FOAL 2003 Proceedings

Foundations of Aspect-Oriented Langauges
Workshop at AOSD 2003

Gary T. Leavens and Curtis Clifton (editors)

TR #03-05
March 2003

Keywords: Aspect-oriented programming, modular reasoning, alternating transition systems, compo-
sition, inter-aspect dependencies, AspectJ, aspect classification, aspect reuse, composition graphs, model-
ing, modular transition systems, aspect inheritance, TinyC?, code instrumentation, compilers, interpreters,
denotational semantics, superimposition, model checking, Bandera, verification aspects, superimposition
validation, binding interference

2000 CR Categories: D.1.m [Programming Techniques] Miscellaneous—aspect-oriented programming,
reflection; D.2.1 [Software Engineering] Requirements/Specifications—languages, methodology, theory, tools;
D.2.4 [Software Engineering] Software/Program Verification—class invariants, correctness proofs, formal
methods, programming by contract, reliability, validation; D.3.1 [Programming Languages] Formal Defini-
tions and Theory—semantics; D.3.3 [Programming Languages] Language Constructs and Features—control,
data types and structures; F.3.1 [Logics and Meaning of Programs] Specifying and verifying and reasoning
about programs—assertions, logics of programs, pre- and post-conditions, specification techniques; F.3.m
[Logics and Meaning of Programs] Miscellaneous—reasoning about performance.

Each paper’s copyright is held by its author or authors.

Department of Computer Science
226 Atanasoff Hall
Towa State University
Ames, Iowa 50011-1041, USA

Table of Contents

Composition Graphs, a Foundation for Reasoning about Aspect-Oriented Composition...... 1
Istvan Nagy, University of Twente
Mehmet Aksit, University of Twente
Lodewijk Bergmans, University of Twente

A Formal Model for Cross-cutting Modular Transition Systems................................. 9
Henny B. Sipma, Stanford University

On Composition and Reuse of Aspects. 17
Jorg Kienzle, McGill University
Yang Yu, McGill University
Jie Xiong, McGill University

TinyC?2: Towards Building a Dynamic Weaving Aspect Language for C....................... 25
Charles Zhang, University of Toronto
Hans-Arno Jacobsen, University of Toronto

Interference Analysis for Aspectd. i 35
Maximilian Storzer, University of Passau
Jens Krinke, University of Passau

Compositional Reasoning About Aspects Using Alternating-time Logic....................... 45
Benet Devereux, University of Toronto

Model Checking Applications of Aspects and Superimpositions................................ 51
Marcelo Sihman, Technion—Israel Institute of Technology
Shmuel Katz, Technion—Israel Institute of Technology

Understanding AOP through the Study of Interpreters..............., 61
Robert E. Filman, NASA Ames Research Center

Adding Superimposition to a Language Semantics........... i 65
Ralf Lammel, CWI and Vrije Universiteit

Preface

Aspect-oriented programming is an emerging paradigm in software engineering and programming languages
that promises better support for separation of concerns. The second Foundations of Aspect-Oriented Lan-
guages (FOAL) workshop was held at the 2nd International Conference on Aspect-Oriented Software Devel-
opment in Boston, Massachusetts, on March 17, 2003. This workshop was designed to be a forum for research
in formal foundations of aspect-oriented programming languages. The call for papers announced the areas of
interest for FOAL as including, but not limited to: semantics of aspect-oriented languages, specification and
verification for such languages, type systems, static analysis, theory of testing, theory of aspect composition,
theory of aspect translation (compilation) and rewriting, and applications of such theories in practice (such
as language design studies). The call for papers welcomed all theoretical and foundational studies of this
topic.

The goals of this FOAL workshop were to:

Make progress on the foundations of aspect-oriented programming languages.

Exchange ideas about semantics and formal methods for aspect-oriented programming languages.

e Foster interest in the programming language theory communities concerning aspects and aspect- ori-
ented programming languages.

Foster interest in the formal methods community concerning aspects and aspect-oriented programming.

In addition, we hoped that the workshop would produce an outline of collaborative research topics and a list
of areas for further exploration.

The papers at the workshop, which are included in the proceedings, were selected from papers submitted
by researchers worldwide. Due to time limitations at the workshop, not all of the submitted papers were
selected for presentation.

The workshop was organized by Gary T. Leavens (Iowa State University) and Curtis Clifton (Towa State
University). The program committee that selected papers consisted of Leavens and James H. Andrews (U.
Western Ontario), William Cook (Allegis), Tzilla Elrad (Illinois Inst. of Technology), Ralf Liammel (CWI
and Vrije Universiteit), Oscar Nierstrasz (U. of Berne), Jens Palsberg (Purdue U.), Kris De Volder (U. of
British Columbia), and Mitch Wand (Northeastern University). We thank the organizers of AOSD 2003 for
hosting the workshop.

ii

Composition Graphs: a Foundation for Reasoning about
Aspect-Oriented Composition

- Position Paper -

Istvan Nagy

Mehmet Aksit

Lodewijk Bergmans

TRESE Software Engineering group, Faculty of Computer Science, University of Twente
P.O. Box 217, 7500 AE, Enschede, The Netherlands
+31-53-489 3767

{ nagyist, aksit, bergmans }@cs.utwente.nl

ABSTRACT

Aspect-oriented languages offer new modularization concepts and
composition approaches to provide more flexible solutions for the
separation and integration of concerns. There are significant
differences among aspect-oriented languages, due to the specific
language constructs that they adopt. In this paper, we propose a
common model, called Composition Graph, to represent different
aspect-oriented approaches in a uniform way that can serve as a
basis for the comparison of aspect-oriented languages. We also
present a transformation language which can be used to model
different weaving operations in our model.

1. INTRODUCTION

During the last several years, a considerable number of Aspect-
Oriented Languages (AOLs) has been introduced. Some AOLs
may be particularly suitable to program certain application
categories. We think that in order to compare and evaluate AOLs,
it is important to understand their underlying concepts.

An important characteristic of an AOL is its aspect composition
mechanism. This is the mechanism to incorporate aspects with
other aspects and/or with traditional programming abstractions.

In this paper, we focus on the aspect composition mechanisms of
languages. To this aim, we introduce a generic model, called
Composition Graph (CG), in which different aspect-oriented
composition mechanisms can be expressed uniformly and can be
compared with each other.

The structure of the paper is as follows. Section 2 presents a
simple composition problem through an illustrative example. In
section 3 we provide solutions to the problem in two different
models, namely in Aspect]J[1] and HyperJ[2]. Section 4 describes
the approach. Section 5 outlines the notion of Composition
Graphs exemplified by the solutions explained in the previous
section. Section 6 demonstrates how the composition mechanisms
can be represented by graph transformation rules. In section 7 we
discuss some important related work. Finally, section 8 gives a
conclusion and presents future work.

2. An Example Problem

AOLs use several composition techniques, such as method
composition, introductions, merging of different program
elements, etc. combined with new modularization concepts to
cope with the phenomena of tangled code and crosscutting.

In this section, we introduce a method composition problem that
we will use as an instructive example in the subsequent sections.
This example is based on the Observer design pattern [3].

In Figure 1, class Point; implements a geometrical point with x
and y coordinates as instance variables and get/set as methods.
Class Subject is the part of the Observer pattern that maintains the
list of observers for each subject, using the vector observers. This
class is responsible for the notification of the observers by the
method Notify.

class Point; extends Object({
private int x, y;

void setX(int x){ _x=x; }
int getX() { return x; }

void set¥Y(int y){ _y=y; }
int getY() { return _y; }

}

class Subject{
private Vector observers;

public Subject() { /* .. */}

public void attach (Observer o)
{ observers.add(o); }

public void Notify ()
{ /* foreach observer.update() */}

Figure 1. Definition of classes Point and Subject

Figure 2 displays a possible enhancement of class Point,, labeled
Point,, to incorporate the subject role using inheritance. This class
has the following responsibilities: a) After the execution of each
method that changes the state of the object, the notification of the
registered observers must take place. This is shown by the lines
(2) and (3). b) This class inherits from class Subject to make the
method Notify accessible for class Point’. As the source shows,

! Obviously, this is only one possible implementation of the
Observer pattern.

Gary T. Leavens
1

class Point, extends Subject({ (1)
public void setX(int x)

{ x=x; Notify();} (2)
public void setY (int vy)

{ y=y; Notify();} (3)

Figure 2. Adaptation of Point,; to support the Observer
pattern

the adaptation of the subject role results in crosscutting code. To
avoid this problem, other modularization and composition
techniques should be used.

3. Aspect-Oriented Implementation of the

Problem
In this section, we provide a simple aspect-oriented solution to the
previous example both in Aspect] and HyperJ.

3.1 Composition in AspectJ
Figure 3 displays a possible implementation of the composition of
class Point; with class Subject in Aspect].

Line (1) implements the language construct introduction. Here,
the superclass of class Point; is changed from the root class
Object to the pattern defined class Subject. The pointcut
specification shown in line (2) designates the methods setX and
setY. In line (3) an affer advice is bound to this pointcut
specification. This means that the code “s.Notify()” specified in
the advice will be performed after the execution of the designated
methods.

aspect Notification{
declare parents:
Point, extends Subject; (1)

pointcut stateChange (Subject s):
this(s) &&
execution (void Point.set* (..)); (2)

after (Subject s):
s.Notify();

stateChange (s) { (3)

}

Figure 3. Definition of the aspect Notification

This problem could be solved using more sophisticated features of
Aspect], such as abstract pointcuts [4]. For the sake of simplicity,
however, we consider this solution adequate to explain the
problem.

3.2 Composition in HyperJ

Figure 4 displays a Hyper] control file that implements an
extension of class Point; to integrate the subject role of the
Observer pattern.

In line (1) we list the classes to be incorporated. The lines
between (2) and (3) represent the concern mapping, where

program entities are assigned to different hyperslices®. Here, class
Point is assigned to the hyperslice Feature.Kernel, while class
Subject is assigned to the hyperslice Feature.Observing. The
hypermodule specification in line (3) consists of two important
parts: identification of the hyperslices (4) that are to be integrated,
and integration relationships (5). These specify the details of the
desired composition. The line marked by (6) shows the general
integration strategy that has to be specified. Finally, the operation
bracket selects the methods to be composed from class Point (7)
and specifies that the method Notify has to be performed after the
execution of these methods (8).

-hyperspace

hyperspace DemoHyperspace

composable class test.*; (1)
-concerns (2)

Feature.Kernel
Feature.Observing

class Point;
class Subject

-hypermodules (3)
hypermodule ObserverDemo
hyperslices: (4)

Feature.Kernel,
Feature.Observing;

relationships: (5)
mergeByName; (6
bracket "Point;"."set*" (7)
after (8)

Feature.Observing.Subject.Notify();

end hypermodule;

Figure 4. HyperJ control file

4. Our Approach

We explain our approach using the figure at the top of the next
page. In this figure we can distinguish the lower base level and
the meta level; the models at the base level are expressed in terms
of the metamodels. We will discuss the picture from left to right,
roughly corresponding to the general process of creating and
transforming CGs.

On the left side, at the base level a number of boxes is shown
which represent actual programs. Typically these programs can be
represented by source code, byte code or an exchange format such
as XML. Each individual program follows the rule of its
programming language metamodel. The figure shows two
example programming language metamodels: Aspect] and
Hyper]. Our goal is to reason about the semantics of the
programming languages, in particular their composition
mechanisms. However, we choose to do so by considering the
semantics and compositions of actual programs as well, rather
than staying at the meta-level only.

Our approach is based on the application of a single metamodel
which is capable of representing programs from a wide range of
programming languages and paradigms: this is the Composition

2 A more detailed specification of HyperJ can be found in [2].

Gary T. Leavens
2

Composition Composition Composition
_ Graph Graph Graph
g Metamodel | Metamodel | Metamodel
[0
== Edge & 3 Edge & 3 Edge &
‘.clg g’rogAr.SLa;rlgt:J zrog;La;]?J. Node Types: | Node Types: © Node Types:
[9. Asp g-Fyp AspectJ 1 HyperJ 1 OO model
E 4

! ; ! t
? I L I L
[0 Program Program Composition A Composition Composition Composition
?-J AAJ A_HJ --= Graph Graph Graph Graph
& A AJ A_HJ A 0O A_0O
@®
o ! A
[N e . _

Graph metamodel (the box appears repeatedly at the top right of
the picture).

For example, imagine two versions of the same program A, each
written in a different programming language (such as Aspect] and
HyperJ): by translating these two programs into Composition
Graph representations (these are the boxes in the middle of the
bottom row of the figure), we can start to compare the structure of
these programs, since they are represented in the same universal
format. The differences between the programming languages are
further visible through the different types of edges and nodes in
each CG.

We expect a number of benefits from these representations of
programs using CGs:

e Since CGs emphasize the (composition) structure and
dependencies of programs, we may use them to reason about
properties such as degrees of coupling and cohesion, e.g. by
defining metrics.

e Since programs in different programming languages can be
casily compared, we may be able to infer properties of the
programming languages (in the form of “programming
language 1 can express problem/program A with less coupling
than programming language 2”). Note that making general
assumptions based on one or a few concrete examples must be
done with great care.

o We believe that the process of representing programs in the
universal format, requiring one to define the composition
structure of the programming language as types of nodes and
edges, will yield increased insight in the workings and
essence of aspect-oriented approaches, perhaps leading to new
or generalized composition mechanisms.

A further step in defining and understanding the semantics of the
composition mechanisms can be made by translating the program
representations into CGs for a generic model: this could be a
‘traditional’ model such as the OO model, or alternatives such as
a generic AOP model. Specifying the translation has several
advantages:

1. It provides us insight into the ability to actually express a
particular functionality, and how composition mechanisms
really work.

2. If the resulting CGs are different, it will be fairly
straightforward to see whether they are equivalent
‘refactorings’ of the same program, or in fact programs with
(slightly) different semantics.

3. Defining general transformation rules, which can transform
any CG in language A towards a CG in language B, is a way
to define the precise semantics of the programming language”.

4. Hence, the essential differences in composition mechanisms
can be observed by looking at the differences between the
transformation rules.

The remainder of this paper will focus on the concept and
representation of composition graphs and transformation rules,
exemplified by the example that we introduced in section 2 and 3.

5. Composition Graphs

Composition Graphs (CGs) are used to represent certain aspects
of programs. They are especially useful to represent the structure
of programs and reason about composition mechanisms.

CGs, like abstract syntax trees (ASTs), denote structural
dependencies between different program units represented in the
program. However, CGs are different from ASTs in several
ways; they do not necessarily represent the full syntax of
languages: certain parts of programs can be compressed into one
node of the graph. CGs can also be used to explicitly represent
certain composition relationships between various program units,
such as classes, methods, advices, hyperslices, etc.

5.1 Structure of Composition Graphs

A Composition Graph consists of a set of nodes, labeled edges
and attributes. Nodes represent the program units, which may be
affected or used by the aspect weaving mechanism of the
language considered. A node can refer to other nodes or attributes
through labeled edges. An attribute refers only to its parent node
and contains information about it.

Figure 5 depicts a part of the CG of class Point; which was shown
in figure 1. Nodes are illustrated by small circles. The left
uppermost node (1) denotes the whole class. Three attributes —
illustrated by ovals - are connected to this node through the edges

3 Note that the precision of this semantic specification depends on
the level of abstraction of the target language.

Gary T. Leavens
3

name, visibility and meta. In corresponding order the first two
attributes are the name and visibility of the class, while the third
one is a meta-attribute. Each node can have a special edge called
meta that holds meta-information about the type of the node.

(1 ()

membeimeta °
2) .

member
vigibility name
type
type
implementation

Figure 5. Part of class Point represented as a Composition
Graph

The node marked by (1) has two edges that are connected to two
other nodes. The edge with the label member refers to the node
(2), which represents the method setX of class Point. This node
has also some attributes (meta, name, visibility, type of return
value) and relations with the two other nodes: the upper one (4)
corresponds to the argument of the method, while the node
marked by (5) denotes the implementation (body) of the method.
This latter node has a meta attribute and an edge, which is
connected to an assignment statement. This is the only statement
of the method. The edge called superclass refers to a node (3) that
denotes class Object, the superclass of class Point. Due to lack of
space, we have not unfolded this node completely; This node is in
fact a subgraph that has similar structure to the subgraph denoted
by (1).

Note that figure 5 shows only the part of the Composition Graph
of class Point. Other methods are represented like the method
setX, but are not shown.

The same type of representation can be applied for aspect-
oriented languages. Figure 6 illustrates a part of the aspect
Notification as a CG. The node marked by (1) corresponds to the
introduction statement in figure 3. Here, the introduction
statement is represented as a literal. This is a way to hide the
details if necessary. In fact, this node could have been expanded
to several nodes as it is illustrated by the node marked by (4). The
node at (2) illustrates the pointcut specification and also shown in
a compressed form. The node marked by (3) illustrates the advice,
which was shown in line (3) of figure 3.

O—nam
[—meta | IO—me(a R parent-extends
meroer N : |
—————————— =
| (1) | l
meta parent-extends | |pasectass meta |
member | | l
| ame |
. ! |
(2’)' : B - visibility ——— |
—b@—me{a e
member
—name extenderclass

Hparameter —— = ... ,—>
literal
member
W
after_advice - " class.
oy
A

fy

? .

name

this(s) && execution({void
Point.set*(..))

@)
—’O—mata

:

}-pointcut names|{ stateChange
body

argument typeOfReceiver

s(a(ement»Qmeta CallStatement

¢

meta

g
;

Figure 6. Part of the aspect Notification shown as a CG

5.2 Setting up Composition Graphs

Composition Graphs can be derived from various software
artifacts, such as programs expressed in different languages (Java,
Aspect], Hyper]), XML documents and UML models.

As a first step, the files that contain the source code have to be
parsed to build up their syntax tree.

In the next step, the syntax-tree is transformed into an initial CG
by adding the cross-reference relationships as edges where
necessary. For instance, in figure 5 the edge superclass is a
typical cross-reference relationship. In a syntax-tree, the name of
the superclass is an identifier, whereas in the CG, the relation
superclass denotes to the actual representation of that class (see
figure 5). In other words, in CGs every program unit which is
relevant from the point of view of weaving is uniquely
represented.

The third important step is the resolution of the nodes that contain
composition (weaving) specifications. These are represented in
CGs through additional edges and/or nodes. Figure 7 illustrates
the aspect Notification in this way. Three new edges — illustrated
by the broken arrows - are shown in figure 7. Edges marked by
(1) and (2) represent the combination of the affer advice with the
methods setX and setY. The edge marked by (3) represents the
introduction, which was shown in figure 3.

Gary T. Leavens
4

e e
member
"

bo!‘ﬁ"?‘smement meta
I\

|\ meta call

l " block

typeOifReceiver

mer

member

Figure 7. CG of the AspectJ program after the third step

Figure 8 shows the CG representation of the hypermodule
ObserverDemo, which was described in figure 4. The edge
marked by (1) is for the mergeByName relationship between the
two hyperslices. The bracket relationship is represented by three
new edges. The first two edges marked by (2) and (3) represent
the combination of the methods setX and setY with the call
Notify(). The third edge marked by (4) denotes the change” of the
superclass of class Point from the root class Object to the class
Subject of the Observer pattern.

* Looking at the AST description of the woven classes in HyperJ,
we realized that the bracket relationship also changes the
superclass of the class that contains the bracketed methods to
the class of the ‘bracketer’ method if the two classes have not
been equated previously. The weaver has to enforce this
inheritance so that the method Notify can be accessed from the
class Point.

For a given language specification, there is a closed set of types
of edges and nodes. For example, in case of Java we define a fix
set of edges and nodes, which represent the conventional object-
oriented relationships. In case of Aspect] or Hyper], we define
nodes and edges, which represent the modules and composition
constructs of these languages.

meta hyperslice

Feature. Observing

(.-~

S &
&
‘5 ame

meta CallStatement

o
v !
\\: name

literal

Figure 8. CG of the HyperJ program after the third step

Although languages may require specific kinds of nodes and
edges, they are all expressed using the same CG notation. This is
the key property in evaluating and comparing different AOLs.

