �:	���' �1	��*���b2(�/ �i��3 �:	������1	[���������
	������F�a���&'(��Q���)*�
�&	d	��$	�/ �[EW')�)

Gary T. Leavens
48

�
�����������+	������Z2S���H�l���'�h�a��3 �:	������1	��*���b2S���0	�/ �������5�����(�*�(�!��3)��+�
����	������(�i�����c	��5��/ ��8�	�/ ��	[�+	V���i��� �>�f���a��3(�:	������
	������mJT8F/(���1/0���
�(��	Y� �����
����������)+,!�*���()��*���f3&,63������ �53���	�/���� ����� �µ����3(�:	������
�
	������.] �%`WP12����H�D	�/ ��	vw_�>�f� y�t /(��)*�(�F���6	�/(�G��3 �:	������
	V���������1	�A

Mb�j��'(� ' �Z2V	�/(� \ ���������+	������ 8 ')����
�H��3()����f' �6	��mQ��
���+EW,g���
��3 �:	������
	[���������
	�2H���H�D��/ ��8g	�/H��	@	�/(�iQX�
���+UH����	������f/(��)*�(�F���7	�/(�
EW')�)���������������	������$3�,G�(���%Q&��� �F	�/ �4��3 �:	������
	������$����)*�%	��*���C3��
	a84�����
	�/(�G��3(�:	������
	V�������
�
	V���H�5	�/ �[EW')�)b�
�����������+	������ZA

4.2.2 Preservation Rule� EF�
��'(������2s84�D��)����08F����/.	��0��/ ��8 	�/ ��	G	�/ �D���������
	K�(�������
��Q����
�������f��EV	�/ �f�1�(���:	���� ���(�������
��	���������E[�/(�73 �����0�(�����������fA B �
	���oX�V�c��������)*���F��� �(��������/b�s�
�������������(�c	�/(�V���&��')��@8F��	�/6���D��3(�
�:	������
	������C��E 	�/(�4�������
�
	�2X��/ ����o&��� �F	�/ �4�������+�����K���������
��	a,G���c	�/ ���
�
�����������+	������6JT8F/ ����/K84�d�('(3c	�/(� sH{:� z {�t�w$y
�T| y r���|(}ax�n�}�P12(���H�G' �:�
���(�!	�/(�D��3 �:	������
	�����������)*��	������l	��!����� ��)�' �(��	�/H�%	K	�/(���(�������1��	-,
/(��)*�(�K���l	�/(��ET')�)4�
�����������+	������Z2n8F��	�/(��'�	����1	�'H��)�)+,��(�����(���(�!	��
�
��� �:	���'(�
	V��� �7��� ��)+,����i�+	�A

M4/(������	�' �+	������=3��
/ ���H�j	�/(�!�(�����������C�
���(�
�����&	��1��	D���6	�/ ��	6�+	7���
	�/(�V������������� ���6�iQX�
��,������ �
����)#���������1	��a����������	����5��'(��	��*���F���&Q&�+�
����� ������	�2H8F�+	�/0	�/ ���:�����(�
��������	��YU �����#AV�@	Y����, �-�����(�
�����*��	�2�	�/(�
���������
	V�5��,6��/ �������i	��C���&	��1����' �(�2�	���o��i������	�����)�2H���H�D���
	�'(���7	��
����,m��)�)��%84��3()*�!������������� ��������	�24����������3)+,l8F��	�/j�������6�1/ ��� �����
	��c�(����������� �:	���	���ANM4/(�Y�������������C�
�*���
������	��
�&	4���Y|H��}S����' ��Q���)�����	
	��G	�/ �V' �(���&�(�+UH���C�������������f�n�������V����� ��3(�*)��+	������@��Eb	�/ �V�:,(�:	��
�
�%���G)*��oX�
)�,5	��C3��i3�����oX�
�73�,�	�/ �[������������	������f��Es	�/(�i���������1	�A

M4/(�d�������������C�
�*���
������	��
�&	 +$J2
 ��� � P#ET���s��'��h�
�(�����)��n�*�h�������C�
�������+	��*���6��E#	�/ �@3H�����V��������������8F��	�/�	�/(�FEW��)�)���8F�*�(�$��3 �:	������
	������b�

�;����4m�+��	 ��! "2���
*��� �¡��� ��)�����±5bB �,��������4��

�

\ �G��	�/ �1�h84�����(��2���	e���s���p���a��3(�:	������
	������c��E 	�/(�NEW')�)��������������+	��*���bA
»V��	��7	�/ ��	�	�/(�*���
�$3��&�(�����C	a84�;��� ���+	��*���H��)Y������' ���(������ ���f	�/(�
���������
	[�(�����[�(��	V���&�(�+EW,f����,f�:	��%	��c������� ��3)��K	��C	�/(�K�������������f2
���H�$	�/ ��	S��	S���()+,C��� ���
��	��N3��
EW�����V���H�C�%QX�1�4���(Q&�����p[c� ��QX�1�4�%EW	��
��A
M4/(������������'(���(������(�n�����F� ���
����������,cET���S	�/(�4�(�����������C�
���(�
������	��
�&	
	��$�(�������
��Q��[�/ �i�������+�����7�(�������
��	-,�A

J �%��	���Eh	�/(�[�NMFO5ET���@	�/ �[�������������C�
���(�
������	��
�&	F��� �����%���@���?jh�����
'����?v(A \ �l	�/ �f'(� ���&�(�+U �����:,(�:	��
�f2d8F/ �
� ��QX�1��	�/ � J p ���6�%	
)���� � ��� 8F�+	�/!	�/(�G�(���������H����	������I���%	����:UH���#2�	�/ �c�����:	������H�(�+	������!���
���%	����:UH������	i	�/ �c� �1��	[�:	����bAKM4/ ���i�:,��:	���������� ��3 ��)��+	-,I���i�:	���	����
���0�NM 	 �����

w_� yH��� O I
	 z U
B �i�$'(�:	@�1/(����o5	�/(�[�(�����������C�a�����a�
����	��
�&	4	��C�����[�/ ��	@	�/(�*�F�:,��:�
	��
������� ��3 ��)��+	-,6���V��)������(�������
��Q����D	�/(�
����A 	 ����o&�*�(����	¨v�2(8d�i�����
	�/ ��	V��)+	�/(��' ��/f	�/ �G���������
	������0������QX����	@	�/(�[�:,��:	���� ���
	�	���� �C	��
�6� 2���� �
�Y�+	@���d	�/ �1���Y�+	@�����6�
�����
'(��¬�H�������&���% �¡5���H������	����:EW,5	�/(�
�����������H�(�+	������ZA

O&�Y84�@�:	��%	��@	�/ � J �������
��Q���	������ 8 ')����b�+E#�:,��:	���������� ��3(�*)��+	-, w_� y�t
/(��)*�(�s���c	�/ �d�������������C�
���(�
������	��
�&	.
 ��� � � 2����H�i	�/ �d�������������C������a�
����	��
�&	Y���V��� �e�a��3 �:	������
	������!��En	�/(�GEW')�)h�������������+	������Z2H	�/ ���
8d�i�����7�����(��)�'H�(�[�/ ��	 w_� y�t / ��)R���F�*�6	�/ �YEW')�)b�
�����������+	������Z�

�
�����

�
� � �
	 	 	

������
��

� � �

�

� � ���

�

�
�
	

�
��� �������

� �

D¨E~G�I�J,K�
�N D�J,Q2G>= K+X ` T�]]?BADC]8T�J°c>J,T�G2J;Q%= efE�X/efS�T�X ` K�� `

+$J2
 �f� � PVu �xw_� y�t +$J2
 �f� � P&5 j +$J2
V�3�GP
+$J2
 �*�GPVu � w_� y�t

5. RELATED WORK8 ������������/ �1���C�:	�'H�&,(���(�!	�/(�y¢�x�t�}�v&{�x7�T| }ax1{:t�r
}��L��|�sH{���u��*x1w /H��QX�
���(����'(�&	��1�����m��������)*���5������' �
��2@����� ���7EW����	�'������5��ER	�����/ �%Q��7�������+�
)*����)+,5�
�������:�a�
'(�	���� �K�
"#���
	���A 8 ,&���5�
	@��)�A#]+���
`b/H��QX�V�(�
QX��)��������5�
¢�x�t�}�v&{�x°r���| u�}�{�v#r
}[ET���K�:	��%	��
�
3H�������I���&����)���� �D)R��� ��'H���������s	�/ �
���
ET����	�'(���
�F�����Y�1�(�������������D��	S	�/ �Y�:	��%	��
�
�5����/ ��� ��)���QX��)���Eh��3 �:	������
�
	������D����	�/ �1�@	�/H���5	�/ �Y�(�����������C�
���&���Y)���QX��)�ASM4/ �1,5/H��QX�[��)����0] º%`
' �����j������)�	��1���H��	����(��	������(���+	��*�����:,��:	���� EW�������184����o�	��I�(���%QX�
	�/H�%	G�����������+	������;��EF�DEW����	�'����C�5������	������(�G�(�����+����3()����(�������1��	��*�
�
��Eh�c�:,��:	����f2X��QX����	�/ ��' ��/6�+	@���@�G� ���(�
�����(��	����(���V�������������+	������
���$����� �
����)�ANM4/ �@����"#�1����� ���d�*�s	�/ ��	s���K	�/(���+�sET�����5��)�������	������Z2������1/
���&�('()��V���d����������������	�����3�,5���6��������	��&	�/ ���4��)*)���8F�@ET���4����������� ��� �
��3���'(G�����H��3 ��)���	������G��EF��������	��i3��
ET�����5���H�I��ER	��
�GET���%	�'(�������������
���+	������b2F3('(D�������5� ��	D��)�)*��89ET���6	�/(�0�(���:	���� �
	������>��Ei3 �����!���H�
ET����	�'(���f��������� ������	��f�����
�&	���24��� �l	�/&' �$�(�������(��	�)������m	��!	�/ �
o&���H�6��Es���&�('()*���F����������� ��� �C8d�[8F����/7	����(��A

p)��+EW	����!���H� 	 ����QX���(�i] _%`s��� �&�������F���&�(')*�%�@����������� ��� �C8F�+	�/f���:�
�����
	���2����H�C��'(�����
�:	4	-8d�[-,������N��Eb�
���)������+	4�����&	������
	����s��3 ���
��QX�1���
��� �>���������:	����&	���A��V�j��3 ���1��QX�
�D���7���=���������1	D8F/(���1/=�������D� ��	
��/H���(���N	�/ �d�1�(���:	���� �����������+U ����	������K��EH����,i���&�('()��S�+	s���n��	�	����1/(���
	��(�N�+	c���()�,���QX�1�K��/H��� �����K�+	��c��8F�.�:	���	���AfM4/H�%	$���G	��f����,�2h	�/ �
�����H��3(��)*�+	������c��E4	�/(�C���&�('()��C3�,!��	����
)�E@�������*�(����	�������)N	��7	�/(�C���%�
�H��3 ��)��+	��*�
�K��E4	�/ �C�
�����������+	���������E@���&��')������H����3 ���
��Q��
���s���()+,
	�/ �7���������1	��X���*�(��� �
8 ����� ��3 ��)��+	�������A>���������:	�����	����5��,.���&�(�+ER,
�:,��:	����������H��3(��)*�+	a,�A

jh����)��
�����H���[������/ � ���$'���	��[�
	!��)�A$] ��`K��)*����' �����l�:	���	��
�
3 �������
���&�(�
)Y��EcET����	�'(���I�������������+	������b2Y��� �=�����?	��%84�������f�������������+�
	������ ��)b�����������(��� �(A4M4/ �
,D/ �%Q��G���f�
"#�
�
	���QX�G�(���
�*�������0�(����������'(���
ET���Y�����%Q����(�K	�/H�%	V�KET���%	�'(���G�(���
���
��QX������� �6��'H��������	��������(�������1���
	������F8F��	�/(��'�	Y�(�����(���(�C	��������(�:	���' �
	�	�/ �[EW')�)h�:	���	��G��� �������#/(��8@�
��QX�1��2�	�/ �
,5���K�(��	@�
��� ���*���
�4	�/ �����+	�'H�%	��*���68F/(�
���[�iET���%	�'(���V�����
�(������3)��c�K	������(����	������f��Eh	�/(�i�:,��:	���� �+	����&�(�+UH����A

Gary T. Leavens
49

B ��������� ��	d��8@�%���V��Ee����,$84����oK8F/(�*��/CET�����5��)���������2����5�i�����(�
����)
84��,�2s	�/ �C84���%Q&��� �!��EY���������
	��K�*������� �1����)�2N�(����)��*�(�08F��	�/l���������
)���oX�@84���%Q&��� �i��EZ��)*�����d/(���
��������/ �����N���d� �%	����'XH��8j�������(/ �n	�/H�%	d�%���
�(��	�/H���H��)*���63�,5	�/ �[���������������7���
	�/ �&�#A

6. CONCLUSION AND FUTURE WORKB �Y/ �%Q��[�(������'(�������7�G�(�������������6���(�(���X���1/5	��$���&��')*���S�����������(�
���(�m8F�+	�/g���������1	���A M4/ ���0��� �(��������/k���7�mQ��������
	a,>��E$������'(���
�
��'H�%������	����[����������� ���(�(2H'(����� �C���0��)+	��
��� ��	���� �K	������ ���+	������7�:,(�:	��
�
���&����)�2V8F�+	�/g��)+	��
��� ��	���� �l	�������������)Y)���������]+�
`c���f�����������+U �����
	������7)*���(��'H������A B �Y/H��QX�V��)*)�'(�:	�����	����5	�/ �VEW' � � �����
�&	���)��4��Eb	�/ ���
��� �����X����/I�������I�
�(�����)���2b���������(�:	�����	���� �5/ ��8�	�/(�K���������������
EW�����5��)*����� ��� ��3)����F�������������+	������ ��)b�����������(��� �(A

M4/(���58d����om�����*�j�+	��D������)+,��:	���������2����H�l	�/ �
���f�����K' ��/m	���3��
�����(��A J ���%Q&��� �j	�/(�;�(�����������%��,���3 �:	������
	������k���
)R�%	������ �0���f	�/(�
���+q���')+	$�H����	C��E�	�/ �D���(�(���X���1/Z24���H�.	�/ ���K�$' �:	K3��D��/ ��8F�m	��
3��G������)*��3)��K��� �7����)*��	���QX��)+,0��'(����5��	���3()���AFj '���	�/ �
��2(�/ �G�(�
���*���
��3 ��)��+	-,0��ES	�/(�K���H��)�,������i���������H���V���I��U � �+	��
�
�:	���	��c���&�(�
)L2����H�
���!��3 �:	������
	������ �K��E@	�/(���:	���	��
�
���H�����6������� �
������������,;	��f�5��oX�C�
����� �1����)��(����������� UH�(�+	��
�
�:	���	��������&,C�*��	��
�����
	������(�43��
	-8d������	�/ �
���
��3 �:	������
	������ �G���H�7	�/(�����c��EN	�/ �c�(�������������0�������������+	��*���H��)h��')����
�K' �:	���)*����3��Y�����(���R���
�����#A