We would like to uniformly interpret the CGs representing
programs expressed in different languages. For this purpose, we
transform the CGs that represent the aspect-oriented programs, to
the CGs that represent the object-oriented implementations of
these programs. We therefore transform every AOL specific edge
and node to the equivalent object-oriented edge and node.

Figure 9 illustrates after the transformation a part of the CG that
represented the introduction statement at (3) in figure 7. As a
result of the transformation, a new edge named superclass has

Gary T. Leavens
5

been created between the class Point and Subject, while the edge
parent-extends and the original superclass edge have been
deleted.

superclass <deleted

name—>
met

Figure 9. Transformation of the introduction statement

The result graph of the transformation of the affer advice,
illustrated at (1) and (2) in figure 7, is shown in figure 10. Only a
new call statement has been attached to the body of the methods
setX and setY. However, this method has no return value and we
had to handle only one exit point inside the implementation of the
methods. If an after advice is combined with an execution
pointcut designator and the designated method has several return
statements then we have to see after another solution that handles
each exit point.

body
meta

assignment

literal

Figure 10. Method sezX after the transformation

Note that the result graph of the transformation itself does not
provide too much information for us. However, if we contrast the
source graph of the transformation with the result graph in respect
to the related edges and nodes we can see how the composition
mechanisms of different languages differ from each other. For
example, we can recognize that only one composition structure of
an aspect-oriented language is able to implement a complex
composition problem, which results in at least three or more

standard object-oriented relationships, while another aspect-
oriented language needs at least two or more composition
structure in order to achieve the same realization.

We propose a transformation language to formulate the
transformation processes that practically correspond to the
weaving operations.

6. TRANSFORMATION LANGUAGE

In this section we outline a transformation language by which we
can describe how the result graphs can be obtained from the
source graphs.

6.1 Selecting Graph Fragments

To transform a set of edges and nodes of a graph into another set
of edges and nodes first we have to be able to designate certain
nodes and edges in the graph that serve as an input of the
transformation. We experienced that aspect-oriented language
abstractions are typically represented by multiple nodes and edges
in Composition Graphs. Therefore, we initiate a query-based
technique to select multiple nodes from CGs based on their
relationships.

The queries employ formulas of predicate logic with free
variables. We used set notation to highlight the free variables. The
general form of a query expression, similarly to the tuple
relational calculus, is

{t| PO}

where t is a free variable and P is a predicate. The variables can
be quantified: J(there exist), V(for all). In our model predicates
are parameterized propositions that formulate statements whether
an edge between a node and an attribute (or between two nodes)
exists or not in the CG. The skeletons of the propositions look like
these: node.edge=value and node.edge—node. Predicates can be
composed of other predicates by using logical connectives. The
result of the query is a set of references to the nodes that satisfies
the predicate if they are substituted with the free variables.

As a simple example, let us see the following query expression:
{ X | X.meta = class AND X.name = Point }

This query will select each node that has a meta edge referring to
the attribute class and a name edge referring to the attribute Point
In other words, the result of this query is a set of references to
such nodes that denote classes with the name Point (e.g. two
classes with the same name can be placed in different packages or
hyperslices).

A more complex example is the following:

{Y| Y.name=setx AND IXFZ(X.member—Y AND
X.superclass—Z AND Z.name = Subject)}

This query will designate each method with the name setX placed
in a class that inherits from the class Subject.

By default, the query is executed against the whole graph. There
are situations, however, where the scope of the query should be
narrowed to only one or more subgraphs of the complete graph.
For this purpose, we use scoping expressions that determine a set
of subgraphs in order to narrow the scope of the query.

Gary T. Leavens
6

The general form of a scoping expression is
<N, Ei>[on <N,, E;>on ... on <N, E;>]

where N is a query expression and E is a set of labels of edges
from the original graph. Nodes selected by N denote the root
nodes of the subgraphs, while labels in E indicate those edges
only which are allowed to connect the nodes in the subgraphs.
Scoping expressions can be defined recursively on other scoping
expressions.

As a simple example, let us see the following scoping expression:
<{ N | N.meta = method AND N.name = foo }, {statement}>

In this example the node that corresponds to the method foo will
be the root node of the subgraph and the nodes in this subgraph
can be connected through only one type of edge that has the label
statement.

An application of this scoping expression is shown by the
following example:

{RS | RS.meta = return-statement} on
<{ N | N.meta = method AND N.name = foo }, {statement}>

In this example a query expression is combined with the previous
scoping expression that selects every return statement from each
method called foo in the whole CG.

Based on the structure of CGs not only different types of program
units but also program statements, such as calls, field
reading/writing, etc. can be designated in an elegant manner.

6.2 Transformation Rules
The general form of a transformation rule is

Identifying pattern}
gp 2
{Context pattern} > Transformation Statement

where the identifying pattern and context pattern are query
expressions, and the transformation statement is the application of
a modification type on the nodes selected by the identifying and
context pattern. Typical modification types are adding a node or
edge to a graph, removing a node or edge from a graph, changing
an edge to another one, etc. The identifying pattern identifies
those edges that should be eliminated from the CG by the
transformation. Sometimes, in the context of the identifying
pattern, additional nodes and edges have to be used as input of the
transformation. The context pattern designates these ones. The
identifying pattern therefore can be regarded as a part of the
context pattern.

The following example shows a simple transformation rule:
{X Y | X parent-extends—Y} (1)
{} > Change(Y.superclass—X) (2)

The query expression (1) designates a set of pairs of nodes which
are connected via a parent-extends edge with each other. The
transformation statement (2) changes the edge parent-extends
between each pair of nodes to the edge superclass. Figure 9
illustrates the application of this transformation rule. We did not
have to select additional nodes and edges for the transformation,
thus, the place of the context pattern left empty.

The transformation rule which is intended to eliminate the after
edges in figure 7, at (1) and (2) looks like this (the woven
methods have only one exit point, no return value):

(1) {XY|Xafter—>Y}

2) { MB, S| Y.body—->MB AND 74 7B(X.member—A AND
A.meta=advice AND A.body—B AND B.statement—S
)}

3) > AppendAfter(MB.statement—S)

The identifying pattern (1) selects pairs of nodes connected
through the edge after. The context pattern (2) selects the node
that denotes the body of the method (MB), and the nodes that
denote the statements in the advice (S). The transformation
statement (3) appends these latter nodes to the former one.

Naturally, there may be nodes and edges that cannot be directly
transformed into the desired form of graph in only one step. In
this case a sequence of transformation rules has to be applied in
order to achieve the CG with the proper characteristics. For
example, merging two hyperslices typically requires the
application of more than one transformation rule. On the top level
the merge relationship is denoted by only one edge between the
two hyperslices. In the first transformation step this edge is
processed and a new merge edge is created between each pair of
nodes that denote the units of these hyperslices. If some of these
units are classes than the merge edge between those classes has to
be processed again; in this way, the merge relationships are
pushed down to the level of methods of those classes. This
process ends up with the merging of methods.

This latter process is known as derivation sequence in the
terminology of graph transformation systems. We actually found
that this graph transformation language falls into the category of
algebraic graph transformation approaches [5].

7. RELATED WORK

In [6], the authors propose a framework by which the core
semantics of five aspect-oriented tools, namely Aspectl],
DemeterJ, Hyper]J, Open Classes, QJBrowser, can be modeled in
terms of nine properties. These properties cover, among others,
the language the input programs are written in, how the input
languages indentify join points and how the input languages
contribute to the semantics at the join points. The authors also
provide a definition for the term crosscutting in terms of the
model. However, they had difficulties to achieve a common
weaver structure for all five models. Without a common
representation the evaluation of AOP languages is difficult. In our
approach we will try to provide a more generic model that can
help to understand the composition mechanism of these
languages.

Assman in [7] presents a GRS-based (Graph Rewrite System)
aspect-oriented programming approach, in which aspects,
joinpoints and weaving have well-defined and precise semantics
in terms of graph-rewriting. In GRS-based aspect-oriented
programming aspect composition operators correspond to graph
rewrite rules, weavings are direct derivations, and weaved
programs are normal forms of the rewrite systems. In accordance
with this approach we use a common graph transformation system
to model the different types of composition mechanisms of the

Gary T. Leavens
7

existing aspect-oriented languages in a uniform way. However, in
our work we focus on the evaluation of the aspect-oriented
languages and we regard the graph notation only as a means that
helps to reason on the composition mechanisms.

QJBrowser [8] is a code exploration tool by which various
program elements can be extracted from a source model and
presented in a hierarchical view. A selection criterion determines
what elements should be extracted from the program. This
criterion is defined as a query in terms of first order predicates.
The query is executed against the source model and results in the
tuples of the selected properties. In our approach we use a similar
technique to select certain nodes of the CGs.

Mens in [9] presents conditional graph rewriting as a domain-
independent, formal approach for managing unanticipated
software evolution. He proposes labeled typed nested graphs to
represent complex software artifacts and graph rewriting to
control the evolution of these artifacts. Similarly, we would like
to use CGs as a domain independent formalism to model different
program units and graph transformation as a formalism to
describe weaving operations.

8. CONCLUSION & FUTURE WORK

In this paper, we have introduced the concept of Composition
Graphs as a means for reasoning about (aspect-oriented)
composition. We have illustrated how CGs can be used to
represent a simple example program, expressed in Java, Aspect]
and HyperlJ, respectively. Subsequently, we demonstrated how
composition (or weaving) mechanisms can be represented by
transformation rules upon CGs.

This paper aims at laying the foundation for further work in
reasoning about composition mechanisms.

e We may use CGs to reason about properties such as degrees
of coupling and cohesion, e.g. by defining metrics.

e We believe that we can define the semantics of composition
mechanisms effectively by specifying general transformation
rules, which can transform any CG in language A towards a
CG in language B. Hence, the essential differences in
composition mechanisms can be observed by looking at the
differences between the transformation rules.

e We expect that the application of CGs to represent a variety
of programs in different AOLs will yield increased insight in
the workings and essence of aspect-oriented approaches,
perhaps leading to new or generalized composition
mechanisms.

Although we have already gained some experience in modeling
programs in different AOP languages as CGs, there are still
several issues left to be addressed as future work. First of all, we

have to refine the structure of the graphs in case of each language.
In other words, we want to enrich the set of types of nodes and
edges that represent AO composition structures. Besides, the
transformation rules also have to be specified in order to reason
about the corresponding composition mechanism.

Further issues that we plan to address shortly:
o Improving the representation/visualization of the CGs

e Address the ability to model both static composition and
runtime composition.

e Define metrics to judge certain characteristics and quality
attributes of programs represented as CGs.

e Analysis and comparison of existing composition mechanisms
and identification of new composition mechanisms

We intend to explore the application of transformation rules to
create code generators.

9. REFERENCES

[1] Kiczales, G. et al., An overview of AspectJ, in Proceeding
ECOOP 2001, LNCS 2072, J.L. Knudsen, Editor. 2001,
Springer-Verlag: Berlin. pp. 327-353.

[2] Ossher, H. and P. Tarr, Hyper/J: Multi-dimensional
separation of concerns for Java, in Proceeding 23"
International Conference on Software Engineering. 2001,
IEEE Computer Society. Pp. 729-730.

[3] Gamma, E. et al., Design Patterns. elements of reusable
object-oriented sofiware. 1995, Addison-Wesley.

[4] Hannemann, J. and G. Kiczales, Design pattern
implementation in Java and AspectJ, in Proceeding OOPSLA
’02. 2002, ACM SIGPLAN Notices.

[5] Rozenberg, G. (ed.), Handbook of Graph Grammars and
Computing by Graph Transformation, vol. 1., 1997, World
Scientific.

[6] Masuhara, H. and G. Kiczales, 4 Modeling Framework for
Aspect-Oriented Mechanism, in Proceeding ECOOP "03.
2003.

[7] Assman, U. and A. Ludwig, Aspect Weaving by Graph
Rewriting, 1999, Generative Component-Based Software
Engineering (GCSE), p. 24-36.

[8] Rajagolopan, R. and K.D. Volder, QJBrowser: A Query-
Based Approach to Explore Crosscuting Concerns. 2002,
submitted for publication.

[9] Mens, T., Conditional Graph Rewriting as a Domain-
Independent Formalism for Sofiware Evolution. 2000,
Lecture Notes in Computer Science, Springer-Verlag.

Gary T. Leavens
8

A Formal Model for Cross-cutting Modular Transition
Systems

*
Henny B. Sipma
Computer Science Department
Stanford University
Stanford, CA. 94305-9045

sipma@cs.stanford.edu

ABSTRACT

We define a notion of aspects in the framework of modu-
lar transition systems. In our model an aspect is viewed as
a semantic transformation on transition systems. Our pri-
mary objective is to use the model as a basis for studying
inheritance and imposition properties of aspect constructs
currently in use in practical languages such as AspectJ. We
show that our model is sufficiently expressive to represent
many of the constructs in this language. However, the mech-
anism of aspect-orientation presented in this paper may also
be of practical use for systems organized in a modular fash-
ion.

1. INTRODUCTION

In recent years cross-cutting techniques have emerged as a
useful programming technique orthogonal to object-oriented
and modular programming methods [7, 6]. In this paper we
propose a formal model of such cross-cutting techniques,
also called aspects, in the framework of modular transition
systems, an expressive, first-order representation of reactive
systems. Our aim is to use the model as a basis to study
properties and capabilities of such techniques, including in-
heritance properties: which system properties are preserved
across the application of aspects, and imposition properties:
which systems are guaranteed to satisfy the property im-
posed by the aspect. Although not set in an object-oriented
framework we expect our analysis results to give insight into
the general application of aspect-oriented techniques.

In our model aspects are viewed as semantic transformations
on modular systems. Aspects can introduce global and lo-
cal state into modules, introduce additional statements, and
modify existing statements, including altering the program

*This research was supported in part by NSF grants CCR-
99-00984-001 and CCR-~0121403, by ARO grant DAAD19-
01-1-0723, and by ARPA/AF contracts F33615-00-C-1693
and F33615-99-C-3014.

flow. The system modifications are modeled by a combi-
nation of abstraction to add newly desired program behav-
iors, and restriction to remove unwanted program behaviors.
Analysis of the effect of aspect application can thus make
use of the well-known analysis methods for abstraction and
restriction.

Although our main objective is to use the model as a basis
for analysis, the application of aspects to modular transi-
tion systems presented here can also be useful in practical
construction of reactive programs. Because of the semantic
basis of our method, potentially more constructs are enabled
than with current methods in which new code can be intro-
duced only at so-called join points in the call graph of the
program.

The paper is organized as follows. In the next section we in-
troduce the computational model of transition systems and
present a simple programming language to describe systems.
In section 3 we define the representation and semantics of
an aspect, and in section 4 we illustrate some typical as-
pect constructs commonly provided by aspect-oriented lan-
guages. In section 5 a preliminary outline is given of the
types of analysis we expect to do based on the model pre-
sented here, and section 6 concludes with a discussion of
some shortcomings of our model and plans for future work.

2. PRELIMINARIES
2.1 Computational Model: Transition Systems

Our basic computational model is that of a transition system
[9] (TS), S = (V,BOs,T), where V C V is a finite set of typed
variables taken from a universal set of variables V, Ogs is
an assertion (first-order formula) characterizing the initial
states, and T is a finite set of transitions. A state s is an
interpretation of ¥V, which assigns to each variable v € V a
value s[v] over its domain; 3 denotes the set of all states. A
transition 7 € 7 is a function 7 : ¥ — 2% and each state
in 7(s) is called a T-successor of s. We say that a transition
T is enabled on s if T(s) # (), otherwise 7 is disabled on s.'

Note that the set of transitions can equally well be repre-
sented by a single transition. In the original definition of
[9] separate transitions are identified to support the defini-
tion of fairness. Although we do not handle fairness in this
paper, it is the intention to include it in the future. In addi-
tion, identification of separate transitions allows finer-grain
control of aspect applicability.

Gary T. Leavens
9

Each transition 7 € 7 can be described by a first-order
formula p,(V, V"), called the transition relation, expressing
the relation between a state s and any of its T-successors
s" € 7(s). In p,(V, V') the unprimed versions of the variables
refer to values in s and the primed versions refer to values
in s’. For example, the formula ' = x + 1 represents the
transition function in which the set of T-successors of a state
s with s[z] = ¢ contains all states s’ such that s'[z] =c+ 1
for some constant c.

A run o : so,s1,... of a transition system S is an infinite
sequence of states such that the following two conditions
hold

e Initiation: the first state is initial, that is s |: Os;

e Consecution: for each ¢ > 0, the state s;41 is a 7-
successor of s; for some 7 € T.

The behavior of a system S is identified with its set of runs,
denoted by L(S).

2.2 Modular transition systems

Modular transition systems organize a transition system into
transition modules that can be composed into larger mod-
ules by means of module expressions [3]. In this paper we
do not use the full power of module expressions, but re-
strict ourselves to modular transition systems consisting of
n basic modules composed in parallel, where a basic module
consists of an interface I : (Vinput, Voutput; Vshared) declaring
the input variables Vinput, which can be modified by other
modules, but not by the module itself, the output variables
Voutput, whose value can be observed by the other mod-
ules, but can only be modified by the module itself, and the
shared variables Vspared, which can be observed and modi-
fied by all modules, and a body B : (Var,©n, Tar) containing
the set of variables local to the module, an initial condition,
and a set of transitions. For the precise semantics of the
parallel composition operator we refer to [3], as it is not
directly relevant to the remainder of this paper.

2.3 SPL programs

Although systems can be described directly as modular tran-
sition systems, using first-order formulas to describe the ini-
tial condition and transition relations, it is usually more
convenient to represent a system as a program in some struc-
tured programming language with a well-defined semantics
in terms of transition systems. We will use SPL (Simple
Programming Language) a simple imperative programming
language to describe modular transition systems [9].

Example Figure 1 shows program BAKERY, a program that
implements Lamport’s Bakery algorithm for mutual exclu-
sion [8], consisting of two SPL modules, P, and P,. This
program can be translated into a modular transition system
with modules M7 and M. The two modules have interfaces

L = ({2}, {nn},0)

I <{y1}7{y2}7®>
respectively, reflecting that y» is observed by P;, but not
modified by P, and y; is modified by P;, but not modified

10

[out yi : integer where y; =0
in y2 : integer
{o: while T do
P, - ?1: noncritical
: la: y1:=y2+1
l3: await (y2 =0V y1 < y2)
l4: critical
l5: y1:=0
Lfs: i
I
[out y. : integer where y» =0
in y; : integer
mo: while T do
P, m1: noncritical
: ma: Y2 1= Y1 + 1
ma: await (y1 =0V y2 < y1)
ma: critical
ms: Y2 1= 0
L6 i

Figure 1: Program BAKERY

by the other module, and the other way around for module
P,. The bodies of the two modules are given by

({m}, 1 =0Am = Lo, T1)
({m2},y2 = 0 A2 = mo, T2)

B,
B;

where 71 and 72 contain the transitions corresponding to
the statements in each module, as explained below.

FEach statement in an SPL module is associated with a prelo-
cation, identified by the label of the statement, and a set of
post locations. To each module M; a control variable 7; is
added, ranging over the set of locations in the module, and
initialized to the prelocation of the first statement in the
module. Each statement corresponds with a transition ac-
cording to the transition semantics of each statement. For
example, the statement labeled by ¢2 is represented by a
transition with transition relation

m=lAy=0Vy <p)AT =LAy =0
while the statement labeled by £y can be represented by

w1 = ¥{p
A
((true A = L) V (false ATy = Lg))
A
(y1 =1 Ays = y2)

In the remainder of the paper we will usually omit the con-
juncts like ¢} = y1, stating that a variable is preserved, and
assume that all system variables not mentioned in the tran-
sition relation are preserved.

Thus, 71 and 72 each contain six transitions, one for each
statement.

For a detailed description of the semantics of SPLin terms of
transition systems, the reader is referred to [9].

Gary T. Leavens
10

In the examples in Section 4 we will use the functions preloc
and postloc that assign to each statement its prelocation and
a set of post locations, respectively, where the set of post lo-
cations is determined by the control flow of the statement, as
defined by the transition semantics. For example, preloc(¢; :
y1 :=y2 + 1) = £1, and postloc(fp : y1 :=0) = {£1,0s}, even
though location £ is not reachable via statement ¢5. Again
these functions are fully defined in [9].

3. ASPECTS

An aspect is defined as a transformation that maps modu-
lar transition systems into modular transition systems. The
modifications an aspect may make to a modular transition
system include the addition of global and local state to the
system and modules, respectively, the introduction of new
transitions, and the modification of existing transitions?. An
aspect is described by a set of global variables, possibly with
an initial condition, and a list of aspect facets, one for each
module constituting the modular system, specifying the ad-
ditional state and modifications to each module.

Modification of transition relations is achieved by a combi-
nation of conditional abstraction and restriction. Transition
relations that imply an abstraction condition are abstracted
by projecting out a set of variables associated with the con-
dition. Abstraction is followed by restriction: the transition
relations of those transitions whose original transition rela-
tion implies a restriction condition are conjoined with the
associated restriction assertion.

The approach of transformation is illustrated in Figure 2.
The original set of behaviors of the system is enlarged by
means of abstraction. This set is then reduced by restric-
tion, possibly eliminating some or all of the original system
behaviors.

Our definition of an aspect was inspired by the class exten-
sions presented in [4], which are code facets that are added
to a base system based on predefined entry and exit condi-
tions in the base system.

3.1 Definition

An aspect A : (Va,04,04,..
fined on modular transition systems M : (M, ...
sisting of n modules, with

Mi : <<Vi,i'n,put7 ‘/i,o'u.tput, Mﬁ,shared)y <‘/1a 97«" 7:>>

.,an) is a transformation de-
, M) con-

The aspect consists of the following components:

e Vj4: afinite set of global aspect variables, disjoint from
the variables in M;

e O: the aspect initial condition, an assertion over Vi
and the shared variables in M;

® a1,...,an: a list of aspect facets.

2 At this stage we do not allow aspects to modify the modular
structure; it is a straightforward extension to allow aspects
to introduce new modules.

11

M_1 M_2 M_n
module module module
variables variables variables
aspect aspect
A—l variables facet
aspect
AM| aiables

Figure 3: Schematic representation of aspect appli-
cation

An aspect facet is defined for each module. It describes how
the behavior of the module is modified. Figure 3 gives a
schematic representation of the relationship between mod-
ules and aspects and the position of aspect facets.

An aspect facet a; : (Vai, Oai, Tai, Bi, €;) consists of the fol-
lowing components:

e V,i: a set of variables local to the facet, disjoint from
the variables in M; these variables are used to perform
local bookkeeping and are not visible by other aspect
facets.

e O4;: the aspect facet initial condition, an assertion
over Vo U V; U Vy, used to initialize the local facet
variables.

e 74 a finite set of transitions that may modify vari-
ables in V4 U V4 UV output U Vi,shared U Vi, and in addi-
tion, may depend on the values of variables in V; input-

e [3;: a finite set of aspect facet abstraction instructions,
where each instruction §;; = (¢ij, Wi;) is a pair con-
sisting of an assertion ¢;; that governs the applicabil-
ity of the instruction, and a set of variables W;; to be
projected out of the transition in case the transition
relation implies the applicability condition;

e ¢;: a finite set of aspect facet restriction instructions,
where each instruction €;; = (945, xsj) is a pair con-
sisting of an assertion %;; governing the applicability
of the instruction, and an assertion x;; to be conjoined
with the transition relation in case the transition rela-
tion implies the applicability condition.

3.2 Semantics

Given an aspect A : (Va4,04,01,...,0a,) and a modular
transition system M : (M, ..., M,) the application of A to
M, written A(M), defines the modular transition system
M* (MY, ..., M) with

M'L* : <<V:itinput7 ‘/itoutput; ‘/iTShE’I‘Ed>7 <‘/i*7 @:, 7;*>>

with the following values

Gary T. Leavens
11

a) original set of behaviors

b) set of behaviors after abstraction C) set of behaviors after restriction

Figure 2: An aspect as a combination of abstraction and restriction

The input and output variables of all modules remain
unchanged:

* *
‘/i,input = ‘/i,input and Vi,output = ‘/i,output

The global aspect variables are included in the shared
variables of each module, making these variables visi-
ble to all modules:

*
V:L,shared = Vji,shared UVa

The local variables of each aspect facet are included in
the local variables of the corresponding module:

The global aspect initial condition and the aspect facet
initial condition are both conjoined with the module
initial condition:

@:-(:@i/\@A/\@ai

The new set of transitions 7;* consists of the module
transitions, possibly modified by the facet abstraction
and restriction instructions, and the facet transitions.

Let 7 € 7; be a module transition with transition re-
lation p-, and let 8 = {(¢1, W1), ... (¢x, W)} be the
set of abstraction instructions of aspect facet ;. Then
the abstracted transition 73 has transition relation

X . p-

where
x=Uw;
JEI
where I is the index set containing the indices of the

abstraction instructions whose condition is implied by
the transition relation, that is,

I'={j|[1<j<kandpr— ¢;}

Thus the variables associated with those abstraction
instructions whose condition is implied by the transi-
tion relation are projected out of the transition rela-
tion.

12

Similarly, let € = {(¥1,Xx1),- - -, (¥k, xx)} be the set of
restriction instructions for aspect facet «;. Then the
abstracted and restricted transition 75 has transition
relation

3IX . p- A /\ X
JEI
where
I={j|1<j<kandp, -1}
is the index set containing the indices of the restriction
conditions implied by the transition relation.
For example, consider a transition 7 with transition
relation
pr: T=bLAz>0AT =l

and abstraction and restriction instructions

B: A(m=b,{r"}), (m =ts,{z})}
e: {(m=t, 7" =45)}

Clearly p, implies the first abstraction condition in J,
but not the second, and thus only 7’ is projected out,
resulting in an abstracted transition 75 with transition
relation

Prs ¢ T=0ANz>0
Subsequent application of the restriction condition then
results in the transition 7g with transition relation
Prae T=bAz>0AT =05
Thus, the effect of 3 and € on 7 is to redirect the control
flow of 7 to a new location.

Using the above notation, the new set of transitions
T.* can now be given as

ﬁ*:{Tﬁi€¢|T€7;} U Tai

4. ASPECT EXAMPLES

The aspect model introduced in the previous section is suffi-
ciently expressive to represent many of the aspect constructs
used in practical languages such as AspectJ [6]. In this sec-
tion we present some examples of how these constructs can
be represented in our model.

Gary T. Leavens
12

Yo :

Lo : 0

4y €n+1 . gnew
lo: s = ly: o
ls: s

64: €4

M Ainse'rt (M)

Figure 4: Inserting a statement before a given state-
ment s

Insert Before

The most common aspect action is to introduce one or more
statements before (or after) a given statement. Given a se-
quential program represented by the modular system M :
(M) with control variable 7 with range (o .. .#¢n, the follow-
ing aspect inserts transition 77" with (unspecified) transi-
tion relation p™*" just before a given statement s.

Ainsert == (@, true, a)

The set of global variables is empty as no global state needs
to be introduced, and there are no restrictions to the global
initial condition. There is one aspect facet,

a= (0, true, {T"*}, B, €)

The set of local variables is empty and there is no change
to the initial condition.®> The facet transitions include the
transition to be introduced, 7"¢*. The abstraction condition
3 needs to abstract the transition relation of the statement
before s to enable redirection of control to the new transi-
tion:

8= {(7r' = preloc(s), {Tr'})}

that is, variable 7’ is projected out from transition relations
in which the control variable is set to the prelocation of
statement s. Finally € restricts the same transitions to direct
control to a new program location ¢,1, not occurring in the
program

e = {(n’ = preloc(s), 7’ =tny1)}
The transition relation of the new transition now becomes

new

prnew : p"Y AT = lpy1 A = preloc(s)

that is, the new transition is associated with the new pro-
gram location and its post location is the prelocation of the
given statement s.

Figure 4 shows the effect of the aspect in SPL program no-
tation. Note that the above aspect is only one way of rep-
resenting this construct. Others are possible and may be
convenient in different situations (for example, if one does
not want to modify the range of the control variable).

Logging
Given a system M : (M7, Ms), the following aspect counts
the changes to system variable x:

Aogging = ({Nz} , No = 0, 1,)

3For simplicity we assume that s is not the first statement
of M; if it is we do need to modify the initial condition.

13

It introduces a global aspect variable N, initialized to 0, to
record the number of changes and includes two aspect facets
a1,2:

a2 : {0, true, 0,0, e}

whose only significant component is the restriction instruc-
tion

e={(true,(2' #2 > N, =No + 1) A (¢’ =2 = N, = N.))}

whose effect is to add the above conjunct to all transitions
in M 2, incrementing N, when z is modified, and leaving it
unchanged otherwise.

An alternative restriction instruction is
e={(@ #2,N, =N:+1),(a' =2,N, = N) }

which, when used in actual program construction, would
lead to a more efficient program. However, it relies on our
ability to decide whether a transition relation implies the
restriction conditions, which, in general, may not be decid-
able.

Adding synchronization

Consider a system M : (M1, M;) with two parallel processes
with control variables 1 2 ranging over program locations
lo...ln and mg ... my respectively, that uses a resource S
that requires mutually exclusive access. The following as-
pect adds protection of the resource using the Bakery syn-
chronization mechanism shown in Section 2.

= <{y1ay2}ay1 = 0/\:1/2 = 0,01,0&2>

Aezclusion

Two global variables are introduced, both initialized to 0.
The two aspect facets are defined as follows:

aq <0, true, {T11,T12,T13},ﬂ1,61>

with
priv i M =lpp AT =Llopa Ayh =1 +1
Prig : T =Lnta Ay = preloc(S1) A (y2 =0V y1 < y2)
Prig @ T = Lnts AT € postloc(S1) Ayp =0

where £p41 ... lnh43 are new program locations not occurring
in the program. The abstraction instruction is given by

1= {(7r1 = preloc(S1) V w1y = preloc(S1), {7’!'/1})}

eliminating the control flow from the statement using the
resource, and those preceding the statement that uses the

resource. The restriction instruction restores the control
flow:

o = (1 = preloc(S1), 71 = Lnt1),

(m1 = preloc(S1) A w1 € postloc(S1), 1 = Lnt3)
Similarly,
az = (0, true, {721, T22, T23} , B2, €2)

with

Proy t T2 =Mpgp1 ATH)=mpia Ay =y1 + 1

Pras 1 T2 = Mit2 ATh = preloc(S2) A (y1 =0V y2 < y1)

Praz ¢ T2 = M43 A T4 € postloc(S2) Ayy =0

and similar definitions for B2 and e2 as above.

Figure 5 shows the effect of the aspect in SPL program no-
tation.

Gary T. Leavens
13

bo: ...
£i: Si(uses S)
EQ:

mo:
ma:

Sa(uses S)
mao: ...

(a) M :< M1, M> > using shared resource S

[shared y1,y2 : integer
where y1 =y2 =0

Yo : .

bnt1: 1 =y2+1

Lnyo: await (y2 =0V y1 < y2)
{1 S1(uses S)

Zn+3: Yy = 0

128

[shared y1,y2 : integer T
where y1 =y2 =0

mo: .

Me+1: Y2 i =y +1

Mi42: await (y1 =0V y2 < y1)
mi: Sa(uses S)

Mr43: Y2 i = 0

L M2 . |

(b) Aezciusion (M) ensuring mutually exclusive access to S

Figure 5: Adding synchronization

lo: ©:=2 h
¢1: while 7 < N do
{ez: ali] == f(ali — 1], alil, ali + 1])}
l3: 1:=13+1
ly: 1:=1
l5: while i < N — 1 do
[56: ali] == g(a[i])]

br: 1:=1+1

Figure 6: Program SERIES

Loop Fusion

Our model of aspects is sufficiently expressive to represent
loop fusion, a transformation often useful in image process-
ing to optimize cache performance. Consider program SE-
RIES shown in Figure 6. Assume the program has control
variable m with range 0..8, such that = = ¢ when control is
at location #;.

The following aspect merges the two loops starting at £ and
252
Apysion = (0, true, a)
with
a = (B, true, {r}, B,¢€)
with abstraction instruction
B={(r=1vr=2vr=7{x"})}
and restriction instruction

(r=1L,G E<NAT =2)V(i>NA7r =8))
(m=2,7"=09)
(r=7,7"=3)

The transition relation of the newly introduced transition is

prT=9AT =6Ai=i-1

14

[lo: 1:=2]
¢1: while i < N do

ls:

Figure T: Afusion(SERIES)

The result of applying Afusion to program SERIES is shown
in Figure 7.

5. ANALYSIS OF ASPECTS

Properties of reactive systems are often specified in some
form of temporal logic. For example, the property that in
all program behaviors the value of system variable z does
not exceed 10 can be specified by the linear temporal logic
(uTL) formula

O(z < 10)
where the O-operator means “always”. Other temporal op-
erators are provided that state that some condition p must
eventually be fulfilled (Op), or that some condition p holds

until another condition ¢ holds (pl{q). The precise semantics
of LTL can be found in [9].

Verifying that a system S satisfies a specification expressed
as an LTL formula ¢, usually written

Sko

consists of proving that all program behaviors of S satisfy
¢, that is

L(S) € L(9)

where L£(¢) is the set of all behaviors (infinite sequences of
states) that satisfy ¢.

Gary T. Leavens
14

Property Inheritance
The definition of a formal semantics of aspects now allows
us to study questions of the type

MEep,...
AM)

for some temporal property ¢; that is, what restrictions on
aspects guarantee preservation of system properties. For
example, it is easy to see that for a given safety property ¢

M |: (puB.A :077-./4 :w
AM) =

where 34 = 0 stands for 3; = 0 for all aspect fragments «;
in A, and similarly, 74 = @ stands for 7; = () for all aspect
fragments. Clearly all aspects in which no abstraction is
applied, that is, no program behaviors are added to the sys-
tem, and no new transitions are introduced, should preserve
any safety property. Note that liveness properties may not
be preserved as restriction may disable transitions necessary
to achieve some goal.

As was suggested in an early work on superimposition [5],
aspects can be classified by their inheritance properties. For
example, one can distinguish monitoring aspects, which per-
form pure augmentation and therefore preserve all temporal
properties, requlatory aspects, such as the one given above,
which may turn unfair computations into fair ones, and thus
cause liveness properties to be violated, and all other as-
pects, which cannot make any guarantees. We expect to be
able to make a finer classification for this last class.

Property SuperImposition

Similarly, one may develop a notion of aspects satisfying cer-
tain properties and determining what restrictions on mod-
ule systems are required to ensure that the resulting system
satisfies the property, that is, under what conditions can we
guarantee

AEo,...
AM) E ¢

Aspect Interaction

The third question that can be studied in this framework is
aspect interaction, that is, under what conditions does the
following hold:

L(A1(A2(M))) = L(A2(A1(M)))
That is, is the order of applying aspects significant?

6. DISCUSSION AND FUTURE WORK

Extensions

The model presented in this paper is the basic model upon
which we intend to build several extensions. A first desir-
able extension is parameterization. In our current aspect
description language, variables, predicates and transitions
must be specified literally. It is a straightforward extension
to the aspect description language to allow aspects to be
parameterized by the components appearing in the aspect
fragments, such as 3, € and 7. A more challenging exten-
sion is to add the capability of capture of context as, for
example, provided in AspectJ.

15

The current model relies on rather coarse abstraction, po-
tentially causing the set of behaviors to grow larger than
necessary, thus making it harder to prove property preser-
vation. We are currently investigating whether a more fine-
grained abstraction such as assertion-based abstraction [2]
would allow to increase the accuracy of the abstraction in a
useful way.

For ease of exposition we have omitted fairness in this paper.
To investigate inheritance and superimposition of liveness
properties, fairness properties will have to be included.

Constructing systems

The model as presented cannot be used directly to con-
struct new systems from aspects and base systems. Ab-
straction and restriction depend on our ability to decide the
validity of the implications governing their applicability. In
all examples shown these implications were decidable and
easy to check. It would be interesting to determine which
constructs can be expressed by decidable conditions. We
are currently implementing a construction method in STeP
(Stanford Temporal Prover) [1], using decision procedures
to decide applicability, to experiment with the various con-
structs.

7. REFERENCES

[1] BigrRNER, N. S., BROWNE, A., CoLON, M.,
FINKBEINER, B., MANNA, Z., SipmMA, H. B., AND
URIBE, T. E. Verifying temporal properties of reactive
systems: A STeP tutorial. Formal Methods in System
Design 16, 3 (June 2000), 227-270.

CoLON, M. A., AND URIBE, T. E. Generating
finite-state abstractions of reactive systems using
decision procedures. In Proc. 10°" Intl. Conference on
Computer Aided Verification (July 1998), A. J. Hu and
M. Y. Vardi, Eds., vol. 1427 of LNCS, Springer-Verlag,
pp. 293-304.

FINKBEINER, B., MANNA, Z., AND SipmA, H. B.
Deductive verification of modular systems. In
Compositionality: The Significant Difference,
COMPOS’97 (Dec. 1998), W.-P. de Roever,

H. Langmaack, and A. Pnueli, Eds., vol. 1536 of LNCS,
Springer-Verlag, pp. 239-275.

FisLER, K., AND KRISHNAMURTHI, S. Modular
verification of collaboration-based software design. In
International Conference on Foundations of Software
Engineering (2001).

KATzZ, S. A superimposition control construct for
distributed systems. ACM Trans. Prog. Lang. Sys. 15,
2 (April 1993), 337-356.

KiczALEs, G., HiLsDALE, E., HuGUNIN, J., KERSTEN,
M., PALM, J., AND GRISWOLD, W. Getting started
with AspectJ. Communications of the ACM 44, 10
(October 2001), 59-65.

KiczALEs, G., LAMPING, J., MENDHEKAR, A.,
MaAEDA, C., Lopes, C., LOINGTIER, J., AND IRWIN, J.
Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP) (1997), vol. 1241 of LNCS, Springer-Verlag.

Gary T. Leavens
15

[8] LAMPORT, L. A new solution of Dijkstra’s concurrent

programming problem. Communications of the ACM
17, 8 (1974), 435-455.

[9] MANNA, Z., AND PNUELI, A. Temporal Verification of
Reactive Systems: Safety. Springer-Verlag, New York,
1995.

16

Gary T. Leavens
16

On Composition and Reuse of Aspects

Jorg Kienzle, Yang Yu, Jie Xiong

School of Computer Science
McGill University
Montreal, QC H3A 2A7
Canada
contact: Joerg.Kienzle@mcgill.ca

Abstract

This position paper investigates the possibilities of sepa-
ration, modularization and reuse offered by aspect-orienta-
tion, concentrating not on the technical or syntactic
problems, but on the inherent issues resulting from inter-
aspect dependencies. An aspect is defined based on the ser-
vices it provides, on the services it requires and on the ser-
vices it removes from other aspects. A classification of
aspects is established based on the way they interact with
each other and on the way their functionality is triggered.
Composition rules and the weavability criteria are defined
based on this classification. Moreover, the impact of the
dependencies of aspects on the level of achievable reuse is
analyzed. Finally, the paper shows how the general ideas
apply to the aspect-oriented programming environment
Aspect].

1 Introduction

Separation of concerns is a fundamental principle of
software engineering that in its most general form refers to
the ability to identify, encapsulate, and manipulate those
parts of software that are relevant to a particular concept,
goal, task, or purpose. The benefits of a successful modu-
larization of concerns during the implementation phase are
obvious: simpler code structure resulting in improved read-
ability of program code, program code that is easier to cus-
tomize and adapt to new situations, increased possibilities
for reuse.

In order to help developers, software development
methods, e.g. the Unified Process [1], define a step-by-step
process that leads the development team from an initial
requirements document through to the final implementa-
tion [2]. Most approaches start by analyzing the system
requirements based on use cases, which capture the expec-
tations that the final users of the software may have. In a
sense they focus on the different concerns of the end-users.
During the design phase however, most approaches con-
centrate on elaborating an object-oriented design, i.e.
decomposing the system into objects, each of them provid-

17

ing a well-defined part of the main functionality of the sys-
tem. As a result, secondary functionality, e.g. distribution
support, is often poorly encapsulated. This phenomenon is
known as the “tyranny of the dominant decomposition” [3],
and aspect-orientation [4] might be a possible way to
counter it.