7. ACKNOWLEDGMENTS\ 	�/H��� o.rf������/H� p / ����/ ��o;EW���5�
�&	����(����QX�7���������:	���� �
�78F�+	�/m	�/(�
�*�������6��� ���(�������
�&	��%	������<��� �>O�	���QX���N���:	��
��3�������ojEW���DEW��'(��	�EW')
��������' ���������(��A O�/(�$' �
) �G�%	3�0�:	�����	����>���f	�/(��� o&��� ����3���'(5	�/(�
������3()*�
�f2����H�i���+�����
	����[���h	��4	�/(�N)��+	��
���%	�'(���N���i��' ���1���������+	������ ��A
M4/(�[����Q&���
84�
�����(������������	��4/ ��)������5	��$�����(���%QX�Y��� �6��)*�����+ER,6	�/(�
�5�%	��
���*��)�A

8. REFERENCES]��1` 8 � �-����Q6�V)�'(��2 M4/ ���5�����cA W �
� ����� ���
��2 ���H� � ���H�
�i' ��ET�
���5���bA��:��)+	��
���H�%	��*�(���L	������iMe������������) 	 ���������(A \ �
� {��Cr,¸��
	�}Ho���
�
�
 f ��w�s���u��Tv&w���|��e��v�|%YXt�}��L��| uK�£¢
� ��w�sHv&}ax1{vf�r
�
x1|�r�x12 �H�������F� �ZA*��MkMF[H�FM�q�2s�bq�qX~�A

] ��` 8 � �-����Q6�V)�'(��2 M4/ ���5�����cA W �
� ����� ���
��2 � ���H� �i'(�(ET�1���5���b2
��� �fr7����/ ���$A G �����(��A��:��)�	��1���H��	����(� 8 �1UH� �
������	
8 ��)*��	������(���(A \ � � {��Cr�x�x�Y��T| z uK�£¢ ������������� � 	�2 � �����
�
� ��º/[�%~��&2s�Cq�q���A

] º%` jdA p ������� ��2#r�A H A 8 ,&���Z2 ���H� J A � �$A O&�1/(��3 3��
� ��A
� J ���%Q&�*�(�°j ���%	�'(���¹»V���(�
����	��
�����1	��*���78F�+	�/
�V)+	��
��� ��	���� ���aM4�*���GMb������������) 	 �����*�!�(A \ �0O#A (��)��������G��� �
r�A H A 8 ,&���b2�������	�������2#"et�| z v(t z x � ��|(u�}�{1v#r
}�u ¢���{
$ x1utr
{���u
�T| z �hx�t�}�v&{�x1u�AZO&�(����� ���
��� G �
��)*���(2H� MkM&��A

] v�`%�@A p)*����o���2 � A (��' �K3��
���(2(��� � H A J ��)����#A#&��FYXx
�
� o x r('��T| z A#r \ M J ��������2e�bq�q�q�A

] _�` p A p)��+EW	����!��� � (A MYA 	 ����QX��� ��A�� � 3(���
��QX�
�������H�
�V�������:	����&	����S� J ������������)ZET���[r7�&�('()*���V�V�������1	�� � ��������	����
8 ��������� ��� �)�(A \ � � {��Cr�x�x�Y��T| z uK�£¢*� � �+"-,/.
.0,
1 �e��v&|>Y�t�}��L��|(u$� ¢��Yu�s(x r
}Ly-��{��
x1|(}ax�Y2"bt�| z v(t z x1u43�2b� M MX�&A

] �%` �CA2jh�*��)��
�Y��� �fO�A �[������/ � ���K'(��	�/ ��A5�:r7�&�(')*�%� G �
���+UH���%	������
��E p ��)�)R��3������%	��*���(� T �������;O&��ER	-8@�%��� H ���������(���(A \ �
� {��Cr�x�x�Y��T| z uK�£¢*��f6
 � .
7�2HO�����	����$3��
�F� MkM&��A

] ~�`GM4/ ���5�����cA W ��� �����(���
��2�O�/H� �%8[�������
��2 ��� �fO&���+����� �CA
8 � �:���5���(��A9�:�S��'7�V����'(����2 B � (' ��������	������
r7�
	�/(�&�(��)�����,0���H� p �����KO&	�' �(�������(A \ � � {:�Cr�x�x�Y��W| z uK�£¢
� �%; � � 	�2 � �������Fv�v MF[�vX_&��2s�bq�q���A

] �%` (��������� �i��� ����)�����2��s����o W �*)����(��)���2����*� W ' ��' � ���Z2Hr7��o
�i�
���:	����b2 ���
"����1, J ��)��f2H���H� B ��)�)��*��� (A (�����:8d��)*�ZA��-�V�
� QX�
��Q&���
8<��EN���������
	��<��A�"hx r
}�v&{�x � ��}ax1ui�T| � ��w�sHv&}ax1{
f�r
�
x1|�r1x12�� M�~��&� º���~F[�ºX_�_&2e� M M���A

] q%`c����/(�!r7�+	��1/(��)�)LA��e��v&|>Y�t�}��L��|(u[¢���{ � {�� z {:t�w$wK�T| z
"et�| z v(t z x1u�AZr \ M J ��������2b�Cq�q ��A

]+�FM%` p �������H�5O�A J �������������&'b2#rf�%	�	�/ �
8 T A H 8@,��
��2 ��� �fr7����/H���
)
W '(�/ZA��:�V����'(���
� ('H�%������	����Gr7�&����) p /(����o����(�C��E
O���ER	-84�������d� p �����H�����%	���QX� p �����KO�	�'H��,/��A \ � � {��Cr�x�x�Y��T| z u
�£¢[}Ho x=7 �
�<� f � � ��> ��{�'�u£o(�ts���| fH�£¢1} � t�{�x?&��FY�x
�
� o x r('��T| z 2b�Cq�q�q�A

]+���1`Kr�A J)*��	�/0���H�0r�A 8 ,����bA�� j ����	�'���� \ ��	���������	������f'(����� ���
j ����	�'���� p ���(�:	���' �
	@��APf�r
�
x1|�r�x$�£¢ � ��w�sHv&}ax1{
� {:� z {�t�wKw$�T| z 2�v(��J:�%P1� _�ºF[&�;v(2b� M M���A

]+�%��`Kr�A�O&�*/(�5���7���H�7O#A �G��	3��AA�-� p ��)���'()�' ����E
O�' ���1���*���������+	��*��� �@ET��� H ���:	����*3('(����7O&,��:	���������A \ �
� {:�Cr1x�Y��W| z uc�£¢�� � f $,6.
.0,X2�� MkM��&A

Gary T. Leavens
50

Model Checking Applications of Aspects and
Superimpositions

Marcelo Sihman and Shmuel Katz
Department of Computer Science

Technion - Israel Institute of Technology
Haifa 32000, Israel

{sihman, katz}@cs.technion.ac.il

ABSTRACT
The model checking of applications of aspects is explained,
by showing the stages and proof obligations when a collec-
tion of generic aspects (called a superimposition) is com-
bined with a basic program. We assume that both the basic
program and the collection of aspects have their own spec-
ifications. The Bandera tool for Java programs is used to
generate input for model checkers, although any similar tool
could be employed. New verification aspects and superimpo-
sitions are defined to modularize the proofs, and separate the
proof-related code from the program and the aspects. This
allows generating and activating a series of model checking
tasks automatically each time a superimposition is applied
to a basic program, achieving superimposition validation. A
case study that monitors and checks an underlying bounded
buffer program is presented.

1. INTRODUCTION
Aspects help to isolate cross-cutting concerns in programs
and designs. Many researchers have been working on pro-
gramming and design techniques, software evolution and
other implications of AOP. However, little work has been
done about formal verification of aspects. In this paper,
we show in detail how to verify the combination of collec-
tions of aspects over basic programs, using model checking
techniques. The use of special aspects for verification is
also presented, providing yet another natural application of
aspect-oriented software design.

We introduce this approach as a new feature of SuperJ, an
AOP construct that we have proposed in [15]. SuperJ pro-
vides language support for defining collections of parameter-
ized aspects independently of any basic program, where such
a collection is called a superimposition. A superimposition
is a module describing an algorithm that may be applied to
different underlying basic programs. A brief introduction to
SuperJ is presented in Section 2.

In this paper we consider how model checking of software
can be used in the formal verification of combinations of
superimpositions and basic programs. Model checking has
the advantages of automatic verification (in that difficult
invariants do not need to be supplied, as is the case in for-
mal verification based on theorem proving), yet provides full
verification, as long as any data abstractions preserve the
properties being checked. Additionally, it has proven pop-

ular with verification of hardware designs mainly because
it provides counter-examples when the property of interest
does not hold.

We have chosen Bandera [5] as the prototype generator of
input to model checkers such as SMV or Java Pathfinder,
and thus use Bandera’s specification notation BSL for de-
scribing temporal properties to be model checked. A brief
introduction to Bandera is given in Section 3.

When binding a collection of aspects (a superimposition) to
a basic program (a collection of basic classes), we need to
bind each relevant class of the basic program to a generic
aspect (of the superimposition), where basic classes may be
left unbound to any generic aspect if they do not play a role
in the superimposed algorithm.

In a superimposition, we specify assumptions about the ba-
sic programs and parameters to be bound and desired results
that must be true in the augmented program, where an aug-
mented program is the result after binding a superimposition
to a basic program. We assume here that the result of such
binding and instantiation (often called weaving) is a Java
program in itself, rather than, for example, Java byte-code.
(The implications of this assumption for our implementa-
tion are considered later.) A superimposition is correct if,
when the aspects in it are woven into a basic program that
satisfies the superimposition’s assumptions, the augmented
program satisfies the desired results and does not violate the
original specification of the basic program.

As will be shown, in Bandera, code is added to the program
to be model checked in order to define functions, predicates,
control locations, and assertions used only for the model
checking. We take advantage of the superimposition con-
struct to define verification aspects that are used to sepa-
rate these additions from the code of the programs. All
of the verification aspects concerning the assumptions are
grouped into an assumptions superimposition, and similarly,
those related to the results are in a results superimposition.
The superimpositions and basic programs of the application
under consideration can thus be kept free of verification aug-
mentations. This is possible in SuperJ because it supports
weaving multiple superimpositions over a basic program, so
both the application superimpositions and those needed for
verification can be combined before applying Bandera to

Gary T. Leavens
51

generate input for a model checker.

There are several possibilities for using the approach seen
here to check superimpositions and their combination with
basic programs. These vary according to the modularity
in the proof itself, and whether we wish to prove the su-
perimposition correct independently from any specific basic
program. In the case of model checking, this may be done
by writing a suitable abstraction of a basic program that
respects the superimposition requirements, along with an
inductive proof. However, we claim here that a more prac-
tical alternative is to use the verification superimpositions
to set up the automatic generation and activation of four
model checking tasks each time a superimposition is applied
to a basic program. This procedure, explained and justified
later in the paper, is known as superimposition validation.

2. SUPERJ
SuperJ introduces constructs that extend the expressiveness
and modularity of AOP. Among the new facilities in Su-
perJ are grouping related aspects into a superimposition,
providing specifications, extending parameterization of as-
pects, dealing with interaction and interference among as-
pects, and combining superimpositions to obtain new su-
perimpositions. The new superimposition construct comes
from the merging of ideas from two distinct research sub-
jects: ‘classic’ superimposition and AOP.

Well-known examples of ‘classic’ superimpositions are ter-
mination and deadlock detection, monitoring or debugging,
adding scheduling restrictions, imposing mutual exclusion,
or bounding the possible values of variables that were un-
bounded in the basic program. These examples have in com-
mon the need to add or superimpose an algorithm over a
basic program. Numerous suggestions ([1, 2, 3, 4, 10, 11])
have been made for a syntax that allows augmenting pro-
gram units, such as processes. A brief survey about several
proposals of a language construct for superimpositions may
be found in [16].

In SuperJ, a superimposition is defined as a collection of
generic parameterized aspects and singleton concrete classes.
A generic aspect has no built-in connection with any pro-
gram unit of any basic program, and in contrast to usual
aspects, a generic aspect contains an extensive parameter
list that allows binding it to any appropriate basic class.
The singleton concrete classes define unique objects that
must be instantiated in an augmented system, where these
unique objects interact with the generic aspects. We have
defined an AspectJ-based implementation for SuperJ, and
have written a preprocessor that translates SuperJ to pure
AspectJ code. The same preprocessor is responsible for
several tasks, such as: binding arguments from the basic
program (classes, methods, etc.) to the parameters of the
generic aspects, and applying a superimposition to a basic
program, generating concrete aspects from generic aspects
and then weaving them to the basic classes.

3. BANDERA
The Bandera Tool Set [5], as defined by its authors, is an in-
tegrated collection of program analysis, transformation, and
visualization components designated to allow experimenta-
tion with model-checking properties of Java source code.

Bandera takes as input an augmented Java source code and a
program specification written in Bandera’s temporal Specifi-
cation Language (BSL), and produces a program model and
a specification as input to one of four model-checking appli-
cations: SMV [12], Spin [8], dSpin [9] and Java PathFinder
[7]. This ‘input’ generated by Bandera is written in the
model and specification languages of one of the four model-
checking applications mentioned. Then Bandera uses the
model-checking application to prove whether the model sat-
isfies the required specification (the Java program satisfies
the BSL specification). If the specification is not satisfied,
then a counter-example is returned, as is common in model-
checking tools. Moreover, Bandera shows the problematic
execution path, which does not satisfy the required specifi-
cation, directly in the Java code.

Bandera deals with the state explosion problem, as the pro-
gram state model must be finite, by providing data ab-
straction and program slicing features when customizing the
model. These features help produce a much simpler finite-
state model of the Java program.

To understand the changes we propose in the verification
process, we first need to give a brief introduction to the
specification and verification stages in Bandera, and other
software model checkers. We ignore some actual limitations
imposed by Bandera due to implementation restrictions or
arbitrary design decisions not to implement some features
of Java, and relate to a somewhat idealized version.

Given a Java program, we need to augment it to include
definitions using BSL. For a simple assertion about the state
whenever a given location is reached, or pre and post-condi-
tions of a method, we write the assertion definitions - using
BSL - as Javadoc comments directly in the source code. An
assertion is identified by a @assert tag in BSL, where the
three assertion types supported by BSL are identified by
the identifiers: LOCATION, PRE and POST.

The specification of a more general temporal program prop-
erty is divided into defining the predicates to be used in
the property’s definition, and then separately writing the
property itself, using the defined predicates. Predicates are,
like simple assertions, also planted directly in the source
code, where there are several types of predicates that Ban-
dera allows us to define. For example, we may define a
location predicate, which is true whenever the location is
reached (and false otherwise), by introducing a Java label
at a given control point (inside a method) of the program,
and also writing a Javadoc comment (right before the asso-
ciated method heading) containing the predicate definition
in BSL.

An instance predicate defines a given property that is not
connected to any control point of the program, e.g., invariant
properties that must hold during the whole life cycle of an
object. In addition, it is also possible to define predicates as-
sociated with two different method call control points: when
a given method is invoked and when it returns a value. In
this case, the predicate evaluates to true both when the
given method is invoked and when it returns a value. Ev-
ery predicate definition is written in a Javadoc comment.
A predicate definition is identified by a @observable tag in

Gary T. Leavens
52

BSL, where the four predicate types supported by BSL are
identified by the identifiers: LOCATION, EXP, INVOKE
and RETURN; location, instance, method invoking, and re-
turn predicates, respectively.

In the second step needed for defining a given temporal prop-
erty, after having defined all the predicates that it needs,
we need to specify the required temporal property using
the temporal specification patterns supported by Bandera,
which are: absence, existence, precedence, response and uni-
versality. Let P , Q, R be predicates defined using BSL. P
is absent in a program if it never evaluates to true. P ex-
ists if it is evaluated to true at least once in the program.
P precedes Q when P does not evaluate to true before Q
is true (which is automatically satisfied when P is absent).
P responds to Q if after Q is true, then P exists (which is
automatically satisfied when Q is absent). P is universal if
P always evaluates to true.

In Bandera’s temporal specification pattern system, we may
require a temporal property to hold globally, i.e. during all
the program execution, or at certain points during the pro-
gram execution, such as after Q, after Q until R, before
Q, between Q and R, where Q and R are predicates defined
using BSL.

The temporal specification of a given program is stored in
a separate specification file. After having specified all the
assertions and temporal properties required for verifying the
correctness of the program, we may use Bandera’s graphic
tool to define a verification session and supply all the data
needed, such as the names of the files containing the source
code and the specification. When running a correctness
check, we may choose exactly which of the assertions and
temporal properties defined we want to verify.

Moreover, it is also possible to use data abstractions to sim-
plify the finite-state model generated by Bandera. For ex-
ample, in a pipeline program shown in [6], a series of integer
values, ranging from 1 to 100, is sent from the first stage
to the last, passing by all the pipeline stages. When the
pipeline program finishes, the first stage sends a 0 value,
and then all the stages finish consecutively. In the specifi-
cation of this example, the integer values - ranging from 1
to 100 - sent in the pipeline are not important. We only
need to know when a stage receives a 0 value. Therefore,
we may use Bandera’s Signs data abstraction, which will
generate only three different states for the possible values
that are sent in the pipeline: negative, zero and positive;
instead of more than a hundred different states. Bandera’s
graphic tool has an interface for defining data abstractions,
which we can afterwards store in a separate file. We may
also select Bandera’s program slicing feature for simplifying
the finite-state model generated. After defining the verifi-
cation session, we only need to run the verification checker,
obtaining formal verification of the property if the model
checking completes without discovering an error, and other-
wise provides a counter-example in terms of the Java code.

In the Appendix, we use a bounded buffer program to give a
brief demonstration of all the Bandera concepts introduced
in this section. This program is a slightly changed version
of an example seen in [6]. Explanations of the example may

be also found in the Appendix.

4. PROVING CORRECTNESS IN SUPERJ
4.1 Introduction
In this and the following sections we explain and demon-
strate the different options for verifying that a combination
of a superimposition and a basic program is correct, as sup-
ported by the new features of SuperJ. In Section 4.2, we
explain the verification of a combination of a superimposi-
tion and a basic program. In Section 4.3, we introduce the
intuitively attractive option of proving the correctness of a
superimposition independently of any basic program, and
discuss the practicality of this option. In Section 5, we use a
simple superimposition example to demonstrate some of the
concepts introduced by the new SuperJ features, and discuss
the implications for superimposition validation in Section 6.

4.2 Superimposition over a Basic Program
In this subsection, we assume a superimposition and a ba-
sic program. We want to apply the superimposition over
the basic program, checking that the basic program satis-
fies the superimposition assumptions and that the resulting
augmented program is indeed correct, i.e., satisfies all the
desired results of the superimposition, as well as the original
specification of the basic program. The simplest possibility
is to simply view the result of weaving the superimposi-
tion’s aspects with the basic program as a Java program
that should satisfy the original specification, plus the result
assertions of the superimposition. Following the description
in Section 3, we then may build in all the needed functions,
predicates, labels, and BSL statements to the augmented
program, create the separate specification file, and model
check all at once that the needed temporal BSL assertions
are satisfied (or obtain counter-examples).

This is the simplest option for verifying the correctness of
a combination of a superimposition over a basic program,
since we directly consider the augmented program, and add
in all of the needed predicates and assertions in BSL, as seen
in the previous section. However, in this case the assump-
tions and desired results of the superimposition are already
instantiated for the combination, and are mixed together
with the original specification of the basic program. When
a new combination is done, a completely new annotation has
to be added before Bandera can be applied. This makes the
model checking impractical when the superimpositions are
to be used in many contexts. Thus we now propose a better
option.

In order to more clearly organize the proofs, and thus to
help in identifying the source of any errors, new verification
aspects and superimpositions can be used to modularize the
treatment. This allows having regular superimpositions and
basic programs, free of verification definitions. The extra
definitions needed for Bandera’s verification are isolated in
dedicated aspects, which are used just for proving the cor-
rectness of the augmented program in separate steps.

When completely separating the verification definitions from
the superimposition and basic program, we have a series of
verification aspects that may be sequentially applied to the
basic program, or may be combined using combinations of

Gary T. Leavens
53

superimpositions. Moreover, we may now define a verifica-
tion superimposition as a collection of verification aspects.
We may classify the verification superimpositions in three
different types, defining:

Spec the specification of the basic program;

Asm the superimposition assumptions;

Res the superimposition desired results.

The Spec superimposition will have one or more verifica-
tion aspects, which will contain (AspectJ) advice declara-
tions needed for introducing the verification definitions of
the basic program’s specification. It also includes the BSL
temporal properties which in Bandera are kept in a separate
file.

The Asm superimposition, dealing with assumptions, will
have a collection of verification aspects: one verification as-
pect for each generic aspect that assumes some properties
about the basic class to be bound to it; and one verification
aspect for the global assumptions of the superimposition
that must be satisfied by the basic program, where these
assumptions are not connected to only a generic aspect and
its (bound) basic class. Clearly, the assumptions should be
as weak as possible, in order to allow applying the superim-
position to a large class of basic programs.

A Res superimposition is very similar to an Asm superimpo-
sition, except that it specifies the superimpositions desired
results instead of its assumptions. Res will also have a col-
lection of verification aspects, like Asm.

The complete verification process is composed of four steps:

1. apply Spec over the basic program and check its cor-
rectness;

2. apply Asm over the basic program, and check that the
basic program satisfies the superimposition assump-
tions;

3. apply the superimposition over the basic program, ap-
ply Spec over the augmented program, and then check
that the superimposition does not cancel any desired
result of the basic program;

4. apply the superimposition over the basic program, ap-
ply Res over the augmented program, and check that
the augmented program achieves the desired results.

Note that Spec is used twice, and that the separation of the
verification definitions into aspects and superimpositions is
a cleaner solution than the comments used by Bandera to
sometimes use and sometimes ignore the verification defini-
tions. Of course, if some of the model checking has already
been done for a basic or augmented program, it need not be
redone. For example, if the basic program has been shown
to satisfy Spec once, this need not be redone when applying
a superimposition. The parameterization in the verification
aspects allows their reuse for different basic programs, with
different weavings and instantiations. The advantages of
this reuse are further considered in the Discussion section.

4.3 Proving Superimposition Correctness
In this section we consider how to prove that a superimpo-
sition is correct independently of any basic program. If we
succeed, then we are assured that when this superimposition
is applied over a basic program that satisfies its assumptions,
then the augmented program will have the superimposition’s
desired properties. Such a verification is desirable if the su-
perimposition is intended to be put in a library for reuse in
many contexts. Of course, if such a proof has been done, we
still need only the model checking proofs that the basic pro-
gram satisfies the assumptions of the superimposition, and
that the result of weaving does not violate the specification
of the basic program.

The generic correctness requirements and stages in such a
proof are not difficult to state in terms of inductive asser-
tions about the structure of every possible basic program to
which the superimposition can be applied. However, any
such proof has a part which is inductive, and thus non-
algorithmic, requiring the invention of inductive assertions.
This is true both when the entire proof is based on inductive
theorem proving, and when the proof can be divided into a
model checking part and an inductive part proving that if
the model checking part is successful, then the desired con-
clusion is justified.

One way to do such a combination of model checking with
an inductive proof to obtain a correctness proof of a super-
imposition uses what can be called dummy basic programs,
first proposed in [11]. Note that model checking tools verify
a model of a fully defined program by checking that the spec-
ified properties hold in all execution paths of the program.
A superimposition, however, is itself not a program, since it
cannot be run, so there are no execution paths. Therefore,
we need to write an abstraction of a basic program that fits
the superimposition’s assumptions, so that we can apply the
superimposition over the abstraction. Then we will have ex-
ecution paths that may be used to prove the correctness of
the superimposition combined with the abstract program.
This program abstraction may be seen as a dummy basic
program.

The dummy program will have no desired results, since it
does not do any useful computation. Thus, there will be
no Spec verification superimposition in the correctness ver-
ification process. On the other hand, the other types of
verification aspects and superimpositions will still appear,
as explained in the previous section. The abstract program
must have classes and states that satisfy the assumptions
of the superimposition, and also states that correspond to
predicates tested by the superimposition or locations that
can be reached. That is, if a predicate is tested whenever a
(parametric) method is called, the abstract program should
have a state where the predicate is false when a (correspond-
ing concrete) method is called, and another where it is true.

This is analogous to the abstraction seen in usual Ban-
dera verifications, where only the ‘significant’ differences are
maintained, as in the abstraction of message values already
mentioned. It is also related to work on model checking a
representative model built from a model-generating graph
grammar and then concluding that any model that can be
generated from the grammar will be correct [14].

Gary T. Leavens
54

Ideally, if the model checking succeeds for the combination of
the superimposition over the abstract basic program, then
it would succeed for any basic program satisfying the as-
sumptions of the superimposition. However, techniques for
proving this ideal conclusion are not yet developed, and in
any case they are inductive except when there are trivial
structural similarities between the ‘real’ basic program and
the dummy actually model checked. If done successfully,
any basic program satisfying the assumptions, and with suf-
ficient components and states to allow binding to the super-
imposition and its aspects, can be abstracted to this canonic
abstract basic program.

In general, the justification that a representative abstraction
is indeed sufficient can itself involve infinite or very large
state spaces and may require inductive theorem proving.
In the Discussion section, we show that by carefully using
the techniques in the previous subsection, it may not be
necessary to generate such non-algorithmic proof obligations
to obtain fully verified combinations of aspects and basic
programs in practice.

5. CASE STUDY
5.1 Introduction
In this section, we demonstrate the stages in verifying a
combination of a superimposition and a basic program us-
ing SuperJ by means of a case study over the Monitoring
superimposition, which is shown in Figure 1. Monitoring is
a simple superimposition that gathers statistics on basic ob-
jects, such as counting the total number of external method
calls for all relevant basic objects. The superimposition does
not modify the values of the variables. It also checks that
objects intended to be constant, actually are - and stops the
program when a violation is discovered. It thus does reg-
ulate the behavior of the basic program and can affect its
properties. In reading the example, note that SuperJ has
a keyword BC (an abbreviation for Bound Class) which is
like this of Java, indicating the class to which this instance
of the aspect is bound. Formal parameters are in capital
letters, to distinguish them from local variables.

The Monitoring superimposition contains two generic as-
pects (Constant and Mutable) and one singleton class (Co-
ordinator). Constant and Mutable extend the Common ab-
stract aspect, which contains code common to both generic
aspects. The Common aspect defines the Coordinator class
and creates its single instance coord, which is used by Con-
stant and Mutable; moreover, Common’s advice increments
the nCalls counter after each external call to any method
of the bound class, where each aspect instance will have its
particular nCalls counter. The Common’s allExternalCalls
pointcut is defined in both generic aspects of the superimpo-
sition (Mutable and Constant). The join points determined
by this pointcut - in some bound (basic) object - are all the
method calls where the basic object is the callee, but not
the caller. In a basic object bound to Mutable, after each
field assignment performed, Mutable’s advice increments the
nAssigns counter, where each instance of Mutable has its
particular nAssigns counter. The only instance of Coordi-
nator (coord) accumulates the global statistics gathered by
Constant and Mutable. Basic objects intended to be con-
stant, whose field values should not be changed, must be
bound to the Constant aspect; and then, if a field assign-

superimposition Monitoring {
class Coordinator {

private int totCalls = 0;
private int totConCalls = 0;
private int totMutCalls = 0;
private int totMutAssigns = 0;

public void conMethodCount(int x) {
totConCalls += x; totCalls += x;
}
public void mutMethodCount(int x) {
totMutCalls += x; totCalls += x;
}
public void mutAssignCount(int x) {
totMutAssigns += x;
}

}

abstract aspect Common {
protected final static Coordinator coord =
new Coordinator();

protected int nCalls = 0;

abstract protected pointcut allExternalCalls();
after(): allExternalCalls() {
nCalls++;
}

}

aspect Constant(EM) extends Common {
protected pointcut allExternalCalls(): !cflowbelow
(within(Element)) && execution(* BC.* (..));

before(): set(* BC.*) &&
!cflow(initialization(BC.new(..))) {

System.out.println(”Constant err: illegal assignment”);
System.out.exit(-1);
}
after(): execution(* BC.EM(..)) {
coord.conMethodCount(nCalls);
}

}

aspect Mutable(EM) extends Common {
protected int nAssigns = 0;

protected pointcut allExternalCalls(): !cflowbelow
(within(Element)) && execution(* BC.* (..));

after(): set(* BC.*) {
nAssigns++;
}
after(): execution(* BC.EM(..)) {
coord.mutMethodCount(nCalls);
coord.mutAssignCount(nAssigns);
}

}

Figure 1: A monitoring superimposition.

Gary T. Leavens
55

ment is tried, the aspect prints an error message and finishes
the execution of the augmented program.

Each basic object augmented by Mutable will call coord’s
mutMethodCount and mutAssignCount methods, while
objects bound to Constant will call coord’s conMethodCount
method. The mutMethodCount and conMethodCount meth-
ods both update the totCalls common method call counter,
and, respectively, update their totMutCalls and totConCalls
individual counters. The mutAssignCount method updates
the totMutAssigns assignment counter. Of course, Moni-
toring could make more sophisticated use of the gathered
statistics. Generalizations of the same idea should be useful
for bookkeeping and debugging. In particular, superimposi-
tion is especially appropriate when the generic aspects have
more interaction, as when the statistics collected by each
generic aspect are combined.