Of course, the notion of main functionality is relative. It
has never been precisely defined, but is usually used to
denote what is particular to a certain piece of software.
These days, general mechanisms, for instance mechanisms
that deal with concurrency and failures, distribution, or
security, are considered secondary functionality.

This classification into main and secondary functional-
ity, often also referred to as functional and non-functional
aspects, is very unfortunate. It somehow conveys the feel-
ing that there are important concerns and less important
concerns during the development of a piece of software,
which often leads to the mistake that only the functional
part of an application is developed following software
engineering principles, and the non-functional part, e.g.
fault tolerance, is added later on.

It is our firm belief that there are no such things like
non-functional aspects. Every concern of a certain piece of
software is important, is part of its functionality. During
design all concerns must be considered and integrated in
order to obtain an elegant solution.

What are called non-functional aspects are actually con-
cerns that are more general, i.e. they are likely to be present
in other applications as well. Of course, it is tempting to
separate these aspects from the other functionalities of the
application and make then “generic”, meaning that modu-
larize them in such a way that they can be easily reused in
other contexts and applications. The idea is very legitimate
and it does not take long to convince any sensible program-
mer that such a separation would be great. Aspect-orienta-
tion might just be the right way to achieve this kind of
separation.

This paper investigates the possibilities of separation
and reuse offered by aspect-orientation, concentrating not
on the technical or syntactic problems, but on the inherent
issues resulting from inter-aspect dependencies. Section 2
defines the essence of an aspect based on the services it

Gary T. Leavens
17

provides and on the services it requires from other aspects.
Section 3 classifies aspects according to the way they inter-
act with each other. Based on this classification, Section 4
provides composition rules for aspects and Section 5 exam-
ines reusability issues. Section 6 illustrates how the pre-
sented ideas apply to one of the main-stream aspect-
oriented development environments, Aspect]. Section 7
takes a closer look at circular dependencies. Section § pre-
sents recommendations for aspect developers, and the last
section summarizes the results of this work.

2 Aspects

For the subsequent discussion, it is important to specify
clearly what we mean when we talk about an aspect.

From our understanding, an aspect at the design and
implementation level is a main abstraction that encapsu-
lates that part of the design solution that addresses a certain
concern expressed at the analysis level. On on hand, the
aspect provides a certain functionality: it implements the
concern. We’ll designate the set of the services it provides
P. Services can be seen as the entry points or interface
offered to the rest of the system. On the other hand, the
aspect may depend on functionality offered by other
aspects. The set of services it depends on is named D.
Optionally, an aspect might remove functionality of other
aspects. The set of services it removes is named R. Obvi-
ously, R is a subset of D. An aspect is therefore categorized
by the three sets P, D, and R.

What is needed to accurately describe a service is inten-
tionally left open. On one end, specifying the complete
semantics of an aspect is a challenging task, and out of the
scope of this paper. One the other end, object-oriented pro-
gramming languages often just use method signatures to
specify their interface to the outside world. Applying this
idea to aspects would mean specifying the signatures of P,
D, and R.

If we want to use UML to depict an aspect, we might be
tempted to use the representation of a class or interface.
Unfortunately, these constructs only show what a compo-
nent provides to the environment, and not what it requires
from others. UML stereotypes make it possible to extend
the base UML concepts and add additional meaning to
them. Fig. 1 shows an <<aspect>> stereotype with three
new compartments: Provides, Depends On and Removes. It
is not clear if an aspect should be seen as an extension of
the UML class, of the UML package or rather an extension
of the UML collaboration. Discussions are still in progress
[5, 6].

18

<<aspect>>
Aspect Name

Provides
Set of Services P

Depends On
Set of Services D

Removes
Set of Services R

Fig. 1: UML Representation of an Aspect

3 Aspect Interaction

In this section we attempt to classify aspects according
to the way they interact with each other. We have estab-
lished two classification criteria: the activation mechanism
and the dependencies.

3.1 Activation Mechanism

The activation mechanism of an aspect is determined by
analyzing when the aspect delivers its functionality. There
are two different kinds: autonomous and triggered.

Autonomous: An aspect is autonomous if it can act on its
own, i.e. it does not need to be stimulated to deliver its
functionality. It typically performs its duties continuously
or periodically.

Triggered: Initially, a triggered aspect is passive. It waits
for some other part of the application to activate it, and
only then it delivers its service.

This classification is similar to the one found in object-
orientation, where one distinguishes active and passive
objects [7]. Active objects act autonomously, whereas pas-
sive object must be triggered, i.e. only execute methods
when they are called from the outside.

Of course this classification is not absolute. An aspect
may provide autonomous services and triggered ones, sim-
ilar to the Time-Triggered Message-Triggered Objects pre-
sented in [8], which provide periodically executing
services as well as services triggered by messages. For the
sake of clarity, however, such mixing of activation mecha-
nisms is discouraged.

3.2 Dependencies

We essentially distinguish three different kinds of
dependencies: orthogonal, uni-directional and circular.

The functionality that an orthogonal aspect provides to
an application is completely independent from the other
functionalities of the application. The only thing it might
depend on is activation time (see Section 3.1 above), or
general application-independent information provided by
the run-time environment, e.g. information on the virtual
machine, current method name, etc.

Gary T. Leavens
18

Unfortunately, such aspects are not very common. An
example of an autonomous orthogonal aspect is a clock
counter. Every second, the counter is increased by one. No
explicit triggering is needed (probably the counter is imple-
mented using an independent thread or interrupts), and
there are no shared data structures between the clock aspect
and others. Measuring the time elapsed between two events
can be seen as a triggered orthogonal aspect. One might
think that there is a semantic dependency of such a timing
aspect on the part of the application it actually performs
timing on. This is, however, not true. The dependency is
only on the fact that the aspect has to be triggered twice:
once to start the timing, and a second time to stop it.

One of the most popular orthogonal triggered aspects is
logging. For debugging purposes, a logging aspect can be
applied to various places in an application to print out stack
traces, etc.

A uni-directional aspect depends on some functionality
(service or data) offered by other aspects in the application.
Without this functionality, it can not deliver its services.
Among uni-directional aspects, we can further distinguish
between uni-directional preserving and uni-directional
modifying ones.

Uni-directional preserving aspects provide new services
based on services of other aspects, but do not alter or hide
the other services in any way. The properties and function-
alities of the other aspects are preserved.

[9] presents an example of two triggered uni-directional
preserving aspects. It describes an aspect-oriented imple-
mentation of a telecom application that handles phone
calls. In order to set up correct billing, the elapsed time of
long distance phone calls must be measured. The long dis-
tance timing aspect uni-directionally depends on the call
aspect, adding timing information to the calls. It is not
orthogonal, because it has to associate timing with calls,
and therefore depends on the existence of the call aspect.
The billing aspect in turn depends on the call and the tim-
ing aspect, for it has to know the calls source and destina-
tion city, and the elapsed time in order to calculate the total
cost. In the same context one can imagine an aspect that
periodically collects statistical information on long dis-
tance calls, e.g. the average length of calls. This is an
example of an autonomous uni-directional preserving
aspect that depends on the call and the timing aspect.

A uni-directional modifying aspect replaces or modifies
functionality of some other part of an application, but it
does this transparently; the other aspect is not aware of
this, and therefore does not have to behave differently. In a
sense, a uni-directional modifying aspect wraps around or
encapsulates some services provided by other aspects. As a
result, some of the original services might not be provided
anymore.

19

As an example of a uni-directional modifying aspect,
imagine a typical banking application. Some banks (at least
Swiss banks) allow good clients to overdraw their account.
Clients with a bad credit history on the other hand are not
be allowed to do this. The desired effect can be achieved by
encapsulating in one aspect the account behavior, and
design an additional aspect that denies withdraw requests
in case of insufficient funds. The additional aspect removes
the withdraw service from the account aspect.

Circular dependency is the strongest form of depen-
dency. It occurs when several aspects are mutually depen-
dent. The simplest form is encountered when two aspects
depend on each other, i.e. the first aspect requires some ser-
vice provided by a second aspect, which, in turn, can only
deliver its service with the help of the first one. Another
way of looking at this from the perspective of an aspect
that you are adding to an application is the following: if in
order to make the overall application work with the new
aspect it is necessary to modify other aspects, then there is
circular dependency.

An example of a circular aspect has been presented in
[10]. In this example, a transaction aspect is added to a pre-
viously non-transactional application, allowing the applica-
tion to deal with concurrency and failures. The aspect itself
provides the run-time support for transactions, making it
possible to execute methods transactionally. However, the
application must state which method calls it wants to make
transactional, and what actions should be taken in case a
transaction aborts due to a failure.

Circular-dependent aspects are so tightly coupled that
one might argue that it makes no sense to consider each
aspect separately. This first impression will be confirmed
when considering composition and reuse later on. It is
often simpler to treat them as a single aspect. The set of
services the single aspect provides is the union of the ser-
vices the individual aspects provide, and likewise for the
set of services it depends on and the set of services it
removes. In the following sections we do not consider cir-
cular-dependent aspects, they will be revisited in section 7.

The following table summarizes the classification estab-
lished in this section:

Class of Aspect Restriction
Orthogonal D=¢g
Uni-directional preserving R=¢
Uni-directional modifying no restriction

Table 1: Classification of Aspects

4 Composition Rules

In AOP, the so-called aspect weaver composes the dif-
ferent aspects to form the final application. This composi-

Gary T. Leavens
19

tion can be done statically, i.e. at compile-time, or even
dynamically during the execution of the application. Imple-
menting such an aspect weaver is far from trivial, and there
are lots of technical issues that need to be addressed when
composing aspects. In this section, however, we will con-
centrate on the more fundamental problems of aspect com-
position. Even though a set of aspects might be technically
composable, it might be conceptually impossible.

In order to simplify the discussion, we introduce the
notion of an aspect group. Aspects in an aspect group all
have some dependency relationship. An executable appli-
cation consists of at least one non-empty aspect group,
containing at least one autonomous aspect. Initially, the set
of aspect groups that forms the final application is empty.
Step by step, additional aspects are added. The set of aspect
groups that form the final application is called a configura-
tion.

If we represent aspects as nodes, and dependencies as
directed edges, the representation of a configuration takes
the form of a directed acyclic graph (short DAG) as shown
in Fig. 2. We’ll call it the configuration dependency graph.
Each component of the dependency graph forms an aspect

group.

Aspect A

§)

Aspect B

Ao

Aspect C . Aspect D Aspect E
bemmmmm - Aspect F Aspect G

Fig. 2: A Configuration Dependency Graph

The composition rules for aspects in this section is
based on the classification presented in the previous sec-
tion.

Orthogonal aspects are very flexible — due to their
orthogonality there are no restrictions on composing such
aspects with others. When adding an orthogonal aspect to
the final application, a new aspect group is created, i.e. a
new component is added to the graph.

Uni-directional aspects must be added to an already
existing aspect group. The set of services that the aspect
requires must be provided by the aspects that are already in
the group. It is also possible to combine aspect groups, i.e.
join previously separated components of the graph, in
order to obtain the required set of services.

20

4.1 Weavability

An interesting problem is the weavability problem, i.e.
determining if a given set of aspects can be composed in
such a way that all service requirements are fulfilled.

In graph theory, this is equivalent to solving a multi-
commodity flow feasibility problem [11] with additional
node constraints. The graph to be analyzed contains one
node for each aspect and is fully connected. Every type of
service will be considered a separate flow. An aspect that
provides a certain service is a source for the flow (provides
one flow unit). An aspect that removes the service is a sink
(consumes one flow unit). Aspects that depend on the ser-
vice are mandatory transshipment nodes for the corre-
sponding flow. They can be modeled by an additional
constraint that states that the sum of incoming flows for
this node must be equal to one.

If and only if there exists a feasible flow, then the appli-
cation is weavable. By calculating the flow distribution that
uses the lowest number of arcs, and then inversing all arcs,
we obtain the dependency graph of the final application.

5 Making Aspects Reusable

One of the major encouragements for using AOP is
reuse. After having identified a certain concern, the idea is
that AOP should allow one to modularize and implement
this concern in an aspect. Later on, this aspect should be
usable in every application that exhibits the need for the
concern. Again, there are technical issues that must be
solved in order to make aspects reusable, e.g. how to spec-
ify the required, provided and removed services in a con-
cise way. In this section, however, we will concentrate on
the obstacles introduced by aspect dependencies.

An even stronger form of reusability is genericity. What
we want to achieve in this case is to write an aspect in such
a way that it can be added to an application without dis-
turbing the already existing structure. In other words we
want to add support for a certain concern to an application
just by adding the aspect that implements the concern to
the configuration.

The difficulty of providing such a form of reusability
increases depending on the class of aspect.

Orthogonal aspects can be reused in any context. They
are generic per se. They do not depend on any other
aspects, and therefore do not remove any existing services.
They do not disturb any existing aspect group configura-
tion, since they always start a new group. In the depen-
dency graph, orthogonal aspects will show up as sinks. In
Fig. 2, Aspect A and Aspect B are orthogonal aspects.

Uni-directional preserving aspects also make good can-
didates. Since they do not remove any services, they can be
added to any aspect group that provides the required ser-

Gary T. Leavens
20

vices. Of course, when moving a uni-directional preserving
aspect from one configuration into a new one, any aspects
it depends on must be either moved as well, or equivalent
services must already be available in the new configura-
tion. In the dependency graph, new uni-directional aspects
shows up as a source nodes. For instance, in Fig. 2, the uni-
directional aspects Aspect E, Aspect F or Aspect G
might just have been added to the configuration.

Uni-directional modifying aspects are hard to reuse,
since they modify the services of aspects they depend on.
They can only be added to an aspect group if it remains
weavable, i.e. the new aspect does not remove services that
are needed by other aspects.

6 AOP Mechanisms

This section analyses the support of the concepts pre-
sented above provided by Aspect] [12], one of the main-
stream aspect-oriented programming environments.

6.1 Interface Specification

Somehow, aspect-oriented programming environments
must provide a means for specifying what services an
aspect provides, what services it depends on, and what ser-
vices it removes. This has been an area of research for a
long time, and elegant solutions to this problem still have
to be found.

Aspect] takes the Java approach. The services provided
by a class or aspect are determined based on Java visibility
rules. Inside visible code, all potential joinpoints are advis-
able, meaning that they can be used as triggers or points of
extension for adding additional behavior.

There is no special part where dependencies are speci-
fied. An aspect potentially depends on all other modules
that are visible or that it imports. By looking closely at the
code, the services it actually uses can be determined.

The services that an aspect modifies or removes are very
hard to determine. Potential candidates are the destinations
of around advice, but also before and after advice that
modify the behavior of the class or aspect they are advis-
ing.

6.2 Activation Mechanism

Just as conventional object-oriented environments,
aspect-oriented development environments support autono-
mous aspects. The autonomy of aspects is typically imple-
mented by the underlying operating system. Autonomous
aspects are either separate processes, or implemented
based on threads.

AOP is however particularly well suited for implement-
ing triggered aspects. They are usually activated by the

21

aspect-oriented run-time, which in turn is stimulated by
intercepting some specific event.

In Aspect], for example, pointcut designators allow a
developer to specify when an aspect is to be activated. For
instance, it is possible to intercept calls to / and execution
of methods, throwing and handling of exceptions, and
reading and writing of fields. It is also possible to activate
aspects based on control flow information.

6.3 Aspect Semantics

There are several mechanisms that allow an Aspect]
programmer to write uni-directional aspects.

First of all, aspects are subject to the same visibility
rules as normal Java classes. They can call methods, or
read from / write to fields depending on their respective
mode (public, protected, private) and the package they
belong to. As soon as an aspect makes an explicit reference
to some other class or aspect, a dependency is created.

Next, aspects can use static introduction to add new
fields or methods to classes or aspects at compile-time. If
explicit names are used, then again a dependency is cre-
ated. However, the introduction mechanism allows a pro-
grammer to use pattern matching rules to defer the
destination of the introduction to weave-time.

Finally, aspects can add code before or after any join-
point defined in the code they are advising. It is even possi-
ble to wrap code around a joinpoint, optionally replacing
the code that would have been executed at this point.

6.4 Composition

At some point, AOP environments must perform the
weaving, i.e. composing all aspects of an application to
yield the final application. Logically, the composition
ordering is determined by the configuration dependency
graph. In order to obtain a possible sequential composition
order, topographical sort [13], also known as linear exten-
sion, can be applied to the configuration dependency graph.

In current aspect-oriented environments, the depen-
dency graph information is in general encoded by the
developer in a separate configuration language, or in the
aspect language itself.

The latter is true for Aspect]. The pointcut designators
in an aspect specify the set of joinpoints to which the
advice must be applied. If several advice apply to the same
joinpoint, then the developer can specify an ordering
among them by using the dominates primitive. If some
aspect A is specified to dominate some aspect B, then
advice in A take precedence over advice in B. In a sense, A
wraps around B (or B is nested in A). In this case, the exe-
cution order of the advice is:

¢ before advice in A

Gary T. Leavens
21

¢ before advice in B

* original code at joinpoint
e after advice in B

¢ after advice in A

If around advice are used, the ordering takes the follow-
ing form:

e around advice in A
(optional around advice in B
(optional original code at joinpoint))

6.5 Drawing the Line for Dependencies

As we have seen in the previous section, in order to
achieve high reusability or even genericity, a developer of
an aspect should strive for low dependencies. As strange as
it might seem, dependency does not only depend on the
nature of the problem, but also on the power of the weaving
mechanism. Surprisingly, some dependencies can be
replaced by exploiting the activation mechanism in a clever
way.

To illustrate this idea, consider a typical bank account,
implemented as an aspect. In addition, there is a security
policy that states that the account balance should not drop
below zero. This policy is implemented in a separate secu-
rity aspect. At first one might think that the security aspect
is uni-directionally dependent on the account aspect, for it
must monitor all changes to the state of the balance of the
account.

It turns out that this is not necessarily true. The security
aspect can be turned into a orthogonal one that prevents
any numerical value to drop below zero. It is the weaving
mechanism that links it to the account, i.e. activates the
security aspect on every change of state of the account bal-
ance.

In Aspect], for instance, the account would be imple-
mented as a normal Java class with a balance field. The
security aspect would be implemented as an aspect con-
taining a before advice that verifies that the field value is
higher than the amount passed to the withdraw method.
The dependencies on class fields can be removed by using
Aspect] run-time information. The triggering of the aspect,
i.e. intercepting every write access to the balance attribute
of the account, is done in the pointcut definition.

7 Circular Aspects Revisited

After having examined composition, reuse and support
mechanisms we can now reexamine circular-dependent
aspects. Several reasons push to believe that they should be
considered a single aspect:

* Composition: When composing an application, a set
of circular-dependent aspects must be added to an

22

configuration as a whole. Moreover, it is only possi-
ble if the configuration provides the union of the ser-
vices needed by each circular-dependent aspect.

* A set of circular-dependent aspects can only be
reused as a group. The added services are the union
of all services provided by the circular-dependent
aspects.

* During the weaving process, a set of circular-depen-
dent aspects must conceptually be woven at the same
time. This may actually lead to implementation prob-
lems, similar to the problems encountered when com-
piling mutually dependent source files.

However, in certain situations it might make sense to
consider them separately, e.g. if one aspect of the group is
fairly generic. This is the case in the previously mentioned
example [10], where transaction support has been imple-
mented as a separate aspect in Aspect]. Transactions are a
generic concept that can be applied to parts of an already
existing application. However, the application wants to be
aware of this, especially when a transaction aborts due to
some underlying failure. In this case, the application might
want to try the same transaction again, or decide to perform
some alternative computation, and / or inform the user of
the failure, etc. As a result, the application and the transac-
tion aspect are tightly coupled.