The assumptions and desired results of the superimposition
are introduced stepwise in Section 5.2, where we verify the
correctness of Monitoring over the bounded buffer program
(seen in the Appendix), which is used as an example of a
basic program.

5.2 Superimposition over a Basic Program
In this subsection we want to apply the Monitoring superim-
position over the bounded buffer basic program, and verify
the correctness of the augmented program, which we get
as a result of their combination. We apply Mutable over
BoundedBuffer, binding BoundedBuffer’s finish method to
Mutable’s EM parameter (an abbreviation for End Method).
In addition, we apply Constant over Element, binding El-
ement’s finish method to Constant’s EM parameter. We
show the whole verification process stepwise, as introduced
in Section 4.

In the first step, we want to check that the basic program
itself is correct, i.e., satisfies its specification. In the Ap-
pendix, we show the BoundedBuffer class with all the Ban-
dera specification definitions interleaved with its code, where
all these definitions are needed for verifying that the basic
program satisfies BoundedBuffer’s specification when using
Bandera. In our approach this is already the result of ap-
plying the Spec superimposition of the bounded buffer to
the original version of the program. This is given as input
to Bandera, defining a new verification session with all the
information needed by Bandera for running the verification,
as shown in Section 3. We then run Bandera’s verification
to check if all the properties specified are satisfied. In this
example, we succeed to show that the basic program is cor-
rect, since it indeed satisfies its specification, completing the
first stage of the model checking.

In the second step, we want to check that the basic program
satisfies all the assumptions specified by the superimposi-
tion. For this purpose, we use an Asm verification super-
imposition. Asm has a verification aspect for each generic
aspect of Monitoring that assumes some property about the
basic class to be bound to it. In addition, Asm has a verifica-
tion aspect for the global properties assumed by Monitoring
about the basic program, such as invariant properties, which
are not connected to only a specific generic aspect.

superimposition MonitoringAsm {
aspect CommonAsm {
/**
* @observable
* LOCATION[beforeCall] beforeCallLoc;
* LOCATION[afterCall] afterCallLoc;
*/

void around(BC C): target(C) &&
execution(* BC.*(..)) {

beforeCallLoc:
proceed(C);
afterCallLoc:
}
}
properties {

alwaysFinishProp: forall [bc:BC].
{BC.EM.beforeCall(bc)} exists globally;

singleNoCallAfterFinishProp: forall [bc:BC].
{BC.*.beforeCall(bc)}
is absent after {BC.EM.afterCall(bc)};

}
}

Figure 2: Monitoring’s Asm superimposition

A property that both Mutable and Constant assume about
basic classes is that the basic method that is bound to the
EM parameter is called exactly once, where the EM param-
eter must be bound to the last method that is called in the
basic object. In the sequel, the basic method bound to EM
is called bound EM. Another property that both Mutable
and Constant assume is that bound EM is the last method
called in every instance of the basic class.

As explained in Section 3, in a usual Bandera verification
session we write the specification of the temporal proper-
ties to be checked in a separate specification file. However,
in SuperJ, we write this specification in a new properties
section of the verification superimposition. We have writ-
ten a preprocessor that supports this design decision, which
separates the definitions in the properties section from the
rest of the superimposition code and then prepares a new
verification session for running the verification.

The specification of the properties assumed by the generic
aspects need to use two location predicates that must be
defined in the basic classes. These two predicates are defined
in the verification aspect by the same advice, as shown in
Monitoring’s Asm superimposition, seen in Figure 2.

The single Asm verification aspect must be applied over
all the basic classes to be bound to Constant and Muta-
ble. In the bounded buffer example, they are applied, in
turn, over Element and BoundedBuffer. The two predicates
defined in the verification aspects are associated with two
locations in each method of every basic class bound to Con-
stant or Mutable (e.g. Element and BoundedBuffer). Each
of these predicates is true during execution when the aug-
mented program reaches the control points where they were
defined, i.e., in an execution path. The control points asso-
ciated with these predicates (beforeCall and afterCall) are
right before the first and after the last commands executed

Gary T. Leavens
56

in the basic methods of Element and BoundedBuffer.

After having defined the two predicates needed for the verifi-
cation, we can write the two properties that, if satisfied, will
ensure that the basic program satisfies the two assumptions,
which are required by both Mutable and Constant. These
two properties are written in temporal logic using BSL, and
appear in the properties section of the Asm superimposition.

The first property, which is called alwaysFinishProp, checks
that bound EM is eventually called. However, that is not
enough, since we want this method to be called exactly once,
and no other method to be called after that. Therefore, the
second property (singleNoCallAfterFinishProp) checks that
no basic method will be called after bound EM is called.

We put a ‘*’ character in the place where we should write
the name of the basic method where beforeCall was defined.
The ‘*’ character fits every method of the basic class. Un-
fortunately, BSL does not support this special ‘*’ character.
In a usual Bandera specification, we need to write separate
temporal properties for each method of the basic class. How-
ever, our preprocessor overcomes this limitation, generating
all the properties needed for every method of the basic class.

In the example seen, both Mutable and Constant shared
exactly the same requirements, so in this particular case
we can use the same Asm aspect for both generic aspects.
However, if the assumptions required by two distinct generic
aspects differ, then we obviously need to write them in two
separate aspects. Moreover, Monitoring does not assume
any global property about the basic program, so there is
no Asm aspect for checking if the global assumptions are
satisfied.

At this stage, we are able to apply the verification super-
imposition over the basic program. We then create a new
verification session for checking the superimposition assump-
tions, and then run the verification in Bandera.

After having demonstrated the second step of the new ver-
ification feature, we now go on to the third step, where we
check that the superimposition does not cancel any of the de-
sired results of the basic program. Initially, we need to apply
the superimposition over the basic program, e.g., Mutable
over BoundedBuffer and Constant over Element. Finally, we
apply the Spec verification superimposition - containing the
verification definitions needed for checking the basic pro-
gram’s specification - over the augmented program. Here
we do not show the Spec superimposition, since we show
its verification definitions interleaved with the code of the
bounded buffer in the Appendix, together with its specifi-
cation file. We then supply all the data that Bandera needs
for the desired check and run the verification. If the aug-
mented program passes the verification, then we are assured
that the superimposition does not cancel any desired result
of the basic program.

In the fourth and last step of the verification process, we
want to check that the augmented program has all the de-
sired results specified by the superimposition. For this pur-
pose, we apply the superimposition over the basic program
(Monitoring over the bounded buffer program), and then

superimposition MonitoringRes {
/**
* @observable
* EXP Eq: (totCalls == (totConCalls + totMutCalls));
*/

aspect GlobalRes {
/**
* @observable
* LOCATION[beforeConMC] beforeConMCLoc;
* LOCATION[afterConMC] afterConMCLoc;
*/

void around(Coordinator C): target(C) &&
execution(void Coordinator.conMethodCount(int)) {
beforeConMCLoc:
proceed(C);
afterConMCLoc:

}
/**
* @observable
* LOCATION[beforeMutMC] beforeMutMCLoc;
* LOCATION[afterMutMC] afterMutMCLoc;
*/

void around(Coordinator C): target(C) &&
execution(void Coordinator.mutMethodCount(int)) {
beforeMutMCLoc:
proceed(C);
afterMutMCLoc:

}
}

aspect ConstantRes {
/**
* @observable
* LOCATION[beforeConFieldSet] beforeConFieldSetLoc;
* LOCATION[afterConFieldSet] afterConFieldSetLoc;
*/

before(): set(* Element.*) &&
!cflow(initialization(Element.new(..))) {

beforeConFieldSetLoc:
}
after(): set(* Element.*) &&

!cflow(initialization(Element.new(..))) {
afterConFieldSetLoc:
}
properties {
totCallsEqBeforeProp: forall [c:Coordinator].
{Eq(c)} is universal
before{Coordinator.conMethodCount.beforeConMC(c) ||

Coordinator.mutMethodCount.beforeMutMC(c)};
totCallsEqAfterProp: forall [c:Coordinator].
{Eq(c)} is universal
after{Coordinator.conMethodCount.afterConMC(c) ||

Coordinator.mutMethodCount.afterMutMC(c)};
until{Coordinator.conMethodCount.beforeConMC(c) ||

Coordinator.mutMethodCount.beforeMutMC(c)};
conObjTermIfSetProp: forall [bc:BC].
{BC.*.afterConFieldSetLoc(bc)}
is absent after {BC.*.beforeConFieldSetLoc(bc)};

}
}

Figure 3: Monitoring’s Res superimposition

Gary T. Leavens
57

we apply the Res superimposition over the augmented pro-
gram, where the Res superimposition checks that all the
desired results of Monitoring are present in the augmented
program. The complete Res verification superimposition is
shown in Figure 3.

A desired result that the superimposition requires the aug-
mented program to satisfy is that the value of Coordina-
tor’s field totCalls must be always equal to the value of its
totConCalls field plus the value of its totMutCalls field,
except when the augmented program is executing one of
the two methods of Coordinator that change the values of
these fields (conMethodCount and mutMethodCount). We
need to define four predicates in the Coordinator class be-
fore specifying the required property in BSL. In addition, an
instance predicate must be also defined, stating the desired
result itself. Thus, the Res aspect associated with Moni-
toring must contain the definition of the instance predicate,
and two advice declarations defining the other four predi-
cates needed.

Moreover, Constant has one desired result and Mutant has
none. The desired result of Constant is that the augmented
program terminates if a field assignment is tried in the basic
object bound to Constant. Therefore, we must write a Res
aspect associated with Constant. Mutable does not need a
separate Res aspect beyond the global required result of the
Monitoring superimposition.

The four predicates - defined by the global Res aspect - are
associated with the augmented program’s control points be-
fore and after the conMethodCount and mutMethodCount
method, respectively. The Eq instance predicate defines the
property that must be satisfied in the augmented program.
The two predicates - defined by the Res aspect associated
with Constant - will be true before and after a field assign-
ment is tried in the basic object bound to Constant (an
instance of Element).

We write the specification of the superimposition desired re-
sults, using BSL, in the properties section. In the two first
properties seen, we specify that the Eq property must hold
from the beginning of the execution of the augmented pro-
gram until either conMethodCount or mutMethodCount is
called, and after finishing to execute either one of them un-
til calling one of them again. The third temporal property
specifies that if the augmented object bound to Constant
(an instance of Element) reaches the control point right be-
fore a field assignment, then it will not reach the control
point right after the field assignment.

Above, we have seen a demonstration of the complete pro-
cess of verifying the correctness of a superimposition over
a basic program. The augmented program that we get
from applying Monitoring over the bounded buffer program
passes all the stages of the verification process. However,
some slight changes in the bounded buffer program could
cause it to not satisfy the assumptions required. For ex-
ample, if we substitute an infinite loop in place of the for
loops of InOut1 or InOut2 that take and add an element
from the buffer one hundred times, the model checking pro-
duces a counter-example and shows incorrectness. This is
because the finish methods of the buffer and its elements

would never be called, violating one of the assumptions of
the Monitoring superimposition.

If the Monitoring superimposition could change the indices
of the buffer of the underlying bounded buffer program, a
counter-example would be produced when Spec were model
checked for the augmented program (in stage 3), because
the assertions involving the indices would be violated.

6. DISCUSSION: SUPERIMPOSITION VAL-
IDATION

The separation of verification annotations into the different
verification superimpositions described above allows a clean
application of instances of model checking for combinations
of superimpositions and basic programs. Note that when
a verification superimposition is woven either with a new
basic program or with the augmented program obtained af-
ter weaving the application superimposition and the basic
program, the weaving process binds classes, methods, fields,
and pointcuts of the generic verification superimposition to
those of the application. No change is needed in Asm or
Res themselves. Of course, the specification of the new ba-
sic program, Spec needs to be produced, and expressed as a
verification superimposition.

Once the bindings have been determined, the entire pro-
cess is in principle automatic, ignoring practical restrictions
of the tools involved. When a superimposition is woven
with a basic program, SuperJ’s preprocessor generates As-
pectJ code, and AspectJ’s preprocessor is used in the mode
which generates source Java code. Then for each of the
four steps described, the appropriate verification superim-
position is woven with the basic or augmented program, as
appropriate, and the processing of SuperJ and AspectJ are
again activated, to obtain ‘Bandera-ready’ Java. Bandera
then is applied to generate input to a model checker such as
SMV, and the algorithmic model-checking either succeeds
in verifying or generates a counter-example.

Therefore, although it might seem expensive to model check
every combination of a superimposition with a basic pro-
gram, this is in fact a viable alternative to the inductive
(non-algorithmic and therefore very difficult) proof that a
superimposition is always correct. The time-consuming, and
difficult manual creation of the BSL annotations only needs
to be done once for each superimposition, even though the
model checker is used for each combination.

Such an alternative is analogous to the idea of translation
validation, first seen in [13], where assertions are generated
and automatically checked whenever a compiler is applied
to a source program. The correctness of the assertions im-
plies that for this activation the translation of the compiler
is correct. This is instead of a full verification of the cor-
rectness of the compiler, which is too difficult for non-toy
compilers. As here, the key to its practicality is that the
generation and verification of the needed assertions is com-
pletely automatic for each compilation, and only takes sec-
onds to perform. Similar ideas are seen in some versions of
proof-carrying code, that show there are no memory leaks
for a particular instance of an applet.

In this paper we have shown how superimposition validation

Gary T. Leavens
58

can be similarly applied whenever an application superim-
position is woven, if the needed verification superimpositions
have been prepared. The other alternative - of a full cor-
rectness proof for a superimposition - is, of course still a
desirable research goal. However, due to the inductive proof
involved, doubt remains that such results can be applied in
practice. In any case, the direction seen here does provide
the first pathway to practical machine proofs for combina-
tions of aspects and superimpositions with basic programs.

7. REFERENCES
[1] R. Back and K. Sere. Superposition refinement of

reactive systems. Formal Aspects of Computing,
8(3):324–346, 1996.

[2] L. Bougé and N. Francez. A compositional approach
to superimposition. In ACM Symposium on Principles
of Programming Languages, pages 240–249, Jan 1988.

[3] K. Chandy and J. Misra. Parallel Program Design - a
Foundation. Addison-Wesley, 1988.

[4] N. Francez and I. Forman. Interacting Processes.
Addison-Wesley, 1996.

[5] J. Hatcliff and M. Dwyer. Using the Bandera tool set
to model-check properties of concurrent Java software.
In CONCUR 2001, LNCS 2154, pages 39–58, Aug
2001.

[6] J. Hatcliff and O. Tkachuk. The Bandera tools for
model-checking Java source code: A user’s manual.
Technical report, Kansas State University,
Department of Computing and Information Sciences,
March 2001. http://www.cis.ksu.edu/%7Esantos/
bandera/tut/tut-html.tar.gz.

[7] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. International
Journal on Software Tools for Technology Transfer
(STTT), 2(4), Apr 2000.

[8] G. J. Holzmann and M. H. Smith. The model checker
SPIN. IEEE trans. SE, 23(5):279–295, 1997.