What we suggest in this case is to try and extract that
part of the application aspect that deals with transactions
and make it a separate aspect. As a result, the two circular
dependent aspects (application and transaction) can be
transformed into an orthogonal and two uni-directional
ones (the application without transaction handling, transac-
tions, and the application-specific transaction handling
part). This is illustrated in Fig. 3. The feasibility of such a
transformation again depends heavily on the expressive-
ness and power of the weaving support. If this can be
achieved for the transaction example using Aspect]
remains to be explored.

Of course, programmers must be aware that the new
application aspect and the application-specific transaction
handling aspect have very tight semantic dependencies,
although physically separated. Modifying the application
aspect most probably also requires modifying the transac-
tion handling one.

8 Discussion

As we have seen in the previous sections, the dependen-
cies of an aspect have a profound impact on the ways it can
be composed with others and on the possibilities of reuse.

Therefore, when developing an aspect that is to be made
reusable or even generic, a programmer should first deter-
mine the semantic nature of the concern that is to be modu-

Gary T. Leavens
22

Transaction . .
. . Application
Aware Application A N
Aspect spec

by i

Transaction Transaction
Support D Support
Aspect Aspect

A

App-Specific
Transaction
Handling Aspect

Fig. 3: Transforming Circular-dependent Aspects into
Uni-directional Ones
larized. This will provide a hint on what degree of
decoupling might be achievable. Next, the developer
should try and classify the aspect according to the rules
mentioned above.

Orthogonal aspects are most flexible, followed by uni-
directional preserving ones. Uni-directional modifying
aspects are not easily reusable, since adding them to an
application may compromise weavability. Circular-depen-
dent aspects should, if possible, be transformed into several
uni-directional ones.

The weaving mechanism offered by the aspect-oriented
environment has also an important impact on the depen-
dencies. If it is not powerful enough, or the weaving lan-
guage is not expressive enough, then additional
dependencies might be artificially introduced into the sys-
tem. On the other hand, exploiting the power of the aspect
weaver and aspect run-time information might make it pos-
sible to remove dependencies. Imagine an aspect that mon-
itors some data, and triggers some action if the data
changes. Such an aspect would fall into the autonomous
uni-directional category, since it is dependent on the data it
monitors. However, if the aspect run-time allows activation
of aspects based on data changesl, then the dependency
can be removed from the aspect. In a sense, the depen-
dency is re-introduced later at weave-time, when the actual
configuration is assembled. As a result, the monitoring
aspect now is triggered and orthogonal, and hence can be
reused in a straightforward way.

Based on these observations, we encourage designers of
aspect-oriented programming environments to conduct fur-
ther research in this direction. For instance, the decision for
adding new features such as new pointcut designators to
Aspect] should be based on whether or not such a new fea-

1.Aspect], for instance, allows triggering aspects
when a field of a class is modified.

23

ture would make it possible to remove a certain kind of
dependency.

9 Conclusion

In this position paper we have investigated the possibili-
ties of separation, modularization and reuse offered by
aspect-orientation in general.

We have defined an aspect based on the services it pro-
vides, on the services it requires from other aspects and on
the services it removes. Furthermore, a classification of
aspects has been established. Aspects can be autonomous
or triggered, depending on the activation mechanism. The
dependencies lead to a categorization into orthogonal, uni-
directional preserving, uni-directional modifying, and cir-
cular-dependent aspects. The influence of the power of the
weaving mechanism on dependency has been highlighted.

Composition rules have been established based on these
criteria, and the notion of weavability has been defined
based on flow feasibility analysis. Likewise, the impact of
the semantic nature of aspects on the level of achievable
reuse has been analyzed.

Finally, we have presented how the general ideas of this
paper apply to the aspect-oriented programming environ-
ment Aspect), and made recommendations for determining
the usefulness of new features.

10 Acknowledgments

The authors would like to thank the anonymous review-
ers of the FOAL and SPLAT workshop committees for
their detailed comments.

11 References

[1] Jacobson, I.; Booch, G.; Rumbaugh, J.: The Unified
Software Development Process, Addison Wesley,
Reading, MA, USA, 1999.

Hutt, Andrew T. F.: Object Analysis and Design —
Description of Methods. Object Management Group,
John Wiley & Sons, Inc., 1994.

(2]

[3] Tarr, P. L., et al.: “N Degrees of Separation: Multi-
Dimensional Separation of Concerns”. In Proceedings
of the 21st International Conference on Software
Engineering (ICSE’1999), pp. 107-119, IEEE Com-

puter Society Press / ACM Press, 1999.

Elrad, T.; Aksit, M.; Kiczales, G.; Lieberherr, K.;
Ossher, H.: “Discussing Aspects of AOP”. Communi-
cations of the ACM 44 (10), pp. 33 —38, October
2001.

(4]

(5]

First International Workshop on Aspect-Oriented
Modeling with UML. Held at the First International

Gary T. Leavens
23

(6]

(7]

(8]

(9]

Conference on Aspect-Oriented Software Develop-
ment, April 22-26, 2002, Enschede, The Netherlands.

Second International Workshop on Aspect-Oriented
Modeling with UML. Held at the Fifth International
Conference on the Unified Modeling Language - the
Language and its Applications, September 30 - Octo-
ber 4, 2002, Dresden, Germany.

Briot, J.-P.; Guerraoui, R.; Lohr, K.-P.: “Concurrency
and Distribution in Object-Oriented Programming”,
ACM Computing Surveys 30(3), September 1998,
pp- 291 — 329.

Kim, K.H.; Masaki, Ishida; Liu, Jugiang: “An Efficient
Middleware Architecture Supporting Time-Triggered
Message-Triggered Objects and an NT-based Imple-
mentation”. In Proceedings of the second IEEE CS
International Symposium on Object-Oriented Real-
time Distributed Computing (ISORC’99), pp. 54 - 63,
St. Malo, France, May 1999.

The Aspect] Team: The Aspect] Programming Guide,
Xerox Corporation, February 2002.

24

[10] Kienzle, J.; Guerraoui, R.: “AOP — Does it make

sense? The case of concurrency and failures”. In Pro-
ceedings of the 16th European Conference on Object-
Oriented Programming (ECOOP 2002), pp. 37 - 54,
Malaga, Spain, June 2002, Lecture Notes in Computer
Science 2374, Springer Verlag, 2002.

[11]Cook, W. J.; Cunningham, W. H.; Pulleyblank, W. R.;

Schrijver, A: Combinatorial Optimization. John Wiley
and Sons, Inc. 1998.

[12]Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersen, M.;

Palm, J.; Griswold, W. G.: “An Overview of Aspect]”.
In Proceedings of the 15th European Conference on
Object—Oriented Programming (ECOOP 2001), pp.
327 — 357, June 18-22, 2001, Budapest, Hungary,
2001, Lecture Notes in Computer Science 2072,
Springer Verlag, 2001.

[13] Aho, A. V.; Hopcroft, J. E.; Ullman, J. D.: Data Struc-

tures and Algorithms. Addison-Wesley, Reading, MA,
USA, 1987.

Gary T. Leavens
24

TinyC 2: Towards building a dynamic weaving aspect
language for C -

Charles Zhang and Hans-Arno Jacobsen
Department of Electrical and Computer
Engineering
and Department of Computer Science
University of Toronto
10 King’s College Circle
Toronto, Ontario, Canada

{czhang,jacobseni@eecg.toronto.edu

ABSTRACT

The runtime behaviors of software systems are often subject
to alteration or intervention after their development cycles
for various reasons such as performance profiling, debug-
ging, code specialization, and more. There are two separate
domains related to the instrumentation of software systems,
one being various performance measurement and instrumen-
tation tools, the other the new aspect oriented programming
(AOP) paradigm. This paper describes TinyC? language, a
language approach which experiments with the idea of im-
plementing an aspect oriented language based upon existing
system instrumentation techniques. Like other aspect ori-
ented languages, TinyC? uses new language constructs to
allow programmers to intentionally compose systems in the
dimensions of both components and aspects. In this paper,
we discuss both the grammatical features and the compiler
architecture of the TinyC? language. Through the TinyC?
implementation, we demonstrate that a language approach
can well bridge the gap between the AOP paradigm and
the existing system instrumentation technologies. It greatly
simplifies code instrumentation effort and provides runtime
optimization at the application level.

Keywords
Aspect Oriented Programming, Compiler, Dynamic Instru-
mentation, Dynamic Weaving, Source-to-source translation
Proceedings

1. INTRODUCTION

Programming methodologies have evolved from direct machine-

level coding to object-oriented programming. Good modu-
larization capability in the programming language design

*In: Foundation of Aspect Oriented Languages Workshop in
conjunction with 2nd AOSD Conference 2003, Boston, MA.

25

allows software architects to successfully tackle two issues:
the ever growing complexity of software systems and the
increasing diversity and volatility of the execution environ-
ment. Besides improving language designs, there has also
been extensive work on finding better compiling techniques
to provide effective adaptations for software systems and
to efficiently support a wide spectrum of hardware plat-
form and computing resources [6, 5] that change dynam-
ically. However, compiler-based program adaptation and
optimization techniques are powerful but limited if the op-
timization involves changing the functional behavior of the
system. These optimization tasks include adaptations to
many domain specific characteristics, such as state valida-
tion conditions, synchronization strategies, logging strate-
gies, and many others. It is very difficult to build compilers
to make such application level decisions flexibly.

To overcome this difficulty, it becomes necessary to perform
post-development transformation to large software systems
according to specific usage scenarios. The post-development
transformation mainly includes modifications made to soft-
ware systems after their development cycles. A major stream
of manipulation techniques includes tools that provide source-
code level instrumentation, as in SvPablo!, and post-
compilation instrumentation techniques as in jContractor?
and Vulcan [4]. Dyninst [7] and the Paradyn® performance
tools provide runtime instrumentation to C/C++ systems.
Another stream of program manipulation techniques mainly
belong to the aspect oriented programming paradigms [9],
where “instrumentation” has the first-class status in the lan-
guage design and can be used to compose system functional-
ity. AOP advocates composing systems using different sets
of models and leaving the integration work to the AOP com-
piler which is also referred to as the aspect weaver.

Code instrumentation techniques and aspect oriented pro-
gramming are two fields that are developed independently.
We think that those two domains are fundamentally com-

1SvPablo: A Graphical Source Code Browser for Perfor-
mance Tuning and Visualization http://www-pablo.cs.
uiuc.edu/Project/SVPablo/SvPabloOverview.htm

2Java Implementation of Design By Contract for the Java
Language http://jcontractor.sourceforge.net/
3Paradyn. http://www.cs.wisc.edu/ paradyn/

patible as they both perform a certain type of after-the-
fact transformation to the existing software systems. An as-
pect oriented language provides a more powerful approach
in terms of methodology. We think that the various code
instrumentation techniques can be treated as means to real-
izing the methodology in practice. The main motivation of
our work is to experiment with such ideas by developing an
aspect language using existing code instrumentation tech-
niques. The advantage of using a hybrid language is two-
fold. Firstly, a hybrid language design which decouples the
language semantics from the backend implementation plat-
form can increase the configurability and the adaptability of
the aspect language. The compiler is able to readily take ad-
vantage of the advances in the code instrumentation domain
by selecting different lower-level implementation strategies
to instrument the system, i.e. to weave aspects, under dif-
ferent circumstances. Secondly, since a language provides a
high level abstraction of the instrumentation semantics, it is
easy to understand, to change, and to maintain the instru-
mentation code. This technique is also applied in [3] and
[8].

The second motivation of our work is that for most of the
AOP languages today, including AspectJ?, Hyper/J®, As-
pectC® and AspectC++7, the transformation of programs is
done statically either at the source-code level or at the byte-
code level. To maximize the benefit of multi-dimensional
programming, it is desirable to have the support for dynamic
transformation since a lot of platform specific parameters
are not available until runtime. HandiWrap [1] is a runtime
weaving aspect language for Java. In the C/C++ program-
ming domain, we are not aware of any previous work in
aspect languages that provide dynamic weaving. The run-
time weaving property is directly supported by the Dyninst
library. We are interested to see how an aspect oriented
language can take advantages of platforms like Dyninst in
supporting dynamic adaptations.

We have developed the TinyC? language, which is a proto-
type aspect language. The language is designed to be an
extension of the C language with new language constructs
to enable the composition of aspect programs. This is also a
common language design approach used in AspectJ and As-
pectC++. The compiler of TinyC? is essentially a source-to-
source translator that translates C statements to the API in-
structions of the target instrumentation tool. We construct
the compiler to be independent of any particular instrumen-
tation techniques, thus, give the compiler the flexibility of
switching to different instrumentation tools. Currently, we
have implemented support for the Dyninst runtime instru-
mentation platform. Due to the runtime instrumentation
nature of Dyninst, TinyC? can be treated as the runtime
weaving aspect language.

The rest of the paper is organized as follows: Section 2
presents the related work regarding aspect oriented language
designs. Section 3 presents a detailed description of the new
language features of TinyC?. The architecture of the com-

*Aspect] http://www.aspectj.org
"HyperJ http://www.alphaworks.ibm.com/tech/hyper]j

6AspectC http://www.cs.ubc.ca/labs/spl/projects/
aspectc.html
"AspectC++ http://www.aspectc.org

26

piler is also discussed in this section. Section 4 uses three
case studies to demonstrate the effectiveness of the dynamic
weaving nature of TinyC? in addressing runtime crosscut-
ting concerns. Section 5 presents runtime characteristics of
TinyC2. Section 6 concludes the paper.

2. RELATED WORK

There are a number of aspect oriented programming lan-
guages in C and Java flavours. AspectJ adds an aspect
oriented extension to the Java programming language. As-
pects are AspectJ’s units of modularity. They are defined
in terms of pointcuts, advice, and introductions. By adding
these simple constructs, AspectJ enables the clean modu-
larization of crosscutting concerns such as synchronization,
context-sensitive behavior, and multi-object protocols.

Hyper/J is developed by IBM. It also supports multi-
dimensional separation of concerns for Java. It provides the
ability to identify concerns, specifies modules in terms of
those concerns, and synthesizes systems and components by
integrating those modules. It operates on standard Java
class files, without need of source, and produces new class
files to be used for execution.

AspectC++ is an application of the AspectJ approach to
C++. It is a set of C++ language extensions to facilitate
AOP with C++. It provides language features that allow a
highly modular and thus easily configurable implementation
of monitoring tasks and supports reuse of common imple-
mentations. AspectC++ offers virtual pointcuts and aspect
inheritance to support the reuse of aspects. AspectC is an
extension to the C language based on the AspectJ technolo-
gies. It is being developed concurrently with the a-kernel®
project at UBC.

MDL [12] is a language built by the authors of Dyninst. It
is specifically designed for performing runtime instrumenta-
tion using the Paradyn runtime code generation platform.
The language is specialized for writing instrumentation re-
quests in terms of performance metrics. The MDL code is
parsed and translated to Paradyn instructions. Although
the authors of MDL do not mention AOP, since their lan-
guage can capture crosscutting concerns, we categorize it as
one type of aspect language.

3. THE TINYC 2 LANGUAGE

The design goal of the TinyC? language is to provide a lan-
guage perspective in terms of code instrumentation, and, at
the same time, to establish a framework for implementing a
post-compilation weaving aspect language that uses the C
syntax and a third party instrumentation tool as the back-
end. The rest of the section describes the language in detail
from both the syntactic point of view and the compiler ar-
chitecture perspective.

3.1 Language Features

Using aspect oriented programming terms, the component
programs of TinyC? can be composed in the C language.
The aspect program is composed using TinyC?. Similar
to Aspect, TinyC? implements standard C grammar rules

8a-Kernel http://wuw.cs.ubc.ca/labs/spl/projects/
a-kernel.html

with the addition of a few new syntactic constructs. Pro-
grammer can use the regular C syntax to compose code
blocks. However, the basic modularization units in TinyC?
are not functions as in C but “snippet”s. A snippet is a
unit of aspect implementation. It encapsulates a code block
and defines the “weaving” points in the component program
where the aspect code is inserted. Snippets are functionally
equivalent to the “joinpoint” and “advice” concepts in an
“aspect” module in AspectJ.

void trace(char x);
onentry Service(int size) : (int totalsize)

trace("function service is called\n");
if (size>0)

totalsize=totalsize+size;
onexit int retv Service(int size) : (int totalsize)

trace("function service is exiting\n");
if (retv<0)

totalsize=totalsize—size;

Figure 1: Snippet: onexit and onentry constructs

Let us look at the constructs of “snippet”s more closely
through Figure 1. This code snippet illustrates how to im-
plement the typical logging and tracing functionality as an
aspect program in TinyC?. This aspect program, like in
regular C programs, first declares the prototype of the func-
tion trace (Line 1). The first section of the program (Line
2-10) traces the invocations of the function Service in the
target system. That is, before the Service is executed, a
message is logged (Line 4) and the size is added to a total
size (Line 7) if the size is bigger than zero. More specifically,
the onentry construct is defined as follows:

onentry FunctionName (formals_list) : (formals_list)

The construct binds the following identifiers in the com-
ponent program: 1. function names and these formal pa-
rameters (arguments); 2. global variables in the component
program designated by the formals after the “:”.

The second code segment (Line 11 - 19) presents an example
of the construct onexit. This snippet logs a message before
the function Service returns. It also performs some post-
invocation checking so that, if the Service function returns
a negative value possibly meaning an error, the service size is
subtracted from the total size. The onexit construct can be
used to insert new behavior after a certain function finishes
executing. We define the syntax of onexit as follows:
onexit formal_list FunctionName (formals_list) :

(for-

00 O UkxW N

O e el =)
O O W~ OO s WwWwNn = O

27

mals_list)

The difference of the onexit construct as comparing to on
entry is that onexit allows us to bind to the return value
of the function which is designated by the formal before the
function name. The formal grammar definition of these two
“snippet” constructs are defined using EBNF in Figure 2
and Figure 3.

onentry
: TK_onentry ID LPAREN
(formalParameter (COMMA formalParameter)x)?
RPAREN COLN LPAREN
(formalParameter (COMMA formalParameter)x)?
RPAREN
block

Figure 2: Grammar definition for onentry

onexit
TK_onexit (formalParameter)? ID

LPAREN

(formalParameter (COMMA formalParameter)x)?
RPAREN COLN LPAREN

(formalParameter (COMMA formalParameter)sx)?
RPAREN

block

Figure 3: Grammar definition for onexit

Currently, the TinyC? provides a simple pattern matching
mechanism based on the prefix of the function names and
their return types. In addition, the wildcard character “*”
can be used to match all functions. The prefix-based match-
ing can be extended to the regular-expression-based match-
ing. The pattern can be defined using the “group” keyword
as follows (the vertical line denotes an OR relationship):

onexit | onentry formal_list group prefix_of _function |
* (formals_list) : (formals_list)

Currently, TinyC? supports integer and character compu-
tations. It supports conditional statements such as if and
else. The for and while loops are also supported by the
language.

3.2 Compiler Architecture

Generally speaking, the compiler of TinyC? is essentially a
source-to-source translator built on top of the ANTLR parser
generator tool, formerly known as PTTCS. ANTLR uses a
LL(K)-based language parsing scheme to parse a grammar
file and generates the corresponding parser. The TinyC?
compiler consists of three main components: the grammar
file for the language, the lexer and parser generated from the
grammar file, and the backend code translator and genera-
tor. Programs written in TinyC? language are translated
by TinyC? compiler to a source file written according to

ANTLR: ANother Tool
http://www.antlr.org

for Language Recognition.

WU A WN -

00 O Utk W

TinyC?
program

TinyC?
Compiler

:@ Instrumentation API neutral
E> Instru
AP|

mentation

Platform independence
Provided by the
instrumentation API

Dyninst
Library

Regular Language

Compiler

Platform specific

Mutator
Executable

Figure 4: Compilation process of TinyC?>

the application programming interface of the target instru-
mentation platform. The generated source file then can be
compiled again using the common language compiler of the
runtime platform. It is the responsibility of the instrumenta-
tion platform to integrate the generated aspect system and
the component program together. That process is illustrated
by Figure 4.