[9] R. Iosif and R. Sisto. dspin: A dynamic extension of
spin. In Proc. of the 6th SPIN Workshop, LNCS 1680,
pages 261–276, Sep 1999.

[10] H.-M. Järvinen, R. Kurki-Suonio, M. Sakkinen, and
K. Systä. Object-oriented specification of reactive
systems. In Proceedings ICSE’90, pages 63–71. IEEE
Press, 1990. http://disco.cs.tut.fi.

[11] S. Katz. A superimposition control construct for
distributed systems. ACM Trans. on Programming
Languages and Systems, 15(2):337–356, Apr 1993.

[12] K. L. McMillan. Symbolic Model Checking: An
Approach to the State Explosion Problem. Kluwer
Academic, 1993.

[13] A. Pnueli, O.Shtrichman, and M.Siegel. The code
validation tool(cvt) - automatic verification of a
compilation process. Software Tools for Technology
Transfer, 2:192–201, 1999.

[14] Z. Shtadler and O. Grumberg. Network grammars,
communication behaviors and automatic verification.
In Proc. of the international workshop on Automatic
verification methods for finite state systems, pages
151–165. Springer-Verlag, 1990.

[15] M. Sihman and S. Katz. Superimposition and
aspect-oriented programming. to appear in BCS
Computer Journal. Available at
http://www.cs.technion.ac.il/~katz/cj.ps.

[16] M. Sihman and S. Katz. A calculus of
superimpositions for distributed systems. In
Proceedings of AOSD 2002, pages 28–40. ACM Press,
Apr 2002.

APPENDIX
A. BOUNDED BUFFER EXAMPLE
A.1 Introduction
The bounded buffer example is a multi-threaded Java pro-
gram introduced in [6] as an example for demonstrating a
verification session in Bandera. The BoundedBuffer class
has three methods: add(Element), take(), isEmpty(). When
the buffer is not full, the add method adds an Element ob-
ject to the buffer, which is defined as a fixed array of El-
ement objects. The take method takes an Element object
(element) from the buffer, if the last is not empty. The
isEmpty method returns true when the buffer is empty, and
false otherwise. The constructor of BoundedBuffer receives
(as parameters) the size of the buffer array and the num-
ber of threads running (using the bounded buffer), and then
initializes all the object fields.

The other classes that appear in this example are: Com-
pleteBoundedBuffer, InOut1, InOut2 and Element. The
first is the main driver class that runs the program, creating
two BoundedBuffer instances and single instances of InOut1
and InOut2. The InOut1 instance is a thread that contains
a finite loop where it takes an element from the first buffer
and adds it to the second, while the InOut2 instance has an
identical finite loop that takes an element from the second
buffer and adds it to the first buffer. CompleteBounded-
Buffer creates two elements and adds them respectively to
the first and second buffers, where an element contains an
Object instance as its only field, and has two methods that
allow changing and getting the Object instance that it con-
tains. Both BoundedBuffer and Element classes contain a
finish method that performs computation destined to be
executed when the program finishes.

Five properties are checked in the bounded buffer exam-
ple. The BoundedBuffer’s constructor parameter (for the
size of its array) must be a positive number, which is spec-
ified by the PositiveBound assertion. The add method al-
ways adds the element in correct position, which is specified
by the addPost assertion. The buffer indices (head and
tail BoundedBuffer fields) always stay in range, which is
specified by the temporal property IndexRange, which uses
the IndexRange instance predicate. A full buffer eventu-
ally becomes non-full, which is specified by the FullToNon-
Full temporal property, which uses the Full instance pred-
icate. An empty buffer must have an element added to it
before an element is taken from it, which is specified by

Gary T. Leavens
59

the NoTakeWhileEmpty temporal property, which uses the
Empty instance predicate and the takeReturn and addIn-
voke location-sensitive predicates.

A.2 Source Code
public class CompleteBoundedBuffer {
public static void main (String [] args) {

BoundedBuffer b1 = new BoundedBuffer(3,2);
BoundedBuffer b2 = new BoundedBuffer(3,2);
b1.add(new Element(new String(”1”)));
b2.add(new Element(new String(”2”)));
(new InOut1(b1,b2)).start();
(new InOut2(b2,b1)).start();

}
}

class Element {
Object obj;
Element(Object o) {· · · }
public void set(Object o) {· · · }
public Object get() {· · · }
public void finish() {· · · }
}

/**
* @observable
* EXP Full: (head == tail);
* EXP Empty: head == ((tail +1) % bound);
* EXP IndexRange: (head >= 0 && tail >= 0 &&
* head < bound && tail < bound);
*/

class BoundedBuffer {
Element [] buffer ;
int bound ;
int head , tail ;
int nThreadsRun, nThreadsEnd = 0;

/**
* @assert
* PRE PositiveBound: (b > 0);
*/
public BoundedBuffer(int b, int n) {· · · }

/**
* @assert
* POST addPost: (head ==0) ? buffer [bound -1]==o :
* buffer [head -1]==o;
* @observable
* INVOKE addInvoke;
*/
public synchronized void add(Element o) {· · · }

/**
* @observable
* RETURN takeReturn;
*/
public synchronized Element take() {
· · ·
successTake:
· · ·

}

public synchronized boolean isEmpty() {· · · }

public synchronized void threadFinished() {
if (++nThreadsEnd == nThreadsRun) {

finish();
}

}

public synchronized void finish() {· · · }
}

class InOut1 extends Thread {
BoundedBuffer in ,out ;
public InOut1(BoundedBuffer in, BoundedBuffer out) {· · · }
public void run() {
· · ·
for(int i=0; i<100; i++) {· · · }
in .threadFinished();
out .threadFinished();

}
}

class InOut2 extends Thread {
BoundedBuffer in ,out ;
public InOut2(BoundedBuffer in, BoundedBuffer out) {· · · }
public void run() {
· · ·
for(int i=0; i<100; i++) {· · · }
in .threadFinished();
out .threadFinished();

}
}

A.3 Specification
PositiveBoundAndPost: enable assertions

{PositiveBound, addPost};

IndexRange: forall[b:BoundedBuffer].
{IndexRange(b)} is universal globally;

FullToNonFull: forall[b:BoundedBuffer].
{!Full(b)} responds to {Full(b)} globally;

NoTakeWhileEmpty: forall[b:BoundedBuffer].
{BoundedBuffer.take.takeReturn(b)} is absent
after {BoundedBuffer.Empty(b)}
until {BoundedBuffer.add.addInvoke(b)};

Gary T. Leavens
60

Understanding AOP through the Study of Interpreters

Robert E. Filman
Research Institute for Advanced Computer Science

NASA Ames Research Center, MS 269-2
Moffett Field, CA 94035

rfilman@mail.arc.nasa.gov

ABSTRACT
I return to the question of what distinguishes AOP lan-
guages by considering how the interpreters of AOP lan-
guages differ from conventional interpreters. Key elements
for static transformation are seen to be redefinition of the
set and lookup operators in the interpretation of the lan-
guage. This analysis also yields a definition of crosscutting
in terms of interlacing of interpreter actions.

1. INTRODUCTION
I return to the question of what distinguishes AOP lan-
guages from others [12, 14].

A good way of understanding a programming language is by
studying its interpreter [17]. This motif has been recently
emphasized in recent work by Masuhara and Kiczales [21],
and is a theme of the work on the Aspect Sandbox [22,
30]. This position paper suggests studying the foundations
of Aspect-Oriented Languages by considering what changes
have to be made to conventional language interpreters to get
aspect behaviors.

Interpreters express meaning. Compilers can be understood
as optimizations that enable more efficient renderings of the
work of interpreters, without changing the underlying mean-
ing of programs. A compiler that builds a “new program”
from several fragments can be understood as a substitute for
the dynamic, run-time building of that new program from
fragments. Thus, while compilation techniques for AOP
(e.g., partial evaluation as weaving [22]) are quite worth-
while activities, they do address the question of the nature
of AOP.

2. A GENERIC INTERPRETER
Consider the pseudo-code for interpreter for A Generic Pro-
gramming Language (AGPL) in Figure 1. This is a “mean-
ing” function over an “expression” (an object in expression
space), and an “environment,” a structure that maps names
to values, perhaps with a characterization of what kind of

mapping is of interest (e.g., variables vs. functions). The
pseudo-code includes only enough detail to convey the ideas
I’m trying to express.

Of course, a real implementation would need implementa-
tions of the helper functions. In general, the helper functions
on environments—lookup, set, and extend—can be manip-
ulated to create a large variety of different language fea-
tures. The most straightforward implementation makes an
environment a set of symbol–value pairs (a map from sym-
bols to values) joined to a pointer to a parent environment.
Lookup finds the pair of the appropriate symbol, (perhaps
chaining through the parent environments in its search), re-
turning its value; set finds the pair and changes its value
field; and extend builds a new map with some initial val-
ues whose parent is the environment being extended. In
this model, lookup and set are “reference assignment” pairs:
they act like elements setting and retrieving the value of a
location. Programming languages vary by their use of chain-
ing in environments. Most languages have some notions of
global environment (a parent of or shared by all elements)
and of constant elements (ones that don’t change, such as a
global function being assigned to a particular value.) Some
languages may use the name being looked up or set as a
structured object that guides the search in the environment
space. More formal approaches would substitute a monad
for the state expressed in the environment, but that level of
formality would only obscure the discussion here.

I have provided set and lookup types (e.g., VARIABLE and
FUNCTION) so that the implementations of set and lookup
can be manipulated to separate things such as the function
and variable space (as in Common Lisp [26]) or to conflate
them (as in Scheme ([5]). By providing a richer notion of
“set,” one can create languages that export and restrict vis-
ibility; by providing a richer notion of “lookup” one can get
inheritance. Most appropriate for doing independently cre-
ated aspects (as opposed to aspects merely defined in the
same “file”) is the idea that certain varieties of environ-
ment.set change or extend some root (or at least non-leaf)
environment.

Focusing on set and lookup corresponds to the importance
of naming in practical programming languages. Much of the
art of programming language design is the rules for associat-
ing names with meanings and groupings, and the visibility
of these names; much of the act of programming is invoking
named entities, dynamically associating names with values,
and retrieving the values of names.

61

/* Compute the meaning of an expression, exp, given a environment, env

<0> I cheat by using the stack of the machine interpreting meaning as the stack for meaning. A richer (and perhaps more appropriate)
system can be build by maintaining our own stack, allowing searches within that stack for elements like catch/throw and dynamic
calling scope.

<1> The meaning of a literal expression is the constant of the expression. Numerals, strings, and quoted expressions are literals.

<2> If exp is a variable, look up its meaning in the environment with respect to variable lookup.

<3> If exp is a primitive operator (one that executes on the underlying machine, like “plus” or “print,”) evaluate the meanings of its
arguments in the current environment, assemble them into a “value list,” and invoke the primitive operator on that list.

<4> If exp is some form of language-explicit interpreter control (like an “if” or “switch” statement), compute the meaning of the
condition of the expression, and then return the meaning of the appropriate choice element (like the “else part” or the “default
case.”)

<5> If exp is an assignment statement, change the environment appropriately. The assignmentType covers the varieties of assignments
one might want to make—for example, assigning to a variable, defining a local function, defining the fields of a record, or defining
a new global function.

<6> Call a function. Find the body associated with that function. Build a new environment, based on the original environment and
perhaps some environmental information of the definition itself, which binds the formals of the called function to the values of the
actual parameters, and compute the meaning of the body in this new environment. I could have generalized this a bit beyond call
by value, but it’s not worth the trouble for the ideas I’m trying to convey.

*/
meaning (exp, env) = /* <0> */

typecase (exp) :
literal (exp) -> exp.literalValue /* <1> */
variable (exp) -> env.lookup (exp.variableName, ’VARIABLE) /* <2> */
primop (exp) -> apply (exp.primop, meaningList (exp.args, env)) /* <3> */
conditional (exp) -> meaning (exp.conditionChoice (meaning (exp.condition, env)), env) /* <4> */
assignment (exp) -> env.set (exp.variableName, meaning(exp.value, env), exp.assignmentType) /* <5> */
funcall (exp) -> let definition = env.lookup (exp.functor, ’FUNCTION) /* <6> */

in meaning (definition.body,
env.extend (definition.formals,

definition.environment,
meaningList (exp.args, env)))

Figure 1: AGPL interpreter

3. CROSSCUTTING AND BLAME
One can assign credit (or blame) to every external action
(a primop) or manipulation in the interpreter. Each action
in the interpreter is associated with a particular expression,
the most immediate cause for that action. One can divide
expressions into “modules.” In general, actions follow the
structure of expressions, and actions tend to proceed within
a module. I call this overall notion of the corresponding
continuity in the expression space and the action sequence
locality.

We have crosscutting when sequences of actions intermix
from different modules. In conventional languages crosscut-
ting arises most often as explicit invocation: an expression
in one module names an entry of another module, and the
system transfers control to that other module. Some conven-
tional languages allow other crosscutting mechanisms. For
example, in languages with function pointers or dynamic
binding, the value of a dynamic environmental element can
be used as an expression for further evaluation. Inheri-
tance mechanisms also combine the code of several mod-
ules (equivalent to modifying the lookup function to search
parent environments). In some languages, type declarations
can have the effect of remotely modifying behavior. (Such
mechanisms lie between the explicit invocation of a Fortran
subroutine call and AOP.) Exception generation and han-
dling can cause jumps in the execution sequence. One can
also define the system in a “feature specific” manner, so
that user-supplied code always runs in some specific circum-
stance. These latter mechanisms cause crosscutting.

The novelty of AOP is that the crosscutting mechanisms are
implicit (oblivious) and general-purpose. That is, examina-
tion of the source code doesn’t indicate that the crosscutting
takes place. Instead, some external mechanism performs the
surgery on the execution process. Modern AOP demands
that the crosscutting mechanism be “general purpose,” al-
lowing modifying any code with respect to the structure
of that code, not just a particular semantics. (This con-
trasts with some of the earlier special-purpose “aspect” lan-
guages [20].) Thus, a system that allows the user to define,
say, “security code” to be invoked in particular contexts is
a framework, not an AOP language.

4. MODIFYING THE INTERPRETER
The purpose of this exercise is to ask what does one have
to do to make AGPL aspect-oriented? Here we are con-
cerned with general aspect behavior, not a hook for solving
a particular problem. That is, we want to be able to invoke
arbitrary user code at joint points, not merely a selection
from some predefined or parameterized behaviors.

We first note that modifying the interpreter for the spe-
cific requirements of a particular aspect language can always
yield any (implementable) aspect language. Most generally
this is true because any implemented aspect language has
an interpreter. More specifically, every aspect language de-
fines certain elements or events as joint points, places where
it is possible to associate aspect behavior with the underly-
ing code. We can change the interpreter to pause at every
such join point and consult the (perhaps dynamic) dictio-
nary of current aspects to see which apply. (And, as many

62

have observed, “Anything you can do I can do meta”—in
a meta-interpreter architecture, we can delay to the meta
level the decision about whether each execution point is a
join point [4, 27].) Given a rich enough language for describ-
ing the desired aspect conditions, determining the places
that need modification (effectively, the shadow points in the
program or the execution points of such shadows in the in-
terpreter) may be an interesting problem [15, 22].