The grammar understood by ANTLR is very similar to the
extended BNF grammar rules with additional manipulation
options that can be defined together with the grammar.
Therefore, during the evaluation process of the grammar
against a source code file, a large number of customized tasks
can be carried out by ANTLR to perform specific analysis
tasks regarding the target language, such as tree walking,
code translation, and many others.

The TinyC? compiler is entirely composed in Java. The
most fundamental component of the translator is the Snippet
class which is the abstraction of the generated code for a par-
ticular language element in TinyC?. The extended or sub-
types of the abstract class Snippet provide concrete code
translation for a specific code instrumentation platform. As
the parser finishes parsing the entire source code file, a parse
tree is built consisting of various levels of snippets. A hier-
archy of snippet objects corresponds to the structure of the
source program which is defined by a finite set of grammar
rules. The creation of a snippet hierarchy is illustrated by
the following example.

In TinyC?, the following rule defines the conditional if
statement.

statement:
| TK_if LPAREN iexpr RPAREN statement
(TK_else statement)?
iexpr: ID (GRT|LET) expr

Figure 5: Grammar definition for if statement

The rule in Figure 5 defines that an if statement consists of
a token “if” followed by “(” (LPAREN), then by an inequality

=W N =

28

expression, the token “)” (RPAREN), and a statement. The
product of the rule itself is also a statement. The iexpr rule
defines that the inequality statement is in the form of an
identifier followed by either “>” (GRT) or “<” (LET) symbol,
and then by a compound expression. Although those rules
are indifferent from the C grammar rules, ANTLR allows
us to directly place program code to get executed when a
matching of the rule occurs during parsing. The code is then
placed verbatim in the generated parser code. Figure 6 is
the same rule given above embellished with Java code.

statement
returns [Snippet s = nulll
{Snippet subexpr, ifexpr,elsexpr;}
| TK_if LPAREN subexpr=iexpr
RPAREN ifexpr=statement
t s = new DyninstSnippet ("if");
s.addSnippet (subexpr) ;
s.addSnippet (ifexpr) ;

(TK_else elsexpr=statement

{s.addSnippet (elsexpr);}
)?

Figure 6: Defining parsing behavior for if statement

To look at code example in Figure 6 more closely, line 2-3
instructs ANTLR to generate and to return a Snippet class
for statement after finding a matching of the statement
rule. Line 3 declares three sub-snippets that a snippet for
the if statement consists of: the snippet for the condition
statement, the snippet for the code block of the if branch,
and the snippet for the code block of the else branch. Line
6-9 is the inserted code to actually create the snippet object
of type if which knows how to generate the code for if
statements. The three snippets representing the three parts
of if blocks are inserted into the if snippet at line 8, 9 and
12. For example, to parse the statement: if(a>b) b = b *
a;, a hierarchy of Snippet objects are built as illustrated in
Figure 7. The left of the figure is the parse tree of the if
statement. On the right is the image of the composition for
the Snippet representation. Each box is the boundary of a
Snippet object. The label denotes the type of the Snippet.

W U W N

©

[statement]

Snippet:Statement (if) = BPatch_if

if [iexpr] [statement]

Snippet:iexpr

(>) = BPatch gt

[atom] > [atom] [expr]

| Snippet:ID (a) = BPatch_var

| Snippet :ID (b)

[Ir] [ﬁD] [assignment]

a b
[ath]

[ID]
|

= [afom]

[mexpr]

[atom] *

[FD]
b

[altom]

[%D]
a

Snippet:statement (b=b*a) > BPatch_assign

Snippet:assignment (=)

Snippet:ID (a)

Snippet :mexpr (*)

Snippet:ID (a)
Snippet:ID (a)

Figure 7: Snippet construction

And the symbol in the bracket represents the token(s) that
the corresponding Snippet is responsible to translate into
the target language. The labels following the arrows are the
actual class types in the target instrumentation API that
each corresponding snippet is translated to.

The design of the Snippet follows the Composite [11] ar-
chitectural pattern since a complex grammar rule can be
treated as a composite of the basic rules. To provide specific
code translation functionality, extensions to the abstract
Snippet class need to be defined. A concrete Snippet class
extends the abstract method getCode to generate the actual
target code for the corresponding language segment. In our
current implementation, the translation from the TinyC?
code to Dyninst API is carried out by the DyninstSnippet
class. The code generation is initiated by invoking getCode
at the top of the Snippet hierarchy which is the outer most
box in Figure 7. The invocation then recursively traverses
through all snippet classes after the parsing is finished. Al-
though the instances of the DyninstSnippet class are created
directly in the parser, it is easy to decouple the generated
parser from any knowledge of the concrete Snippet class by
using a Factory [11]. Therefore, the TinyC? compiler can be
made backend independent by seamlessly switching to any
other specialized Snippet class at class loading time.

3.3 Dynamic Weaving Mechanism

The current implementation of the backend code generator is
targeted at the Dyninst runtime instrumentation platform.
Therefore, the TinyC? code is firstly translated into C++
code in the Dyninst library API. The translated code is then
compiled by a regular C++ compiler to generate a binary
executable which is linked to the Dyninst instrumentation
library. The executable is started with the process informa-
tion of the target running system. The Dyninst library is
responsible for properly inserting the code into the address
space of the target program. The insertion mechanism is
based on system services used by debuggers. Detailed infor-
mation on how Dyninst works can be found in [7].

Leveraging the dynamic instrumentation capability of Dyn
inst, TinyC? can be classified as a dynamic weaving aspect
language. The language can be used to perform traditional
non-functional activities such as tracing and performance
analysis. Moreover, benefiting from the modularization ca-

29

pability of the language, it is convenient to develop, to main-
tain, and to evolve sophisticated aspect programs to inten-
tionally change the runtime behavior of the system in a
systematic manner. To understand the applicability of the
dynamic weaving aspect languages, we present three case
studies of the language in the following section.

4. CASE STUDIES OF TINYC?

We can use dynamic-weaving aspect languages to increase
the portability, the adaptability and the reusability of shared
libraries. The reusability and the portability of libraries
can be greatly improved by maintaining the properties of
domain-independence and platform-neutrality. However, in
practice, domain specific or platform specific constraints al-
ways require adaptations in either the library code or the ap-
plication layer. Some of these constraints require changing
the code in a crosscutting fashion and, thus, can be modeled
by aspects. The problem with statically composed libraries
including those built on static-weaving aspect languages is
that it is not possible to pre-configure different versions of
the shared code for every application domain or platform.
And it is not safe to assume that the domain or platform spe-
cific runtime constraints are always properly addressed by
the applications. Thus, runtime adaptation of libraries can
be a very attractive feature especially for migrating code and
dynamically configured systems. In this section, we present
three case studies to illustrate such adaptations and the kind
of problems these adaptations solve.

4.1 State Validation

Libraries are often shared among different application do-
mains at runtime. Same results computed by the library
might subject to different interpretations and different def-
initions of validity depending on the domain-specific com-
puting requirement. We use an example to illustrate this
scenario. Suppose that we want to develop a math library
that provides a collection of functions to perform various in-
teger related mathematical computations. For example, in
mathematical or scientific applications, there can be no lim-
itation to the operating range of integer values. However, in
some particular computing domains such as our hypothetical
statistical application for populations, there can possibly be
some constraints regarding the operating range of integers
and, thus, a negative result should trigger an application er-
ror. Since the goal of library design is generality, one must

not hardcode the data validation logic into the library. One
possible solution is to apply the validation code at every call
site of the library functions that return integers. This causes
the same checking code to scatter all over the places. The
bloated code greatly degrades maintainability.

A more elegant and powerful solution is to compose the vali-
dation layer in TinyC? as aspect programs. This layer can be
“woven” into the library dynamically in runtime as needed.
This layer is unloaded when the library is linked into other
applications. In TinyC?, this runtime adaptation layer can
be composed using the 7 lines of code in Figure 8.

onexit int retv group * :
(int errorno, char * errormsg)

if (retv < 0)

{

errorno=ILLEGAL_RESULT;
errormsg="Result cannot be negative";

}
}

Figure 8: Domain specific validation in TinyC?

We use the onexit construct to apply the validation (line 1).
The onexit construct binds all the functions in the target
system that return integers by using the wild card (“*”)
matching capability of the group keyword. The variable
retv binds the specific return value of these functions. Line
2 binds global variables errorno and errormsg in the target
system assuming the target system supports system wide
error code schemes similar to the errorno of Solaris. The
body of the onexit construct is very straightforward. It sets
the errorno to the error code ILLEGAL RESULT and assigns
the error message in the target system.

If we save the file in t.c, we can invoke the compiler as java
tc t.c > Mutator.cpp. The output Mutator.cpp is dis-
played in Figure 9. Lines 1-11 attach to the running process
identified by its process name and process ID. Lines 12-14 in-
voke the findGroupProcedurePoints method to obtain the
instrumentation points for all the functions that return in-
tegers. All the instrumentation points are collected in an
object of type BPatch_pointgroup. Lines 20-25 create three
variables to hold two global variables and the variable for
the return value of the function. Lines 26-43 contain a while
loop which iterates through every instrumentation points in
the collection and inserts the if statements at these points
in the address space of the target program.

This example shows that, although Dyninst API can be used
directly by programmers, it is tedious to implement even a
simple functionality. The program in Dyninst is consider-
ably more complex and lengthy (24 lines) than our aspect
program (7 lines) in TinyC?. More importantly, the TinyC?
program greatly improves the reusability and the adaptabil-
ity of library code since no changes are made to both the
math library and the application code.

© 00 N U W N

30

#include "BPatch.h"

int main(int argc, charxx argv)

{
BPatch bpatch;
charx name = argv[1];
int pid = atoi(argv[2]);
printf("Attaching to %s pid %d\\n", name, pid);
BPatch_thread * appThread =
bpatch.attachProcess(name, pid);
appThread—>continueExecution() ;
BPatch_image xappImage = appThread—>getImage();
BPatch_pointgroup
*star_exit=appImage—>
findGroupProcedurePoints("*","int" ,BPatch_exit);
if (!star_exit || (xstar_exit).size() == 0)

printf("Unable to find exit point to \"*\"");
exit(1);

BPatch_variableExpr xerrorno =
appImage—>findVariable("errorno");
BPatch_variableExpr xerrormsg =
appImage—>findVariable("errormsg");
BPatch_variableExpr xretv =
appThread—>malloc (xappImage—>findType("int"));
while ((BPatch_Vector<BPatch_point*> xpoint=
star_exit—>getNextPoint ()) !=NULL)
{
appThread—>insertSnippet (BPatch_arithExpr (
BPatch_assign, *retv, BPatch_retExpr()),
point);
appThread—>insertSnippet (BPatch_ifExpr
(BPatch_boolExpr (BPatch_lt, kretv,
BPatch_constExpr(0)),
BPatch_arithExpr(BPatch_assign,
xerrorno, BPatch_constExpr(1))),*point);
appThread—>insertSnippet (BPatch_ifExpr
(BPatch_boolExpr (BPatch_lt, kretv,
BPatch_constExpr(0)) ,BPatch_arithExpr
(BPatch_assign, *errormsg,
BPatch_constExpr("Result cannot be negative")
)) ,xpoint);

exit(1);

}

Figure 9: Mutator.cpp:A mutator program in full
Dyninst API

4.2 Adaptive Character Encoding

The bit format for representing characters has evolved from
ASCII-based single-byte encoding to multi-byte character
encoding such as Unicode. For legacy systems built on the
single-byte character encoding, processing information en-
coded by multi-byte character sets can produce erroneous
results. There exist several solutions to support different
character encodings in legacy code. One solution aims at
providing a translation layer in between applications and
the legacy code. Microsoft introduces MSLU'® to handle
the encoding translation between Unicode windows appli-
cations and windows 9X operating systems which do not
support Unicode. A second solution relies on smart com-
pilers to convert the character encoding. It requires re-

http://msdn.microsoft.com/msdnmag/issues/01/10/
MSLU/default.aspx

WO U AW N

©

compilation of the system. For example, gcc!! users can
use the -fshort-wchar switch to generate 16-bit characters
rather than the default 4-byte characters.

In a dynamic setting, both solutions fall short because they
require the prior knowledge of the target platform and the
pre-configuration of the system before the application can
run. During runtime, a library could possibly be dynam-
ically linked into several multi-byte applications, some use
one type of encoding and some use another type. It is not
possible to know what type of encoding to deal with un-
til the application is running. In these situations, we can
use TinyC? to compose the translation layer on top of the
legacy code. This translation layer can be inserted into the
library dynamically at run-time when it is needed. For illus-
tration purposes, suppose in our hypothetical library, which
only supports ASCII encoding, there is a group of func-
tions which are responsible for maintaining a global mes-
sage buffer. To prevent unpredicted results, our adaptation
layer should first convert the characters in the buffer from
a foreign encoding to the native encoding before the buffer
is processed. After the buffer is processed, the adaptation
layer should convert the buffer back to its original encoding.
This pre/post processing logic can be implemented by the
onentry and onexit constructs of TinyC?. Figure 10 shows
the TinyC? code.

onentry group buffer_ : (char % buffer)

{

convert_encoding(buffer) ;

}

onexit group buffer_ :

{

restore_encoding(buffer) ;

}

(char * buffer)

Figure 10: Encoding adaptation layer

This TinyC? code uses the group keyword to match all func-
tions prefixed by buffer_. The onentry block (lines 2-4)
invokes an external function convert_encoding which is re-
sponsible for converting the buffer into the native encoding.
The onexit block (line 8) calls another external function
restore_encoding to restore the original encoding. The
TinyC? compiler generates the following code in Dyninst
API.

#include "BPatch.h"

int main(int argc, charxx argv)

t BPatch_thread * appThread =
bpatch.attachProcess(name, pid);
appThread—>continueExecution() ;
BPatch_image xappImage = appThread—>getImage();
BPatch_pointgroup
sbuffer__entry=appImage—>
findGroupProcedurePoints("buffer_","void",
BPatch_entry) ;

BPatch_pointgroup
sbuffer__exit=appImage—>

Yhttp://gec.gnu.org/

© 00N O Utk WN -

H P2 © W0 Utk W N
= o

=
w N

31

findGroupProcedurePoints("buffer_","void",
BPatch_exit);

BPatch_variableExpr xbuffer =
appImage—>findVariable("buffer");
BPatch_function *convert_encodingptr =
appImage—>findFunction("convert_encoding");
BPatch_Vector<BPatch_snippet *>
convert_encoding_args;
convert_encoding_args.push_back(buffer);
BPatch_funcCallExpr convert_encoding
(xconvert_encodingptr, convert_encoding_args);
BPatch_function *restore_encodingptr =
appImage—>findFunction("restore_encoding");
BPatch_Vector<BPatch_snippet *>
restore_encoding_args;
restore_encoding_args.push_back(buffer) ;
BPatch_funcCallExpr restore_encoding
(xrestore_encodingptr, restore_encoding_args);
while ((BPatch_Vector<BPatch_point+*> %point=
buffer__entry—>getNextPoint ()) !=NULL)

appThread—>
insertSnippet (convert_encoding,*point) ;

while ((BPatch_Vector<BPatch_point*> xpoint=
buffer__exit—>getNextPoint ()) !=NULL)

appThread—>
insertSnippet (convert_exit,*point) ;

exit(1);

Generated encoding adaptation layer in Dyninst API

In the generated code, lines 4-15 attach to the running pro-
cess and obtain two groups of instrumentation points, one
being the entry points of all function prefixed by buffer_,
the other their exit points. Lines 16-31 bind to the global
message buffer and set up the function calls to convert
_encoding and restore_encoding. The onentry and onexit
constructs in Figure 10 are translated to two loops which
insert the function calls at corresponding instrumentation
points of every function in the group (lines 32-45).

4.3 Adaptive Systematic Behavior

A dynamic weaving aspect language allows us to modular-
ize systematic properties and to build systems that are more
adaptive and more efficient for specific runtime conditions.
For example, middleware systems are software substrates
that provide abstractions for the distributed computing en-
tities. In a environment such as mobile computing where the
platform resources and computation requirements change
dynamically, it is highly desirable to configure a right set of
middleware characteristics during runtime. Such high level
of configurability and adaptability is hard to achieve due to
non-modularized systematic properties. A typical system-
atic property is Thread Safeness. It is important for mid-
dleware systems to ensure the accesses to shared data are
synchronized. However, synchronization is not always nec-
essary for a smaller platform such as handheld devices where
the underlying OS might only support a single-thread exe-
cution model due to power and memory constraints. Some
middleware implementations such as TAO uses techniques

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

such as strategic locking [2] to allow fine tuning of locking
schemes. These implementations suffer from performance
overhead of redundant locking and unlocking if deployed on
small platforms where the contention of resources should be
minimized or avoided. The dynamic behaviors of applica-
tions such as the migration of services require middleware
to load and unload properties such as Thread Safeness dur-
ing runtime. A dynamic weaving aspect language such as
TinyC? can help us achieve these goals.

To illustrate the TinyC? approach, suppose that the func-
tion Service is responsible for sending a buffer of charac-
ters to a remote entity. To ensure a valid read, the func-
tion acquires the buffer lock by invoking lock_buffer func-
tion before sending. It releases the lock by invoking the
release_buffer function. Figure 11 presents the simple im-
plementation in C.

int Service(char xxbuffer, int size)

t
int ret = 0;
lock_buffer();
ret=network_send(socketfd,buffer, size);
release_buffer();
return ret;

Figure 11: A synchronized buffer send

As we have discussed, statically configured systems includ-
ing statically weaving aspect implementations incur runtime
overhead if locking is not necessary. We now provide the
TinyC? implementation using the onentry and the onexit
constructs in Figure 12.

onentry Service(charsx buffer, int size)

lock_buffer();
//perform other operations such as checking
//the buffer size

}

onexit Service(char xx buffer, int size)

lock_release();
//perform necessary post invocation checkings

Figure 12: TinyC? approach to thread safeness

The TinyC? compiler generates Dyninst API code in Fig-
ure 13. Similar to the previous example, lines 4-8 attach to
the target process. Lines 9-14 locate the entry point and the
exit point of the function Service. Lines 15-19 locate the
function lock_buffer insert the function to the entry point
of Service. Lines 20-25 load the function release buffer
and insert it to the exit point of Service. TinyC? does not
require the functions used in the aspect program such as
lock-buffer also defined in the component program. These

0 O Utk W =

= © 000 U A WN =

12

32

functions can be compiled into a dynamically shared library
and linked at runtime.

#include "BPatch.h"
int main(int argc, charsx argv)

BPatch bpatch;
BPatch_thread * appThread =
bpatch.attachProcess(name, pid);
appThread—>continueExecution() ;
BPatch_image xappImage = appThread—>getImage();
BPatch_Vector<BPatch_point*> xService_entry=
appImage—>
findProcedurePoint ("Service" ,BPatch_entry) ;
BPatch_Vector<BPatch_point*> xService_exit=
appImage—>
findProcedurePoint ("Service" ,BPatch_exit);
BPatch_function *lock_bufferptr =
appImage—>findFunction("lock_buffer");
BPatch_funcCallExpr lock_buffer(xlock_bufferptr);
appThread—>insertSnippet (lock_buffer,
*xService_entry) ;
BPatch_function *release_bufferptr =
appImage—>findFunction("lock_release");
BPatch_funcCallExpr release_buffer
(xrelease_bufferptr);
appThread—>insertSnippet (release_buffer,
*Service_exit);

Figure 13: TinyC? approach to thread safeness

Again, our TinyC? implementation achieves considerable
code reduction from 25 lines to 8 lines. More importantly,
the synchronization facilities can be dynamically plugged
in and out depending on the runtime requirements. Sav-
ing redundant locking and unlocking greatly improves the
efficiency of the system.

5. RUNTIME CHARACTERISTICS OF AS-
PECT PROGRAMS USING DYNINST API

In this section, we examine the runtime characteristics of the
application and aspect programs using addition instructions
as an experiment. We are interested in two types of behav-
iors: 1. the “weaving” cost which is the time taken to insert
the aspect code into the component program; 2. the runtime
cost which is the time of computation in the dynamically
inserted aspect program versus a statically written compo-
nent program. We first measure the code patching cost of
Dyninst. It is measured as the time taken to insert a num-
ber of “add” instructions in the target program. To measure
the runtime execution overhead, we first measure the exe-
cution time of executing an increasing number of addition
instructions in the component program. We then measure
the same computation in the inserted aspect program. The
data is collected on a Pentium IV 2GHz Linux workstation.

5.1 Code Patching Cost

Figure 14 shows the time to insert the snippet versus the
number of additions in the snippet. As the size of the snip-
pet increases, the weaving time of snippet increases rapidly.
Dyninst uses the same operating system services such as

ptrace and /proc file system to communicate between the
application process and the mutator process. The instru-
mentation code is stored in large arrays which are loaded
into the application process. The arrays are used for dy-
namically allocating small regions of memory: one is used
for instrumentation variables; the other is to hold instru-
mentation code. A bigger snippet occupies a larger space in
the array in the application memory space. It takes longer
to fetch data from a larger memory space.

Snippet Insertion Time
12000 T

10000

8000

6000

Snippet Insertion Time

4000

2000

0 L L L

Number of Addition

Figure 14: Code patching cost

5.2 Runtime Cost

Another important factor for dynamic weaving aspect lan-
guage is the execution overhead of the aspect language as
compared to carrying the same computation task in the
component program. Figure 15 plots the runtime cost of
performing additions in the regular C programs and in the
inserted TinyC? code.

The running time for the same number of additions in the
aspect program is significantly longer than in the compo-
nent program. This can be explained by the runtime in-
strumentation mechanism of Dyninst. The original code in
the application process branches into newly generated code
through use of trampolines [7]. Trampolines are short sec-
tions of code that provide a way of getting from the point
to the newly generated snippet. Several steps are involved
here. Firstly, one or more instructions at the instrumenta-
tion point are replaced with a branch to the start of a base
trampoline. Then the base trampoline code branches to
a mini-trampoline. The mini-trampoline saves the current
machine state and contains the code for a single snippet. At
the end of the single snippet, code is placed to restore the
machine state and to branch back to the base trampoline.
The base trampoline executes the original instruction(s) in
the application code. Therefore, there is significant manage-
ment overhead for executing the aspect program in the case
of Dyninst. Another reason is that since the aspect code is
inserted during runtime, the code misses the static compiler
optimization stage and, therefore, produces un-optimized
code.

5.3 Limitations and Open Questions

33

Runtime Comparison
14 T

—— Component Program
— - Aspect Program

Runtime per Function Call in Target Program [us]

10° 10’ 10° 10 10
Number of Additions

Figure 15: Runtime cost of TinyC? code versus reg-
ular C code

There are many limitations of the current implementation
of the TinyC? language. Firstly, the language is being im-
plemented as a prototype. We hope to demonstrate its ca-
pability of implementing large scale and complex aspect ori-
ented systems by our continuous extension of the language.
The second limitation comes from the limitations of Dyninst.
The API of Dyninst was not designed to support aspect lan-
guages. Features such as modifying function arguments and
their return values are not yet possible to implement using
Dyninst. We have added a number of APIs to Dyninst to
support the “group” language construct.

There are also many challenges regarding implementing dy-
namic weaving aspect oriented systems in general. The first
category of challenges is comprised of performance related
issues of dynamically woven AOP systems. Our experimen-
tal data show that the cost of computing in dynamically
inserted code is considerably high. One reason is that dy-
namically inserted code misses the optimization stage in the
compilation process which leads to un-optimized code. In-
tuitively, advanced compiler techniques such as dynamic op-
timization techniques [10] can be used to further optimized
the mutated code during runtime. However, there are sev-
eral issues regarding dynamic optimization. Firstly, from a
compiler point of view, the newly patched code might dis-
turb any optimization strategy that the compiler has chosen
for the code. Runtime code patching can also trigger subse-
quent runtime optimization, which adds a considerable over-
head to the overall runtime cost. Secondly, it is not clear to
us if the runtime optimized code still allows us to detach the
inserted aspect code on the fly as part of the dynamic adap-
tation. A third prominent issue is that current aspect lan-
guage designs require preservations of weaving points, e.g.
function identifiers in the context of the TinyC? language,
in order for weaving to work. This is a trivial concern for
static-weaving languages. However, these identifiers in the
source code might disappear in the runtime code due to
compiler optimization techniques such as code specializa-
tion, function inlining, and many others. Certain identifiers
or symbols must be made available to aspect weavers at all
time. But does the preservation of symbols decrease the
optimization gain? Is there a measure of such trade-offs?

The second category of challenges concerns designing dy-
namic weaving languages is that whether there should be
language facilities to take advantage of its dynamic nature.
For example, Dyninst gives us some degree of control over
the running state of the target program during the code
patching process. Should the design of a dynamic weaving
language gives first-status concerns to issues such as control-
ling the state of the target program, runtime information of
the platform, optimization related tasks, and many others?

The third category of challenges includes issues regarding
the security of dynamic weaving languages. That is the
dynamically inserted code must comply with the security
policies of the target platform. These policies could include
execution privileges and copyright protections.

6. CONCLUSION

In this paper, we presented the work of TinyC?, an aspect
oriented language that is designed to syntactically extend
the C programming language and to use existing code in-
strumentation platforms as the backend. A prototype of
the language compiler is developed to support a subset of
the standard C language features with a couple of additional
language constructs. The backend instrumentation platform
is provided by Dyninst runtime instrumentation platform.

Through this work, we demonstrate the possibility of sup-
porting certain aspect oriented language semantics by using
code instrumentation platforms. We prove the concept that
code instrumentation techniques and the aspect oriented de-
sign goals are fundamentally compatible as one can be used
to express the other. A language approach in bridging the
two domains is viable because, as illustrated in the case
study, we are able to express higher-level programming con-
cerns in the form of TinyC? language and to realize those
concerns through the form of code instrumentation.

It is currently not possible to have a complete evaluation
of the language approach presented in this paper, since the
full aspect language features are still needed to be developed.
We also need to experiment with a different instrumentation
tool to verify if the consistency of the language semantics can
be maintained. Finally, from the experience of this work, we
have encountered several issues regarding the viability of the
runtime weaving aspect language design. These issues are
mainly concerned with the cost of dynamically changing the
runtime behavior of the system. We expect further research
on advanced AOP compilers will develop solutions to these
problems.

Acknowledgements

We are very grateful to Michael J. Voss who pointed out to
us the similarities between runtime instrumentation tech-
niques and aspect oriented mechanisms. The initial perfor-
mance analysis and the graphs in this paper are prepared
by Yigian Ying.

7. REFERENCES

[1] Jason Baker and Wilson Hsieh. Runtime aspect
weaving through metaprogramming. In Proceedings of
the 1st international conference on Aspect-oriented
software development, 2002.

34

2]

Douglas Schmidt Michael Stal Hans Rohnert Frank
Bushmann. Pattern-Oriented Software Architecture
Patterns for Concurrent and Networked Objects,
volume 2 of Software Design Patterns. John Wiley &
Sons, Ltd, 1 edition, 1999.

Morgan Deters Ron K. Cytron. Introduction of
Program Instrumentation using Aspects. Proceedings
of the OOPSLA 2001 Workshop on Advanced
Separation of Concerns in Object-Oriented Systems,
pages 131-147, 2001.

A. Srivastava A. Edwards and H. Vo. Vulcan: Binary
transformation in a distributed environment.
Technical Report Technical Report MSR-TR2001 -50,
Microsoft Research, One Microsoft Way,
Redmond, WA, April 2001.

B. Grant M. Philipose M. Mock C. Chambers S.J.
Eggers. An Evaluation of Staged Run-time
Optimizations in DyC. Conference on Programming
Language Design and Implementation, May 1999.

M. Arnold S. Fink D. Grove M. Hind and P.F.
Sweeney. Adaptive Optimization in the Jalapeno
JVM. Object-Oriented Programming Systems,
Languages and Applications, 2000.

Bryan Buck Jeffrey K. Hollingsworth. An API for
runtime code patching. Journal of Supercomputing
Applications and High Performance Computing.

Charles Zhang Hans-Arno Jacobsen. Quantifying
Aspects in Middleware Platforms. International
Conference of Aspect Oriented Software and
Development, pages 130-139, 2003.

G. Kiczales. Aspect-oriented programming. ACM
Computing Surveys (CSUR), 28(4es), 1996.

Bala Vasanth Duesterwald Evelyn Banerjia Sanjeev.
Transparent dynamic optimization. Technical Report
HPL-1999-77, Hewlett Packard, 1999.

Erich Gamma Richard Helm Ralph Johnson John
Vlissides. Design Patterns. Addison-Wesley, 1995.

Jeffrey K. Hollingsworth Barton P. Miller Marcelo J.
R. Goncalves Oscar Naim Zhichen Xu and Ling
Zheng. MDL: A Language and Compiler for Dynamic
Program Instrumentation. International Conference
on Parallel Architectures and Compilation Techniques,
1997.

Interference Analysis for AspectJ

Maximilian Srzer, Jens Krinke
Universitat Passau
Passau, Germany
{stoerzer, krink¢@fmi.uni-passau.de

March 1, 2003

Abstract risks, too. Changes introduced with AspectJ are not visi-
bledirectlyin the source code of the base system. Aspects

Aspect] is a language implementing aspect-oriented p&ge a new modularization unit usually stored in separate
gramming on top of Java. Besides modification of préites. The effect of this code can influence semantics of
gram flow and state usiragvice AspectJ offers languagethe whole system. Tool support is necessary to reveal the
elements to statically modify existing classes by changifigpact of aspect application. To motivate this necessity,
their position in the inheritance hierarchy or introducinghis paper presents problems related to AspectJ language
new members. This can lead to binding interference, ignstructs which might be avoided by modifying the As-
the dynamic lookup of method calls not affected directpyect] language itself. However, impact on language de-
by the aspect might change. sign is not in the scope of this paper.

This paper presents methods allowing programmers 0y, achieve this support, methods to determine the im-

automatically check the impact of introductions and higfz ot of aspect application have to be developed. As a first
archy modifications on existing programs. step, a method to decide an aspect modifies base sys-
tem behavior is presented. This analysis will be extended
to perform an impact analysis to shavheresystem be-
havior is influenced by an aspect.

Aspect oriented programming (AOP) is a new paradinghroughout this paper, the simple class hierarchy de-
in programming, extending traditional programming tecfined by progran{ T]1 will be used as an example to
nigues, first introduced in [5]. Its basic idea is to encaffémonstrate aspect influence. This hierarchy will be mod-
sulate concerns which influence many modules of a givdigd using introduction and hierarchy modification and
software system, so calledosscutting concerng anew Some of the classes will be declared to implement inter-
module calledaspect facel .

This encapsulation improves separation of concernsThis paper describes the problem emerging from these
and can avoid invasive changes of a program if crosscuisnsformations, presents an algorithm to detect their ef-
ting concerns are affected by system evolution. The furfects and suggests how this information can be used to
tionality defined in the aspect igoveninto the base sys-reduce flaws in a software system. Organization is as fol-
tem with a so calledspect weaverat compile time, load lows: Each section takes a look at a AspectJ language
time, or even run time of the program. Hekspectd—an construct, starting with interface introduction in section
aspect-oriented language extending Java—is considef@&dSectior] B presents an algorithm to detect binding in-
Main features of AspectJ are introduction, modificaticlerference for class introduction, sect{gn 4 for hierarchy
of class hierarchies and advice. This paper will concemodification. Sectiofi]5 shows how these results can be
trate on the first two points which are designed to statised for impact analysis. Sectiph 6 presents an example
cally change a given system by introducing new membexgplication of this analysis for a given hierarchy. Section
in classes or modifying the structure of an inheritance fi-briefly summarizes the preliminary implementation and
erarchy. outlines future work. Sectiofj§ 8 concludes and gives an

AOP is a very powerful technique but includes newverview of related work.

1 Motivation

35

Gary T. Leavens
35

Program 1.1 Example Hierarchy A
class A { void n() { A
print("A.n()"); o~ 1 .

class B extends A { ? m B P

void m() { print("B.m()"); } B x Nt
class C extends B {

public void x() { print("C.x()"): N |+| 3 '
class D extends B { cx|c G D |b.x ' [:

public void y() { print("D.y()"); 1 Dy Cxf C G D |D.x

public void x() { print("D.x()"); 3! ? Y Dy

class E extends C {} cx|l e F |D x ? ?

class F extends D { Dy Cx| E F [Dx

void n() { print("F.n()"); 1 Ly Dy
class G extends B {

void n() { print("G.n()"); 1} Figure 1: Using default implementations.
interface | {

void x(); void y();

} 3. The set of classe&;; which do not provide an im-
plementation of all interface methods (i.e. which use
the default implementations) has to be determined.

. Let method$C) be the set of all methods defined in
2 Interface Introduction ClassC. Then

Introduction is an AspectJ language construct to add new Cdi = {C € Clyes | T € Iges : C implementsT

members to existing classes or interfaces. The purpose A method$I) — method$§c) # 0}

of interface introduction is to providéefault implemen-

tationsof interface methods which can be used to reduce It is sufficient to check weather all methods in

necessary work for implementation. However, if no mul- methods$I) are implemented as other missing meth-

tiple inheritance is needed an abstract superclass can often ods are detected by the java compiler. Note that any

be used instead . subclass of an affected class is influenced as well,
Usage of this feature can result in ‘forgotten’ imple- unless it implements the necessary method and thus

mentations which may introduce flaws into a program. overrides the default implementation.

The compiler no longer issues an error message if a class i

implements an interface but does not (re)define all defaliffé Programmer must examine affected classes to check

implementations. To avoid flaws by ‘forgotten’ redeﬁni@_/vhetherthe default implementation given by the interface

tions a compiler warning should be given when a clas@PPropriate.

uses a default method implementation provided by the in-AS @n €xample consider aspédgiven by prograr 2]1,
terface. which declares that class&€andD implement interface

A simple analysis of interface introductions can prd- @nd introduces a defaultimplementation of methidd

vide the necessary information. Given a class hierarcdhf interface.

and an asped, an analysis could be performed in three — - -
P ys! ! P ! Program 2.1 Adding interface implementation.

steps:
aspect M {

1. The set of interfaces for which aspégprovides de- declare parents: C implements I;
fault implementations has to be determined by scan- declare parents: D implements I
ning A’s introductions. Letlye be the set of these
interfaces. FolT € Iyet let method§I) be the set public void 1.y() { print("Ly()"); }
of methods for which default implementations are
given.

2. The set of classes implementing an interfagelye
has to be identified. Lety,, be the set of these Figure[] presents the effects of this modifications. Note
classes. that classe€ and E—maybe unexpectedly—use the im-

36

Gary T. Leavens
36

A |AnN ods (some might not be visible in the subclass), thus re-
ducing binding interference.
If the introduced methoB.n() redefineA.n() with

B |B.n respect to behavioral sub-typirig [6], a (unknown) client of

B.m a subclass oB may still work as expected. However, nei-
ﬁt ther Java nor AspectJ guarantees this kind of method re-
definition. The described problem is a special case of the

B.n| C G D |B.n fragile base class problefi@]—subclasses change behav-
B.m B.m ior because of changes in the superclass. Although track-
Zﬁ g‘_ ”m Zﬁ ing down bugs introduced by changing a base class is dif-
B.n| E F |F.n ficult, the problem is even worse with aspect languages as
B.m B.m modifications of the base class are not visible if the code

_ _ _ _ is viewed in isolation (i.e. without the applied aspect). To
Figure 2: Example hierarchy, effects of introduction. track bugs emerging from dynamic interference, impact
analysis of aspect application should reveal method calls

plementation given by.y . This fact is reported by thewhosedynamlc lookup has changed

proposed analysis.) .
3.2 Detecting Semantical Changes

3 Noninterference Criterion To detect semantical changes in the hierarchy, the inter-
) ference criterion of [10]—informally stating that all vir-
for AspectJ Introduction tual calls evaluate to the same target as before—is applied

to aspects by reducing introduction to hierarchy composi-
In contrast to interface introduction, class introduction {fon. As a result, the correctness proof of the criterion can
more complex as program semantics may change withgetapplied to aspect introduction as well.
modifying any class directly. These effects are describedn contrast to Hyper/J, AspectJ is much more restrictive

in the following. in the possible static modifications of the class hierarchy.
Modification of system behavior is mainly achieved by
3.1 Impact of Class Introduction using advice. However, introduction can be viewed as a

_ _ hierarchy composition. Let a hierarclty be defined as
Introducing members to classes can result in changg§10]:

of dynamic lookup if the introduced method redefines a
method of a superclass, callelynamic interferencén pefinition 3.1 (Class Hierarchy) A class hierarchy is
[10]. However, as the term dynamic is misleading, theset of classes and an inheritance relatioh:= (¢, <).

term binding interferencas preferred. Consider the ex-, classc € 4 has a name and contains a set of members
ample hierarchy defined by progrgm]1.1 and aspbut According to this definition, memb¢€g does not contain

be applied: inherited members that are declared in super-classe&s of
aspect N o) o
void B.n& { print("B.nQ)"); } To indicate the members of cla€glefined in hierarchy
} H we write memberg (C); Cy references definition of

. i ~ classCin hierarchy#.
This aspect introduces a methadto classB, which is any AspectJ introduction can be viewed as a hierarchy

already defined in superclagsof B. Any (virtual) call composition by defining a new hierarchy induced by an
e.g. from clas<C now results in call oB.n() and not aspecta.

in A.n() as before. So, the semantics of a calhtbas

possibly changed for any object of cla&&sr any subclass Definition 3.2 (Hierarchy induced by Introduction)

thereof without direct modification of these classes. Figet # = (C, <) be a hierarchy an aspedtis applied to.

ure[2 indicates the changed lookups in bold. Let | be the set of introduction statements of this aspect.
The presented considerations abstract from Java acdglssnents of | have the forif€,m). C € C indicates the

specifiers: All methods are considerpdblic . Addi- class where the new membarshould be introduced to.

tion of access specifiers reduces the set of inherited méthen:

37

Gary T. Leavens
37

1. VC € # create a new empty 1. C=aue

class named, add it to ¢’

2. (£)=(z1Ux2)

2. Y(C,m) € | add membemto the

corresponding class € ¢’ created in (1) 3 VC € Cyr : member&y,) =

* memberfC,,) UmemberfC,,)

3. (<) = (<) (same inheritance relations as iH)

It is easy to see that the effect of composigand #H’
using operatorps has the same effects as the introduc-
tions of AspectJ: Both operations simply add the intro-

Informally, the resgltmg hierarchy contains N0 Meny o4 members to the respective classes of the resulting
bers from the base hierarchy but any introduced member

and mirrors the inheritance relations. Empty classes arerarchy.
bossible : pty ?—ollowing the analysis of[10], it is now possible to ap-

As name clashes atatic interferencare considered ply the stated noninterference criterion for AspectJ intro-
an error by the Aspect] compilai duction as well, which informally states that all used vir-
y P priajc tual calls must evaluate to the same method as before.

The hierarchy induced by | i’ = (C',<').