The problem with such an analysis is that changing the body
of the interpreter is the way to implement any conceivable
language. We’d prefer to restrict the changes to more neatly
describe the aspect space. More specifically, the problem is
not so much describing mechanisms to implement aspect
languages but, ideally, mechanisms that implement only as-
pect languages, or, more realistically, mechanisms whose pa-
rameterization approximates the space of aspect languages.

4.1 Advising a function
More than one research group has provided its interpreta-
tion of how best to implement AOP. Perhaps the most prim-
itive mechanism, common to most approaches is “advice”
(wrapping) [28]. With advice, the definition of a function
is embedded inside other behavior, which can execute be-
fore, after, or around the original function. Systems that
allow wrapping include Composition Filters [3], OIF [13],
AspectJ [18], and JAC [25]. A structurally consistent way
to get advice is to change the definition of functions to in-
clude advice. To advise a single function F with advice A,
creating A(F), we could find the pair that joins F to its
definition, and replace its value by A(F).

More commonly, we want to advise not one function, but
an entire set of them, particularly the ones that pass some
predicate test. That is, we want to quantify over the func-
tion space. An AOP system can be built with either an
open-world or closed-world assumption. Closed world sys-
tems know at the start of execution all the code that might
run in the system. Thus, a closed-world system could im-
plement quantified advice by finding all the function def-
initions and redefining the ones that need the advice. An
open-world system can dynamically acquire new code. In an
open-world system, we also need to modify environment.set
so that function definition and redefinition work with the
advice mechanism—defining or redefining an advice-worthy
function, must make the setting include the advice.

Note that there is also a natural symmetry between set and
lookup. Anything one imagines doing at “set” time can be
done at “lookup” time, so long as sufficient information is
retained to perform the action.

4.2 Advising a field
Some AOP approaches (e.g., Hyper/J [24]) treat object fields
as combinations of other elements. For example, one has the
ability to externally state that field f in object r is to be
the same as field f ′ in object r′ when r and r′ are regarded
as parts of the definition of the same object, or that f in
r and f in r′ are not the same, even when r is merged
with r′. Treating a variable as a combination of other ele-
ments in some sense, is symmetric to the functional advice
problem. With functional advice, we are working in func-
tion space and know only a few combinators (e.g., before,
after, and around), though others are easy to imagine (for

example, consider mixins in Flavors [23]). With variables,
we’re working in variable space, and can think of a variety
of combinators—for example, the “same as” and “different”
examples, above, “union” for set-valued fields, “append” for
sequence valued ones, and so forth.

4.3 Program transformation
Several authors have argued for doing AOP by program
transformation [6, 11, 15, 16, 19]. From the point of view of
an interpreter, program transformation can be realized by
performing the transformation steps as part of the function
definition process. (This is, of course, a somewhat heavy-
handed interpretation of transformation.)

4.4 Frameworks
Frameworks (e.g., [8]) combine functional wrapping with
wrappers specific to framework decision points. This can
be seen as a structured step in function assignment. How-
ever, frameworks more naturally resemble modifying the in-
terpreter to the special case doing additional behavior on
function calling.

4.5 Field and method insertion
Some AOP approaches (e.g., [18]) allow the introduction of
additional fields and methods. Once again, these are exam-
ples of changing the semantics of environment setting.

4.6 Dynamic flow
There have been several proposals for aspects that pay at-
tention to the dynamic behavior of program execution. For
example, aspect invocation in AspectJ can be predicated
on what’s in the calling history (cflow) [18]. At the first
FOAL workshop, we argued for generally treating AOP as
generically reacting to execution events [15], a theme also
expressed by others [7, 10, 9, 16, 29]. The effects of such
proposals are more problematic for interpreter transforma-
tion. Cflow can be accommodated if we create our own stack
for the interpreter, rather than using the implicit stack of
the system executing the interpreter and search that stack at
appropriate join points. Alternatively we could change the
definitions of functions to leave appropriate markers lying
around to be recognized at the right instants. These require
some structural changes to the interpreter. Similarly, event
reaction can be seen to be requiring pervasive interpreter
change.

5. CLOSING REMARKS
In this position paper, I’ve explored the idea that the changes
required in “ordinary” interpreters to realize AOP languages
reveals elements about the essence of AOP languages. Many
(particularly the static varieties) of AOP mechanisms can be
seen as redefinition of the storage or retrieval actions in the
interpreter, often at record and method definition time. Join
point definitions that span multiple locations require the def-
inition, storage or retrieval mechanisms to “quantify” over
the space of candidate points. I’ve also defined crosscutting
in terms of the mixture of modules causing actions to exe-
cute, and identified AOP with that crosscutting that lacks
explicit or implicit mention in the module code.

6. REFERENCES
[1] Workshop on Advanced Separation of Concerns

(ECOOP 2001), June 2001.

63

[2] FOAL 2002: Foundations of Aspect-Oriented
Langauges (AOSD-2002), Mar. 2002.

[3] L. Bergmans and M. Akşit. Composing crosscutting
concerns using composition filters. Comm. ACM,
44(10):51–57, Oct. 2001.

[4] N. M. N. Bouraqadi-Saâdanii and T. Ledoux. How to
weave? In Workshop on Advanced Separation of
Concerns (ECOOP 2001) [1].

[5] W. Clinger and J. Rees. Revised4 report on the
algorithmic programming language scheme. LiSP
Pointers, 4(3), 1991.

[6] G. A. Cohen. Recombing concerns: Experience with
transformation. In Workshop on Multi-Dimensional
Separation of Concerns (OOPSLA 1999), Nov. 1999.

[7] T. Colcombet and P. Fradet. Enforcing trace
properties by program transformation. In Proc. 27th
ACM Symp. on Principles of Programming Languages,
pages 54–66, Jan. 2000.

[8] C. A. Constantinides, T. Elrad, and M. Fayad.
Extending the object model to provide explicit
support for crosscutting concerns. Software Practice
and Experience, 32(7):703–734, May 2002.

[9] K. De Volder, J. Brichau, K. Mens, and T. D’Hondt.
Logic meta-programming, a framework for
domain-specific aspect programming languages.
http://www.cs.ubc.ca/k̃dvolder/binaries/cacm-aop-
paper.pdf.

[10] K. De Volder and T. D’Hondt. Aspect-oriented logic
meta programming. In P. Cointe, editor, Meta-Level
Architectures and Reflection, 2nd International
Conference on Reflection, volume 1616 of LNCS,
pages 250–272. Springer Verlag, 1999.

[11] K. De Volder, T. Tourwé, and J. Brichau. Logic meta
programming as a tool for separation of concerns. In
Workshop on Aspects and Dimensions of Concerns
(ECOOP 2000), June 2000.

[12] R. E. Filman. What is aspect-oriented programming,
revisited. In Workshop on Advanced Separation of
Concerns (ECOOP 2001) [1].

[13] R. E. Filman, S. Barrett, D. D. Lee, and T. Linden.
Inserting ilities by controlling communications.
Comm. ACM, 45(1):116–122, Jan. 2002.

[14] R. E. Filman and D. P. Friedman. Aspect-oriented
programming is quantification and obliviousness. In
Workshop on Advanced Separation of Concerns
(OOPSLA 2000), Oct. 2000.

[15] R. E. Filman and K. Havelund. Source-code
instrumentation and quantification of events. In
AOSD-FOAL02 [2], pages 45–49.

[16] P. Fradet and M. Südholt. AOP: Towards a generic
framework using program transformation and
analysis. In Workshop on Aspect Oriented
Programming (ECOOP 1998), June 1998.

[17] D. P. Friedman, C. T. Haynes, and M. Wand.
Essentials of programming languages (2nd ed.).
Massachusetts Institute of Technology, 2001.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. Getting started with
AspectJ. Comm. ACM, 44(10):59–65, Oct. 2001.

[19] G. Kniesel, P. Costanza, and M. Austermann.
JMangler—a framework for load-time transformation
of Java class files. In First IEEE Int’l Workshop on
Source Code Analysis and Manipulation (SCAM
2001), Nov. 2001.

[20] C. V. Lopes. D: A Language Framework for
Distributed Programming. PhD thesis, College of
Computer Science, Northeastern University, 1997.

[21] H. Masuhara and G. Kiczales. A modeling framework
for aspect-oriented mechanisms; draft.
http://www.cs.ubc.ca/

[22] H. Masuhara, G. Kiczales, and C. Dutchyn.
Compilation semantics of aspect-oriented programs. In
AOSD-FOAL02 [2], pages 17–26.

[23] D. A. Moon. Object-oriented programming with
flavors. In Proc. ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 1–8. ACM Press, Nov. 1986.

[24] H. Ossher and P. Tarr. The shape of things to come:
Using multi-dimensional separation of concerns with
Hyper/J to (re)shape evolving software. Comm. ACM,
44(10):43–50, Oct. 2001.

[25] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
JAC: A flexible solution for aspect-oriented
programming in Java. In A. Yonezawa and
S. Matsuoka, editors, Metalevel Architectures and
Separation of Crosscutting Concerns 3rd Int’l Conf.
(Reflection 2001), LNCS 2192, pages 1–24.
Springer-Verlag, Sept. 2001.

[26] G. Steele Jr. Common Lisp: The Language, 2nd
Edition. Digital Press, Bedford, Massachusetts, 1990.

[27] G. T. Sullivan. Aspect-oriented programming using
reflection and meta-object protocols. Comm. ACM,
44(10):95–97, Oct. 2001.

[28] W. Teitelman and L. Masinter. The Interlisp
programming environment. Computer, 14(4):25–34,
Apr. 1981.

[29] R. J. Walker and G. C. Murphy. Joinpoints as ordered
events: Towards applying implicit context to
aspect-orientation. In Workshop on Advanced
Separation of Concerns in Software Engineering
(ICSE 2001), May 2001.

[30] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. In AOSD-FOAL02 [2], pages 1–8.

64

Adding Superimposition To a Langua ge Semantics
— Extended Abstract —

Ralf Lämmel1� 2
1 CWI, Kruislaan 413, NL-1098 SJ Amsterdam

2 Vrije Universiteit, De Boelelaan 1081a, NL-1081 HV Amsterdam

Ralf.Laemmel@cwi.nl

Abstract

Given the denotationalsemanticsof a programminglanguage,we
describea generalmethodto extendthe languagein a way that it
supportsa form of superimposition— just in the senseof aspect-
orientedprogramming.In theextendedlanguage,theprogrammer
cansuperimposeadditionalor alternativefunctionality(akaadvice)
ontopointsalongtheexecutionof a program.Adding superimpo-
sition to a languagesemanticscomesdown to threesteps:(i) the
semanticfunctionsareelaboratedto carryadvice;(ii) thesemantic
equationsare turnedinto ‘reflective’ style so that they canbe al-
teredat will; (iii) a constructfor binding adviceis integrated.We
illustratetheapproachby representingsemanticsdefinitionsasin-
terpretersin Haskell.

1 Intr oduction

Onemight saythattheessenceof anaspect-orientedprogramming
(AOP)languagelike AspectJis thatit is anamalgamatedlanguage
in thefollowingsense.Besidesordinaryobject-orientedexpressive-
ness,onecanalsowrite codethatsuperimposesadviceontopoints
alongtheexecutionof object-orientedfunctionality. An important
classof join pointsaremethodcalls. Onecangive a precisedefi-
nition of this sort of AOP on the basisof a formal semantics[8].
(Thereare further modelsof AOP, e.g., the Hyper/J-like model,
which wewill notaddressin thispaper.)

Question:Cantheperceptionof ‘superimposition’becapturedin a
language-parametricmanner, that is, without talking aboutmethod
calls, or other constructs,without commitmentto a specific lan-
guage?Therehasbeenwork on studyingsomeformsof superim-
position(say, AOP)at a fundamentallevel [3, 6, 1, 4] on thebasis
of specificcomputationalmodels.However, we seekan approach
thatappliesimmediatelyto actualprogramminglanguages.

In this extendedabstract,we describea generalmethodto addsu-
perimpositionto the denotationalsemanticsof a language. The
overall approachis describedin Sec.2. An illustrative example
is developedin full detail in Sec.3. Thedesignspacefor our form
of superimpositionis briefly scannedin Sec.4. Relatedwork is
discussedin Sec.5, andthepaperis concludedin Sec.6.

2 The overall approach

Supposeweconsidera semanticfunctionof thefollowing type:� ����� �
: Si � Di

Here,Si is asyntacticaldomain,andDi is theassociateddomainof
semanticmeanings,saydenotations. Semanticfunctionsarespeci-

fiedusingcasediscriminationonSi while themeaningof asyntacti-
cal form is expressedin termsof themeaningsof its subterms(aka
compositionality). Let us considera specificsemanticequation.
Without lossof generality, we pick up an equationfor a construct
with onesubconstruct:

� �
C x

� ���
f
� �
x
� �

Here,C x is thesyntacticalpatternathand,and f isanoperationthat
turnsthedenotationof x into thedenotationof C x. (Weusecurried
functionapplication.)Addingsuperimpositionis now performedin
threesteps:

1. Thesemanticfunctionsareelaboratedto carryadvice.

2. Denotationsaremade‘reflective’ sothatthey canbealtered.

3. A constructfor bindingadviceis integrated.

Thetypeof theabovesemanticfunctionis adaptedasfollows:
� ����� �

: Si � R Di

Here,R is adomainconstructorto addaregistrywith superimposed
adviceto domainsof ordinarydenotations.Therearea few options
for theactualtypeof theregistry. In essence,theregistry is a trans-
former for reflective denotations.To obtaina modularsemantics,
we assumethat R is a monad. Dependingon the binding policy
andother language-designdecisions,R could be the environment
monad,thestatemonad,or a combinationof both.

Thesemanticequationfrom above is adaptedasfollows:
� �
C x

� �	�

C x� :-

�� �
x
� ��
�
��

λx��� return

f x�����

Theoccurrencesof “

�
��

” andreturnpoint to monadicstyle. (We
usethe commonconvention that the monadoperator, which lifts
valuesto computations,is denotedby return, whereasthe monad
operator, which appliesa value consumerto a computation,is
denotedby “

�
��
”.) The semanticequationscan be turned into

monadicstyleby a systematictransformation.It is avoidableto in-
troducemonadicstyle if we fix thebindingpolicy for advice,e.g.,
by explicitly passingaroundanenvironmentfor theregistry.

The occurrenceof the infix operator“ :- ” in the above equation
points to reflective style. Both the operator“ :- ” andthis useof
the term ‘reflective style’ areinventionsof thepresentpaper. The
operator“ :- ” shapesthe reflective denotationasfollows. If d is
the original denotationfor a term t, anddm is d in monadicstyle,
then the reflective denotationis of the form t :- dm. This is read
as‘by default, at t do dm’. Therearea few optionsfor theprecise
definitionof “ :- ”. In essence,theoperatordoesnothingbut appli-
cationof denotationtransformersasprovidedby theregistry. That

Gary T. Leavens
65

is, giventheregistry r, the termt, andthedenotationd, theopera-
tion t :- d appliesr to t andd. Sobasically, eachsemanticequation
canberevisedvia theregistry r.

It remainsto performthethird stepfrom above,thatis, theintegra-
tion of a constructfor bindingadvice.This comesdown to adding
oneequationfor

� ����� �
. Therearea few optionsdependingon the

favouredbindingpolicy andotherlanguage-designdecisions.One
option is to hold superimposedadvicein an environmentwith a
bindingscopethatis local to agivenprogramfragment.Thatis:� �

h adaptst
� ���

λh��� � � t � � h

We call h andh� hooks. The old hook h� is replacedby the new
hook h. We say that h adaptsthe programfragmentt. The de-
notationtransformersaccomplishedby h will transformthe deno-
tationsdeterminedfor t andits subconstructs.(We try not to use
the AOP term ‘advice’ for h becauseh accomplishesboth the ad-
vicecodeandthedefinitionof join pointsor pointcuts.)Hooksand
registriesareof thesametype: a family of denotationtransformers
indexed by the syntacticaldomains. For example,the denotation
transformerfor Si is of type Si � R Di � R Di . The first argu-
mentof typeSi emphasisesthat reflective denotationtransformers
canlook at theprogramtext to makea decision.

Ourmethodworks,in principle,for all possiblelanguagesemantics
(suchasimperative languages,differentobject-orientedlanguages,
functionallanguages,etc.). However, language-specificproperties
andobligationsoccurin this process.Thosehave to be studiedto
arriveata usefulnotionof language-parametricsuperimposition.

In thepresentpaper, wewill only dealwith dynamicsemantics.It is
desirableto coupletheadaptationof dynamicandstaticsemantics.
In the ideal situation,type safetyof programsthat involve super-
impositionshouldholdby construction.We might actuallywantto
amalgamatestaticanddynamicsemanticsto be ableto formulate
certainkindsof pointcutsfor superimpositionthatdealwith types.

From hereon, we will representsemanticsdefinitionsin Haskell.
This immediatelyallowsusto run thesedefinitionsasinterpreters.

3 An example

We will now illustratehow to make thesemanticsof a very simple
expressionlanguagefit for superimposition,andhow to make use
of superimposition.The languagecomprehendsexpressionforms
for integerconstants,variables,andbinaryarithmeticexpressions.
Superimpositionwill beusedin away to catchdivision by zero.

In Fig. 1, thesemanticsof theexpressionlanguageis definedin the
denotationalstyle.Wedefinea typeof denotationsfor eachsyntac-
tical category, namelyDexpr for Expr, andDbinop for Binop. The
typeDexpr expressesthat themeaningof an expressionis a map-
ping from environmentsto values.Theenvironmentmapsvariable
identifiers(i.e., strings)to values.The typeDbinopexpressesthat
themeaningof abinaryoperatoris a functionthatmapstwo values
to asinglevalue.Wedefineonemeaningfunctionfor eachsyntacti-
cal category usingcasediscriminationaccordingto thesyntactical
forms. The definition is compositional,that is, the meaningof a
constructis definedin termsof the meaningsof its subconstructs
only, but not thesubconstructsthemselves.

Wewill now addsuperimpositionto thesemanticsaccordingto the
threestepslisted in Sec.2. The first stepis to elaboratethe se-

Expressionsyntax
data Expr

�
ConstInt � Var String � Bin BinOpExprExpr

data BinOp
�

Div � �����

Denotations
type Dexpr

�
Env � Val

type Dbinop
�

Val � Val � Val

Variableenvironments
type Env

�
String � Val

Valuesincl. anerrorvalue
type Val

�
MaybeInt

Expressionevaluation
expr :: Expr � Dexpr
expr

Constint � ρ

�
Justint

expr

Var id � ρ

�
ρ id

expr

Bin o e1e2� ρ

�
binopo

expr e1ρ �
 expr e2ρ �

Interpretationof binaryoperators
binop:: BinOp � Dbinop
binopDiv

Justx�
 Justy� � Just

x ‘div‘ y�

binop ����� � �����
binop

�
Nothing

Figure 1. Denotational semanticsof a simple expressionlan-
guage. Becauseit is a Haskell program it can be viewed asan
interpreter aswell.

Evaluationfunction
expr :: Monadm � Expr � mDexpr
expr

Constint � �

return

λρ � Justint �

expr

Var id � �

return

λρ � ρ id �

expr

Bin o e1e2� � do de1 � expr e1

de2 � expr e2
dop � binopo
return

λρ � dop

de1ρ �
 de2ρ ���

Interpretationof binaryoperators
binop :: Monadm � BinOp � mDbinop
binopDiv

�
return

λv1v2 �

case

v1� v2� of

Justx� Justy� � Just

x ‘div‘ y�

� Nothing�
binop ����� � �����

Figure 2. The interpreter in monadicstyle

manticfunctionsto carryadvice.Oneway to realisethis stepis to
perform‘monadintroduction’,that is, to migrateto monadicstyle.
Thisstepis independentof thefactthatwedealwith semanticsand
superimposition.In principle,any family of recursive functiondef-
initions canbe turnedinto monadicstyle. In [7], we definesuch
a transformation.So the denotationtypesin the typesof the se-
manticfunctionshave to bewrappedby a monad.In thesemantic
equations,all compounddenotationsaresequentialised,and they
arerecomposedby “

�
��
”. Without lossof generality, we assumea

call-by-valueorder. Theresultof this stepis shown in Fig. 2. No-
tice theelaboratedtypesof thesemanticfunctions,which involvea
monadm. Also noticethemonadicdo-sequencefor thecompound
meaningof a binaryexpression,andseveraloccurrencesof return.
Instantiatingthe monadm by the identity monad,andβ-reducing
awaysequentiality, wewouldobtaintheoriginal interpreter.

Gary T. Leavens
66

Expressionevaluation;adapted
expr � expr ::

SuperimposablemExprDexpr �
SuperimposablemBinOpDbinop�

� Expr � mDexpr

expr

Constint � �

return

λρ � Justint �

expr

Var id � �

return

λρ � ρ id �

expr

Bin o e1e2� � do de1 � expr e1

de2 � expr e2
dop � binopo
return

λρ � dop

de1ρ �
 de2ρ ���

expr e
�

e :- expr e

Interpretationof binaryoperators;adapted
binop� binop :: SuperimposablemBinOpDbinop

� BinOp � mDbinop

binopDiv
�

return

λv1v2 �

case

v1� v2� of

Justx� Justy� � Just

x ‘div‘ y�

� Nothing�
binop ����� � �����
binopo

�
o :- binopo

Figure 3. The interpreter with reflectivedenotations

The secondstepin our procedurefor addingsuperimpositionto a
semanticsis to turn thesemanticequationsinto reflective styleby
invoking the “ :- ” operatorprior to casediscrimination.For each
semanticfunction,we defineanoverlinedversionthataddstheap-
plicationof “ :- ”, e.g.,expr complementsexpr. (Alternatively, we
could adaptall existing equationsto invoke “ :- ” asdescribedin
Sec.2.) In thesemanticequations,all referencesto theoriginal se-
manticfunctionsarereplacedby referencesto the overlinedones.
Theresultof thisstepis shown in Fig. 3. Noticethenew definitions
of expr andbinop. Also noticethereferencesto expr andbinop in
thesemanticequationsfor expr.

Recall that the operator“ :- ” modelstransformationof reflective
denotations.Sincea languagenormallycomprehendsseveralsyn-
tacticaldomainsandcorrespondingdenotationtypes,the operator
“ :- ” needsto beoverloadedfor all couplesof syntacticaldomains
andassociateddenotationtypes. So a registry is actuallya tuple
of denotationtransformers— one for eachdenotationtype. For
a given denotationtype, the operatoris meantto look up the cor-
respondingdenotationtransformerfrom the registry tuple and to
apply it to the term andthe denotationat hand. This canbe con-
venientlyrepresentedin Haskell usinga classfor overloading.So
we placetheoperator“ :- ” in a classSuperimposable, which sub-
classesthestandardclassMonadasfollows:

classMonadm � Superimposablemsd
where

:- � ::s � md � md

Therearethreeparameters:m is thetypeconstructorof themonad
for theregistry, s is asyntacticaldomain,d is thetypeof denotations
for s. We will seein a secondthattheinstancesof theSuperimpos-
ableclassfollow a simplescheme.

Thethird stepin our procedurefor addingsuperimpositionto a se-
manticsis to integrateaconstructfor bindingadvice.This includes
the obligation to opt for a specific instanceof a Superimposable
monad.We will now provide a generalrealisationof thethird step
including its illustration for the simple expressionlanguage. As

Theregistry domainconstructor
type R

�
ReaderHook

Typesof hooksfor superimposition
data Hook

�
Hook

Hexpr � Hbinop�

type Hexpr
�

Expr � RDexpr � RDexpr
type Hbinop

�
BinOp � RDbinop � RDbinop

TheidentityHook
idHook

�
Hook

λece � ce� λo co � co�

Runa reflectivedenotation
run:: Rd � d
run d

�
runReaderd idHook

Instancesof Superimposableclass

instanceSuperimposable

ReaderHook� ExprDexpr where

t :- d
�

ask

�
��

λ

Hook

h� ��� � h t d

instanceSuperimposable

ReaderHook� BinOpDbinopwhere

t :- d
�

ask

�
��

λ

Hook

 � h��� � h t d

Figure 4. Uniform definition of registry

Syntaxof thesuperimpositionconstruct
data Expr

� ������� AdaptsHookExpr

Semanticsof thesuperimpositionconstruct
expr

Adaptsh e� � local

consth�
 expr e�

Figure 5. Uniform integration of a superimpositionconstruct

alwayswith our method,the languagedesignermight bypassthe
language-parametricapproachif a morelanguage-specificform of
superimpositionis favoured.

In Fig.4,wedefineaspecificmonadR thatmodelsaregistryfor su-
perimpositionin our example. In fact,we choosetheenvironment
monad(akaReaderin Haskell).1 ThetypeHook is a productwith
two components,one for eachdenotationtype. Eachsuchhook
componentis a denotationtransformer. Thereceiveddenotationis
thenormaldenotation,whereasthecomputeddenotationis there-
vised,ultimatedenotation.Thetypesmake clearthata denotation
transformeralsoreceivesa syntacticalentity, which cancontribute
to thedecisionwhetherto replaceor to preserve thenormaldeno-
tation. In thefigure,we alsodefineanidentity hook(i.e., idHook),
which modelsthatthenormaldenotationis preservedregardlessof
the ‘join point’ (i.e., the syntacticalform at hand). Runninga re-
flectivedenotationis like ‘running’ theReadermonadwith idHook
asinitial registry; seerun. The last few lines in Fig. 4 instantiate
theSuperimposableclassfor our examplesemantics.Thatis, “ :- ”
is definedby lookingup thedenotationtransformersfrom theenvi-
ronmentandby applyingtherelevanttransformerto theingredients
of thegivenreflective denotation.

In Fig. 5, we completethe extensionof the samplesemanticsby
addingaspecificcaseto thesemanticfunctionfor expressions.This
new equationprovidesthe mostsimpleanduniform kind of a su-
perimpositionconstruct.Themeaningof Adaptsh e is thatthehook
h adaptsthedenotationfor theexpressione andall denotationsfor

1We recalltheoperationsof theReadermonad:
ask :: mr -- readenvironment
local ::

r � r � � mx � mx -- locally adaptenvironment

Gary T. Leavens
67

noDivByZero
�

Hook

λed � d � noDivByZero���

where
noDivByZero� ::BinOp � RDbinop � RDbinop
noDivByZero� Div d

�
do d� � d

return

λv1v2 � case

v1� v2� of
 � Just0� � Nothing

� d� v1v2
�

Figure 6. A hook for superimposition to catchdivision-by-zero

subconstructsof e. Theuseof thelocal operatormakesit asclearas
crystalthat thehookh is only usedfor the interpretationof e. The
useof constmakesclearthatpreviousbindingswill bereplacedby
thenew hook.We will investigatealternativesin thenext section.

In Fig. 6, we definea hook for catchingdivision-by-zerofor any
interpretationof Div. To this end,the secondargumentof the de-
notationis checkedto be“0”, andif this is thecase,thentheerror
valueNothingis returned.Otherwise,theoriginal denotationis re-
tained. So finally, we candemonstratesuperimpositionin action.
To this end,let usconsiderthefollowing programtogetherwith an
environmentfor theusedvariables:

myexp
�

Bin Div

Const42�
 Var "myvar" �

myenv
�

λid � if id � "myvar" then Just0 elseNothing

Using theoriginal denotationalsemanticsasan interpreterfor this
program,we will obviously encountera division-by-zerorun-time
error. Using the aspect-orientedinterpreter, we cancatchdivision
by zero.Thefollowing programexecutionreturnsNothing:

run

expr

AdaptsnoDivByZero myexp��� myenv

4 Designspaceexploration

We will now walk througha few locationsin thedesignspacefor
a languagesemanticswith superimposition.This will furthersub-
stantiatethegeneralityof our method,andit will clarify how it can
becustomisedfor a specificlanguageat hand.

Binding policies We will first discussdifferent binding policies
for advice. The policy that we have seenabove employs an en-
vironmentto carry advice. Herethe affectedprogramfragmentis
explicitly part of the binding construct.Also, we favouredthe re-
placementof previous bindingsby the new binding. Both design
decisionscanbe altered. We will first discusscumulative advice
bindingasopposedto replacementsemanticsbefore.We will then
discusstheuseof a statefor theregistry asopposedto anenviron-
mentbefore.

In Fig. 7, we provide a new definitionof theAdaptsconstruct;see
Fig. 5 for the original definition. We chain the previous binding
andthe new binding (cf. “ � ”). The new binding getsinto control
but if it wantedto resortto thestandarddenotation,it actuallyac-
cessesthe denotationasprocessedby the previous binding. It is
now not too difficult to think of further binding policies. For ex-
ample,we could favour denotationtransformerswith yet another
denotationargumentfor thestandarddenotationprior to any adap-
tationby previousbindings.Thisway, newly installedhookscould
abandonpreviously installedhooks.

Syntaxof thesuperimpositionconstruct
data Expr

� ������� AdaptsHookExpr

Semanticsof thesuperimpositionconstruct
expr

Adapts

Hook

he� ho��� e� � local chain

expr e�

where
chain

Hook

he� � ho����� � Hook

λe � hee � he� e�
λo � hoo � ho� o�

Figure 7. Superimpositionwith cumulativeadvicebinding

Registry-awarecomputations
type R

�
StateHook

Valuesincl. Void for puresideeffects
data Val

� ������� Void

Syntaxof thesuperimpositionconstruct
data Expr

� ������� HookUpHook

Semanticsof thesuperimpositionconstruct
expr

HookUph� � puth

�
��
λ

 � � return

returnVoid�

Figure 8. Superimpositionwith a statefor advicebinding

In Fig. 8, we usetheStatemonadasopposedto theReadermonad
for theregistry; seeFig. 4 for theoriginal definition.2 Herewe as-
sumethat the languagesemanticsat handprovidesa notion of a
purelyside-effective computation.Hence,thereis a designatedre-
sult valueVoid. Theconstructfor superimpositionnow alsotakesa
differentform becausewedonotlist theaffectedprogramfragment,
but we simply registeradvicealongtheexecutionof theprogram.
So theconstructfor binding adviceis of the form HookUph with
theintendedsemanticsthatthehookh asinstalledasregistryat the
timewhentheHookUpexpressionis executed.As onecansee,the
expressionevaluatesto Void. A problemwith this approachis that
thebasesemanticsandthedo-sequencesfor theintroducedregistry
monadmightaccidentallydisagreeontheorderof computation.We
will comebackto thisproblemin a minute.

Effect composition Sowehaveseenthatbothanenvironmentand
a statemake sensefor carrying advice. Capturingthis variation
point in a monadparameteris a good idea becausethe superim-
position level might even deal with further effects than just car-
ried advice.For example,we might wantto maintaindynamicjoin
point information[13], or we might want to reflecton thesuccess
andfailureof denotationtransformation.Regardlessof thechoice
monadic-stylesemanticsvs.hard-wiredeffects,a discussionof the
relationshipbetweenthesuperimpositionlevel andthebaseseman-
tics is in place.

By default, we assumethat the semanticsis madefit for carrying
advicewithout looking at thedenotationtypes.For example,even
if the original semanticsis alreadyin monadicstyle, we canper-
form monadintroduction.This will resultin nestedmonadicstyle.
In Fig. 9, this is illustratedfor a variationon our expressionlan-
guage.ThevariationprovidesanAssignstatementthesemanticsof
whichreliesontheStatemonadfor thevariablesin aprogram.The
reflective denotationfor an Assignexpressionis a nestedmonadic
computation.At thetop level, thecomputationsfor enablingsuper-

2We recalltheoperationsof theStatemonad:
get :: ms -- readstate
set :: s � m

 � -- write state

Gary T. Leavens
68

Syntaxextensionfor assignments
data Expr

� ������� AssignStringExpr

Revision of expressiondenotations
type Dexpr

�
StateEnv Val

Semanticsof assignments
expr

Assignid e��� � do de� � expr e�

return

do ρ � get

v � de�
put

λid� � if id � id�

then v
elseρ id� �

returnv�

Figure 9. The Superimposable monadon top of a basemonad

impositionarearrangedin a do-sequence.The inner do-sequence
directly modelsthe semanticsof assignment.That is, the stateis
looked up with get, the right-handsideof the assignmentis eval-
uatedto v, thestateis updatedin the point for the variableid, the
updatedstateis ‘put back’, and the right-handsidevaluev is re-
turnedasthevalueof theassignment.

Thesenesteddo-sequencespinpointa problem.Suppose,we usea
statefor theregistry; recallFig. 8. A subexpressione1 might hook
up anothersubexpressione2 while e2 would benormallyexecuted
beforee1. That is, the nesteddo-sequencescould disagreeon the
orderof computation.Note that the innersequencerepresentsthe
basesemanticswhereastheoutersequencewasestablishedby sys-
tematicmonadintroduction.To enforceacommonorder, weshould
transformthemonadin thebasesemanticsto integratetheregistry
or any othersuperimpositioneffect aswell. We couldevenelabo-
ratean existing effect in the basesemantics,e.g.,an environment
or a state,so that it accomplishesthe registry aswell. If the base
semanticsis not in monadicstyle,thenit is not really preparedfor
suchanamalgamationof effect spaces.In theview of theseprob-
lems,ourearlierchoiceof anenvironmentmonadfor theregistry is
morefavourable.Theorderingproblemis hereanon-issuebecause
advicebindingis localwith respectto agiventerm.

Inter cepting invocations Our approachallows usto interceptany
point of the programexecution in the senseof syntacticalfrag-
ments. It is at the heartof AOP to interceptinvocationsof meth-
odsor otherproceduralabstractions.Sowewantto briefly examine
how this lookslike in our setting.In Fig. 10,we furtherextendour
expressionlanguageto accomplisha form of namedfunction ap-
plication.Thesemanticequationfor functionapplicationis already
preparedto carryadvice.(We againusenestedmonadicstyle.)We
usea helperfunction apply to apply a function-typevalue to an
argument. For brevity, we do not defineany expressionform for
functionabstraction(i.e.,λ-abstraction),but weassumethattheen-
vironmentcanhold functions,e.g.,a function"div". At thebottom
of Fig. 10, we definea hooknoDivByZero, which interceptsappli-
cationsof the"div" function to catchdivision by zero. Notice the
plain useof patternmatchingfor filtering out therelevant (nested)
function application. The constructeddenotationreturnsError if
the secondargumentof "div" is “0”, andotherwiseit appliesthe
original bindingof "div". This hooklooksa bit verbosebecauseit
reconstructsthenormaldenotationto a largeextent. This couldbe
capturedby a reusableoperatorfor ‘function-applicationintercep-
tion’.

Syntaxextensionfor functionapplications
data Expr

� ������� ApplyExprExpr

Functionsevaluateto functions
data Val

� ������� Fun

Val � Val �

Adaptedsemanticsof functionapplication
expr

Applye1e2� � do de1 � expr e1

de2 � expr e2
return

do v1 � de1

v2 � de2
return

applyv1v2�

�
Helperfor functionapplication

apply:: Val � Val � Val
apply

Funf � val

�
f val

apply
�

Error

Anotherdivision-by-zerocatcher
noDivByZero :: Expr � RDexpr � RDexpr
noDivByZero

Apply

Apply

Var "div" � e1� e2� d

�
do de1 � expr e1

de2 � expr e2
return

do ρ � get

v1 � de1
v2 � de2
casev2of
Int 0 � returnError
� return

apply

apply

ρ "div" � v1� v2�

�
noDivByZero d

�
d

Figure 10. Inter cepting a function application

5 Relatedwork

For distributedsystems(of communicatingprocesses),thereexists
anotionof superimposition[3, 6,10] whichis (likeaspectsin AOP)
orthogonalto theusualbreakdown of modules.This sortof super-
impositioncontributesto thetheoreticalbasisof AOP. Anotherab-
stract,formalmodelof AOPis providedin [4]. It is basedonexecu-
tion monitorsfor theeventsthatcorrespondto thepointsof interest
alongtheprogramexecution.Anotherformal semanticsof AOPis
basedonCSPwith CSPsynchronisationsetsasjoin points[1]. All
thiswork differsfrom oursin thatwestartfrom anordinarydenota-
tionalsemantics,andmakeit fit for superimpositionin asystematic
manner. That is, we do not resortto any designatedformal model,
but we just stayin thedenotationalsetting.

Our approachto reflecton the syntacticalpatternsalongprogram
interpretationis inspiredby the event grammarsin [2]. Auguston
suggeststo formalisethe executionof a programin a languagein
termsof aneventgrammar. Sucha behavioural modelcanthenbe
usedto superimposefunctionalityon theeventtracesof aprogram,
e.g.,to checkassertions,or to performdebugging. This approach
hasbeenusedin thedevelopmentof severaldebuggingtools. Our
notionof ‘reflective denotations’is a semantictranspositionanda
stronggeneralisationof a tweakedmonadic-styleof functionalpro-
grammingproposedby Meuterin [9]. In thisstyle,theprogrammer
informsa non-standardmonadicbind combinatoraboutthenames
of functionsthatareappliedto intermediateresults.Thesenames
canbe viewed as(explicit) join points. By contrast,we preparea

Gary T. Leavens
69

semanticsin awaythata ‘superimposable’monadcanrevisedeno-
tationsfor syntacticalpatterns.Ourmethodis basedonasystematic
transformationasopposedto anencodingstyle.

Thereis anenormousamountof relatedwork on reflection[11, 12,
5]; its relevancefor AOPis generallyacknowledged.We have not
seenagenericmethodto systematicallyelaborateadenotationalse-
manticsfor AOP-like reflectionin theavailableliterature. There-
flection literatureis normallyconcernedwith somekind of staged
interpretationasopposedto theprovisionof asuperimpositioncon-
struct.However, it seemsthatourapproachcouldtakegreatadvan-
tageof thereflective theoryfor thepurposeof formal reasoningon
aspect-orientedprograms. Also, ideason ‘full computationalre-
flection’ areof useto furthergeneraliseour approach.

6 Concluding remarks

Thedescribedmethoddefineshow to extendanordinarylanguage
semanticsso that oneobtainsan aspect-orientedlanguageseman-
tics. We call this achievement‘superimpositionfor free’. Techni-
cally, it is basedona ‘reflectivedenotationstyle’. Accidentally, the
approachalsosuggestsa normative style of aspect-orientedfunc-
tional programming, but this hasto be discussedelsewhere. The
aspect-orientedprogrammingtermsare instantiatedfor ‘superim-
positionfor free’ languagesasfollows:

Staticjoin point = Syntacticalpattern
Dynamicjoin point = Computationon syntacticalpattern
Pointcut = Patternmatchingpredicate
Advice = Denotationtransformer
Programexecution = Monadicdo-sequence
Aspect = Hook for superimposition
Dynamicweaving = Registry update
Staticweaving = Partial evaluation

Wecontendthatthis is arathersimple,uniform,andgeneralwayto
defineaspect-orientedlanguagesemantics.We arealsowilling to
saythatourapproachcanbeseenasanotherdefinitionof reflection.

Theto-dolist for anexhaustive treatmentof thesubjectis long:

! Transposethemethodto staticsemantics.
! Cover thestandardformsof dynamicjoin points.
! Makeeventhedenotationtransformersreflective.
! Recovercompositionalityin someway.
! CoverSOSin additionto denotationalsemantics.
! ...

Acknowledgement

I am very grateful to the threeanonymousFOAL 2003workshop
refereesfor their encouragingandconstructive remarks.I amalso
grateful to the participantsof the Belgian-Dutchposterworkshop
on AOSD,on 21 January2003in Twente,with whomI hadstimu-
latingdiscussionson thesubjectof thepaper.

7 References

[1] J. H. Andrews. Process-algebraicfoundationsof aspect-
orientedprogramming.In Proceedingsof theThird Interna-
tional Conferenceon Metalevel ArchitecturesandSeparation
of CrosscuttingConcerns(Reflection2001), volume2192of
Lecture Notesin ComputerScience, pages187–209,Berlin,
Heidelberg, andNew York, Sept.2001.Springer-Verlag.

[2] M. Auguston. Program behavior model basedon event
grammarand its applicationfor debugging automation. In
M. Ducasśe, editor, AADEBUG, 2ndInternationalWorkshop
on Automatedand Algorithmic Debugging, pages277–291,
SaintMalo, France,22–24May 1995.IRISA-CNRS.

[3] L. Bouǵe andN. Francez.A compositionalapproachto su-
perimposition.In ACM, editor, Proc.of the1988conference
onPrinciplesof programminglanguages(POPL’88), January
13–15,1988,SanDiego,CA, pages240–249,New York, NY,
USA, 1988.ACM Press.

[4] R. Douence,O. Motelet,andM. Südholt. A formaldefinition
of crosscuts.In Proc.of theThird InternationalConferenceon
Metalevel ArchitecturesandSeparation of CrosscuttingCon-
cerns(Reflection2001), volume2192of LNCS, pages170–
186.Springer-Verlag,Sept.2001.

[5] S. Jefferson and D. P. Friedman. A simple reflective in-
terpreter. Lisp and SymbolicComputation, 9(2/3):181–202,
May/June1996.

[6] S. Katz. A superimpositioncontrol constructfor distributed
systems.ACM TransactionsonProgrammingLanguagesand
Systems, 15(2):337–356,Apr. 1993.

[7] R. Lämmel. Reuse by Program Transformation. In
G. MichaelsonandP. Trinder, editors,FunctionalProgram-
mingTrends1999. Intellect,2000. Selectedpapersfrom the
1stScottishFunctionalProgrammingWorkshop.

[8] R.Lämmel.A SemanticalApproachto Method-CallIntercep-
tion. In Proc. of the1st InternationalConferenceon Aspect-
OrientedSoftware Development(AOSD2002), pages41–55,
Twente,TheNetherlands,Apr. 2002.ACM Press.

[9] W. D. Meuter. Monads as a theoretical foundation for
AOP. In S.Mitchell andJ.Bosch,editors,WorkshopReader,
ECOOP’97, volume1357of LNCS. Springer-Verlag,1998.

[10] M. SihmanandS. Katz. A calculusof superimpositionsfor
distributedsystems. In Proceedingsof the 1st international
conferenceon Aspect-orientedsoftware development, pages
28–40.ACM Press,2002.

[11] B. C. Smith. Reflectionandsemanticsin lisp. In Conference
Record of theEleventhAnnualACMSymposiumonPrinciples
of ProgrammingLanguages, pages23–35.ACM, ACM, Jan.
1984.

[12] M. WandandD. P. Friedman. The mysteryof the tower re-
vealed: A non-reflective descriptionof the reflective tower.
In R. P. Gabriel,editor, Proceedingsof theACM Conference
onLISPandFunctionalProgramming, pages298–307,Cam-
bridge,MA, Aug. 1986.ACM Press.

[13] M. Wand,G. Kiczales,andC. Dutchyn. A semanticsfor ad-
viceanddynamicjoin pointsin aspect-orientedprogramming.
In G. T. Leavensand R. Cytron, editors,FOAL 2002 Pro-
ceedings:Foundationsof Aspect-OrientedLanguagesWork-
shopatAOSD2002, number02-06in TechnicalReport02-06,
Dept.of Comp.Sc.,IowaStateUniv., pages1–8,Apr. 2002.

Gary T. Leavens
70

	Table of Contents
	Preface
	Composition Graphs: a Foundation for Reasoning about Aspect-Oriented Composition -- Nagy, Aksit, Bergmans
	A Formal Model for Cross-Cutting Modular Transitions Systems -- Sipma
	On Composition and Reuse of Aspects -- Kienzle, Yu, Xiong
	TinyC^2: Toward building a dynamic weaving aspect language for C -- Zhang and Jacobsen
	Interference Analysis for AspectJ -- Stoerzer, Krinke
	Compositional Reasoning about Aspects Using Alternating-Time Logic -- Devereux
	Model Checking Applications of Aspects and Superimpositions -- Sihman, Katz
	Understanding AOP through the Study of Interpreters -- Filman
	Adding Superimposition to a Language Semantics -- Laemmel