VC € C': Vm € memberg, (C) :
C € CAm ¢ memberg(C) 3.3 Finding Changed Lookups

always holds for syntactically correct Aspect] progranifo test the interference criterion it has to be checked,
Aspect does not allow overriding introductions. Savhether the dynamic lookup for any possible call has
only basic compositiond.e. compositions without prior- changed. The analysis described below only needs the hi-
ity rules to choose from a set of possible method implerarchy and signature information as input; method bod-
mentations, have to be considered. ies arenot analyzed. This approach guarantees that the
The hierarchy induced by an aspect needs not to tierarchy preserves its behavioni binding interference
syntactically correct as methods introduced by the aspecturs at all.
might reference methods not presentffi but only in For impact analysis, this information is insufficient as
7. All these dangling references are bound after combe set of changed lookups calculated by the subsequent
nation of the resulting hierarchies if the original Aspectdnalysis demands that behavioraofy affected class to-
program was correct. gether with its subclasses has to be considered as beeing
The hierarchy#’ induced by the introductions of anchanged. The reason is that methods defined in a class in
aspectA will now be composed with the hierarchy of the/ might transitively use a call with a changed lookup in
base systemt by using a hierarchy composition operatdaheir implementation.
@s. When working with arbitrary hierarchies, the inher- To reduce the set of affected classes, a simple code
itance relations of both hierarchies can be contradictosganning of an affected method for calls with changed
e.g. if(B,C) € < and(C,B) € <5. lookup might be enough—methods only using unchanged
This is immpossible if a hierarchy induced by an asalls in their implementation as well as calls evaluating to
pect should be combined with the base hierarchy, as tiraffected classes are guaranteed to work as before if only
resulting inheritance relation is always conflict free (herthese methods are called. The call graph is an appropriate
they are identical), no collapsing of cycles is necessatgta structure to calculate all this information.
and the general combination operator[of/[10] can simpli- Note that newly introduced methods may very well

fied as follows: change the state of objects, thus altering system behav-
ior. Anyhow, introduced methods are never called by the
Definition 3.3 (Simplified Hierarchy Composition) original system as the system would not have been syn-

Let Hy = ((1,<1), Ho = ((2,<2) be two class hierar- tactically correct otherwise—the method did not exist in
chies with conflict free inheritance relations;, <, and the original systeffi
no static interference. TheM; ®s 75 = (C, <) is defined

3 .) .
as fOllOWE} . H.ere,member(scyﬂ) indicates the set of members defined in class
Cin hierarchy#]. If ¢ ¢ #;, thenmemberé{:}q) =0.
1Referenced Version is 1.0.6. 4Keep in mind, that advice is not considered here—advice code
2|n this papers will refer to @s. might call newly introduced methods.

38

Gary T. Leavens
38

The information necessary to check the interferenbeld]
criterion as well as for impact analysis is the set of
changed lookups. 1n [10], calculation of changed lookups .
is more precise as only calls actually appearing in thel ~Impact of Changing the
hierarchy are examined (using points-to analysis). The Inheritance Hierarchy
method proposed here calculates any possible chang(ﬁl]ré impact of changes in the inheritance relations is

lookup due to aspect application. The loss of Prédemonstrated in figug 3. The changes presented in thie

sion might be negligible as the set of changed lookupgample are due to application of the following simple
is much smaller (explicit introduction instead of arbitraryspect:

hierarchy combination). As an additional advantage, our
algrithm is independent of a specific client, because alipect O {
statically possible calls are examined. declare parents: D extends G;

This set of method calls can easily be calculated byta
modified version of breadth first search, given by algo-))) _ o
rithm[3-3. Recall that a class hierarchy in Java (as well A5 Irst sight any client using classes with a modified in-
in Aspect]) always defines a tree. Therefore, the inhe!?ﬁ”?ance hierarchy should still work as any type relation
tance relation< always containgava.lang.Object is st|II.correct. However, there are two problems. tdte
as maximal element. For the algorithm lete ¢ a1 object of type:
be a class. Therints(C) is the set of all meth-
ods introduced in clas€. For the root object, define
Alookup(father(root)) = 0.

instanceof: In example of figurd |3, clasb is moved
down the inheritance hierarchy by aspé&atAny
predicated instanceof G now changed value—
from false to true. More generally, thetype of

Algorithm 3.1 Calculation of Changed Lookups classD has changed. This allows additional up-casts
algorithm get-binding-interference ((G)d), which resulted in &ClassCastExcep-
input: hierarchy* = (C,<),VC € C: Ints(C) tion before. These exceptions might have been
output:VC € C : Alookup(C) caught and so control flow might have changed.
queue ={max(<)} binding interference: Change of inheritance hierarchies
while queue# 0 do might possibly change the method actually executed
C = removéqueug by a virtual call. Figur¢[3 gives an example of this
Alookup(C) = (Alookupfather(C)) situation with method call.n() : Without applica-
—member&C)) Ulnts(C) tion of the aspectA.n() is called; withOapplied,
VD :D < C do: addD to queue the virtual call evaluates tG.n() .

The changes in lookup are used as input for a sué)- . e
sequent impact analysis (refer to sectign 5). Howev r,2 H_'erarChy MOd'f'Ca_t'_on as
changes in lookup are not only due to introduction but ~ Hierarchy Composition
can have a different reason: hierarchy modification.

. . : ﬁodmcanon of the inheritance hierarchy can again be
effects are examined in the next section.

viewed as a hierarchy combination. In this case, the hier-
archy induced byeclare parents ...extends
. . . statements contains an empty class for any class in the
4 Noninterference Criterion base hierarchy and an inheritance relatidrmodified by

for Hierarchy Modification the aspect statement as follows:

Besides introduction, AspectJ allows structure modificgif'n't'°”h4'l (Induced H'erar‘f_hﬁ) LetH = (Sa 5% be
tion of inheritance hierarchies, with the intention to moya Nierarchy an aspech is applied to. Let D be the set
classes (together with all their subclasses) ‘down’ the IN-54t is not possible to move classes ‘up’ in the inheritance hierarchy
heritance hierarchy, so that original type relations st{lkspectJ accepts this declaration without effect).

39

Gary T. Leavens
39

A |An allows to make control flow dependent of the type of an

A AN object.

m [ﬁ To guarantee that behavior of a client is preserved, all

B |An instanceof statements have to evaluate to the same

B [An B.m value. To calculate the value of such expressions, the type

B.m of each reference involved in amstanceof predicate

JAN o) . .

has to be known. Approximations with points-to analysis

Gn are possible but precise points-to analysis is undecidable.
B.m B.m Thus in general only a superset of the type of an object a

G
B.m - B.m [ﬁ [ﬁ reference points to can be calculated.
n
T T 5
F

>
=]

(@]
®
O
>
=]

B m Gn Preservation of behavior can only be guaranteed iff
B.m points-to sets of references involved in an instanceof-
statement before and after the hierarchy modification
evaluate to thesame single type-a very rigid require-
ment. In general, when using static analysis, many pred-
icates will evaluate to type-sets with a cardinality big-
ger than one. In this case, conservative approximation
requires to assume that the behavior of the client has

F.n
B. m

Figure 3: Effects of hierarchy modification.

changed.
of tuples derived frondeclare parents ... ex- To check the impact of changes to any client of the
tends statements of this aspect. Thehis defined as modified hierarchy the noninterference criterion can be
follows: applied if RTTI is excluded. Finding the method calls
(<') = (< uD) with changed lookup is easy: Only calls to methods

_ _ o .,) (re)defined in a class between (and including) the new and
The hierarchy defined biis #" = (', <’), whereC’ = the former superclass can be influenced, if those methods
C,VC e C': memberfC) = 0. are not redefined by the affected class itself.

As hierarchy modifications in AspectJ are restricted—% Detecti f Binding Interf
is only allowed to declare that a class now is a subclass p‘ etection or binding Interrerence

a sibling (or a subclass therdgif) the inheritance tree— due to Hierarchy Modifications

the following always holds: Detection of changes in lookup due to hierarchy modifi-

o (<)C (<) cation can be achieved by a simple algorithm. The idea
T is that any method call has a changed target iff now the
e (DC) € (<) = (CD) ¢ (<) (no conflicts in<’) virtual call evaluates to a newly assigned superclass. This

change in lookup again has to be propagated to any sub-
With this properties, the simplified hierarchy combinatiogiass not redefining the affected method.
operator can be applied as no collapsing of equivalenceCalculation of the necessary data can be performed in
classes due to conflicts is necessary. The resulting hietaree steps:

chy is given by#H = (C,<').
yisg Y (6= 1. Get the set of class&affected by hierarchy modi-

fication.
4.3 Impact of Type Changes

2. Vd € D calculate the intermediate class€dbetween
To prove that any client still works as before, the interfer- this class and the newly assigned superclass.
ence criterion of [10] is a necessary Imatt sufficienton-) .
dition. If a language contains statements for run time type>: FOr any methodnknown ind, check if a call now
identification RTTI), control flow might change although ~ actually evaluates to a classc IC. If this is the
the above noninterference criterion is met. Java contains ¢2S€; the behavior of the call possibly changed
such statements with the prediciistanceof , which andmhas to be added #lookup(d).

61f u, vare siblings= (U,v) ¢ (<*)A(wU) & (<) ATwe C: (uw) e Again, any (transitive) subclass dfwhich does not rede-
(<) A(v,w) € (<*), (<*) indicates the transitive closure o). fine mis affected by the change as well.

40

Gary T. Leavens
40

5 Impact Analysis of Changes subset of test cases which must be rerun can be de-
termined. Impact of these changes can be checked
In [9], a method to compute impact of system modifica- by the results of these regression tests only.
tions on a set of given test drivers has been suggested. It _) i i
breaks modifications down into atomic changes kil o For the given hlergrchy[, impact of §tat|c featur.es
method(AM) and add field (AF). These atomic changes of aspect apphcangn on the semantics of the hierar-
can be easily derived from the aspects; dependent changes €hY ¢an be determined.
like change lookupare calculated by the analysis prefhis information can be used by the programmer to avoid
sented in sectiorid 3 ahd 4. unexpected changes and specifically examine results of
With the set of changed lookups at hand, impact anaitended changes.
ysis can be used to choose a set of test drivers which has
to be rerun to check whether the system still works as in- .
tended. Only a short summary is presented here, for é An Example AnalyS|S
tails refer to[[9].
The classes of the hierarctly under consideration ar
now associated with a set of test drivers= {t1,...,tn},
where eacht € T calls a subset of methods defined

To see how the proposed algorithms work, the analysis

is applied to an example using all static modification fea-
bE}Jres of AspectJ.

classes inH. For each test drivet;, impact analysis is - - .
' Program 6.1 Combined Aspect Applied to Hierarchy.
performed using the call graph gfto determine if the g ! P il ! y

class Main {

new D(); d.n(); d.m();
new E(); e.n(); e.m();
f = new F(); f.n(); f.m();
g = new G(); g.n(); g.m();

test driver (or client) is affected. This is done by checking public static void main(String[] args) {
ey it ; print("A:); A a = new A(); a.n();
if t; calls (maybe transitively) any method with changed ! "B b = now B(. bnl: b.mo:
Iookup. ¢ = new C(); c.n(); c.m();

d =

e =

This check uses calculated information about changed
lookups when traversing an edge in the call graph. If
the call matches a call in the set of changed lookups
Alookup(C) the test driver has to be rerun.

To create the call graph, the type of the calling object }
at runtime has to be determined for each method call to aspect MnO {
decide whether the call changed its behavior. This is the // declare parent extends / implements

. . . declare parents: D extends G;
case if the object reference may have a type with changed declare parents: C implements I;

A
B
; C
Y. D
, E
F
G

println();

behavior as indicated by the analysis presented above. declare parents: D implements I;
Unfortunately, calculation of the exact type at runtime II' introductions _
is undecidable. However, points-to analysis can be used to Public void 1y) { print("ly("); 4
void B.n() { print("B.n()"); }

calculate an approximation: the set of possible types for

an object reference in the test driver. If a call of any type p“';'ri;t(s..t/i‘_“c..)_"olld amii”rfgwngg, aggrf())_ {
in this set is contained in the set of methods with changed print(’B: *): B b = new B(): b.n(): b.m();
semantics, conservative approximation demands that the p”';t_g;‘(:)ﬂ "C)?X(‘):_ oo C0: en0;
semantics of this call have to be considered as changed. print¢'D: *); D d = new DQ; d.n();
In this case, the test driver containing this method call has | Sm0 X0 408
to be rerun. The results of this regression tests show if the em(); ex(); ey();
program still works as intended. pri?‘(n:gi ;?;()F ffy(z)_ new F(; f.n();

So, the analysis proposed here can provide different re- print("G:), G g = new G(); g.nQ); g.m;
sults: printin();

e A set of introductions and hierarchy modifications
with no effecton a given sedf test-drivers can be de-
termined. These changes can be incorporated safely

into the system as the semantics of the systemare@ol The System to Analyze
changed.

As a starting point, the class hierarchy defined by program
e For atomic changes modifying system behavior, tfie] is given, together with aspetNQwhich combines

41

Gary T. Leavens
41

the effects of former aspects. It introduces a new methigproduces the results visible when comparing sections
n to classB, changes the inheritance relatiate€lare (a) and (b) of figuré}4.
parents:D extends G) and declares that class€s

and D implement interfacd . Methods are inserted to : ;
class interface . Additionally, the aspect defines an owr(15'3 Using these Results—Impact Analysis

main -method which is necessary to test the results Phe calculated information about changed lookups can be
interface declaration. Effects of aspect application areiged for impact analysis to determine whether a given test
changed structure as well as a changed lookup for sogiter has to be rerun. For illustration consider the set
methods. of (quite simple) test drivers associated with the example
The classes of this example are quite simple: All methierarchy presented in program16.3.

ods only print their name and the class they are definedro decide if control flow has been changed by intro-

in, but this setting is already sufficient to show how thguctions, the call graph has to be constructed. Note that
aspect affects the existing system. Figure 4 presents pdnts-to analysis is necessary as the types of caller and

output of the system. The figure contains three sectioBallee of a virtual call has to be identified or at least re-
The output of the original system without application of

the aspect is marked with ‘(a)’. The effects of binding a) : original system
interference are visible in section ‘(b)’, which shows the jayac demo java
output of the original main method with asp@dNCap- java Main

plied to the system. The set of known methods is identi- A: A.n()
cal, but the dispatch has changed for clag3es, E, and B: An() B.m()
D. The first three classes are affected by the introduction C: A.n() B.m()
of n to B, classD by the change of the hierarchy. D: An() B.m()
All effects of the aspect are visible in secton E*AnOQ — Bm(
‘(c), where the effects of theleclare parents: F: F.n) B.m()
G: G.n() B.m()

...implements | statements become visible. No
‘old’ base system code uses this effects as in the origi-

. .) b) : changes due to dynamic
nal hierarchyC andD did not implement . So, forC, D

interference

and all their subclasses, methadsandy can be called. ajc demo.java demo.aj
For classC only an implementation af is provided, for java Main
y the defaultimplementation ¢fis used—as is visible in A: An()
the output. B: B.n() B.m()
C: B.n() B.m()
) . D: G.n() B.m()
6.2 Applying the Proposed Analysis E: B.n() B.m()
. . . . F: F.n() B.m()
The analysis revealing classes only using the defaultim- . g) B.m()

plementation of an interface, like e.g. does, is quite

simple and not considered. The example concentrates on ¢) : including introduction
changes in lookup. Changes due to introduction can be to interface

found by applying algorithri 3]1. For the example hier- ajc demo.java demo.aj
archy, tabl¢ b summarizes the gathered information. The Jjava M

example application of the algorithm traverses all classes A: A.n()
of a given hierarchy according to a bfs-order determined B BnO B.m(
by the structure of the class hierarciger applying hier- g: 22(()) BB”I;(()) ([:)’)(((()) Ibyo()
archy modifications of the aspect. E: B.'n() B..m() C..x() Iy();
Step 7 is interesting as at this _position the changed . F.nQ) Bm() Dx() Dy
lookup results from the change of hierarchy structo, G: G.n() B.m()
from introduction (the father dD now isG which has an
own definition of methoah so introduction ofmto B has
no longer any effect o®). When calculating changes in
lookup, these effects must be considered. The algorithm Figure 4: Example: Produced output.

42

Gary T. Leavens
42

Step v declared methods members(v) Intr(MMlookuplv) queue

1 - - - - - {A}
2 A n n - - {B}
3 B n, m m n B.n {C, G}
4 C n, m - - B.n {G, E}
5 G n, m n - - {E, D}
6 E n, m - - B.n {D}
7 D n, m - - G.n {F}
8 F n, m n - - 0

Figure 5: Results produced by the algorittxny omitted).

Program 6.2 Test Drivers for the Example Hierarchy. due to aspect application as no lookup for Rwbject

class T { changed. Test drivef2 calls n from a B-object. This
P o o ool ares) { lookup has changed from.n() toB.n() due to intro-
fmQ; // calls B.m() duction of method.n . This test driver has to be rerun.
fnQ; /4 calls F. . . .
} "0 alls Fin0 Test driverT3 is a little more complex as here the
type of the calling object is statically unknown. Possi-
class T2 . .
public static void main(String[] args) { ble types ar® andG. For aG-object, semantics would be
B b = new B(; preserved, but for ®-object, the call would evaluate to
b.n(); /I calls B.n(), changed lookup

G.n() and nottoA.n as in the original hierarchy. Con-

dass T3 { servative approximation demands to rerun test dii@&r

public static void main(String[] args) { Certainly this is a simple example, but there is no restric-
G d; tion to apply this analysis to real-world call graphs as it
if (args.length = 0) d = new D(); ; B ;
else d = new G(); can be done by performing this simple check for every
d.n(); // calls G.n(), caller: D or G edge_

}
}

7 Preliminary Implementation
and Future Work

stricted to a as-small-as-possible type set.

F.n
: / A prototype of the analysis presented in sections 2 to 4
1. main has been implemented and produces reasonable results for
\ B.m programs written in a subset of AspectJ, including the ex-
ample of sectiof]6 presented in this paper.

T2 main E plen Howgver, implementation of the impact anglysis and
extension of the set of analyzable programs still has to be
done. A point of interest is the handling of Jargort -

T3.main [—DOor-Gpy Gn statements as imported classes are necessary information

to built up the hierarchyt. For these classes, source code
Figure 6: Call Graph of Simple Test drivers might not be available. To solve this problem, itis planned
to reconstruct class information out of Java byte code us-
To get a first impression how impact analysis work#)d the BCEL API.
consider test driver$1 to T3 and their call graph. The Evaluation of occurence of binding interference in ‘real
edge labels of figurg 6.3 indicate the type of the callirife’ AspectJ programs is necessary to determine if this
object. To evaluate the impact of an aspect using the qadbblem is actually relevant for Aspect] programmers.
graph, we need the results of tapje 5. However, even if binding interference is not very frequent,
Test driver T1 is obviously unaffected by changeshe Aspectd compiler should issue a warning.

43

Gary T. Leavens
43

8 Conclusion and Related Work [3] D. Batory and Y. Smaragdakis. Building product-
lines with mixin layers, 1999.

This paper pointed out the problem of binding interfer-

ence emerging from usage of the AspectJ features intré#] Don Batory and Sean O'Malley. The design and im-

duction and hierarchy modification. Definitions are given ~ Plementation of hierarchical software systems with

how AspectJ introduction and hierarchy modification can ~ eusable componentsACM Transactions on Soft-

be interpreted as hierarchy combinations. With this defi- Ware Engineering and Methodolog¥(4):355-398,

nitions at hand, the noninterference criterion[of[10] and ~ 1992.

the impact analysis of [9] can be applied to check if client]

of the hierarchy under consideration possibly change

behavior. This analysis can help Aspect] programmers

to examine the impact of aspects before application and

avoids subtle flaws in their programs.

Gregor Kiczales, John Lamping, Anurag Menhd-
hekar, Chris Maeda, Cristina Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-oriented program-
ming. In Mehmet Aksit and Satoshi Matsuoka, ed-

. . . itors, Proceedings European Conference on Object-
To improve separation of concerns, several different ap- Oriented Programmingvolume 1241, pages 220—

proaches besides aspect oriented programming have been 242. Springer-Verlag, Berlin, Heidelberg, and New
suggested. Aksit et al. proposed composition filter5][2, 11 v 1997 ' ' ’

to route incoing and outgoing messages through a filter
queue, thus enabling similar functionality. Batory et al{6] Barbara H. Liskov and Jeannette M. Wing. A behav-
proposed layered designs [4, 3]. ioral notion of subtyping. 1994.

Especially relevant for the approach presented here is) o] o
[8]. Ossher and Tarr proposed multi-dimensional sepd/] Leonid Mikhajlov and Emil Sekerinski. A study
ration of concerns, leading to a separate implementation ©f the fragile base class problemecture Notes in
of different features and a composition of the resulting COmputer Scienced 445:355-382, 1998.
hierarch.ies according to user defined composition rglefg H. Ossher and P. Tarr.
Semantics of these compositions are a research topic ad-
dressed in[10].

Besides[[10], very little work of program analysis for
AOSD approaches is known, although impact analysis of
[9] could be used for AOSD software as well.

Multi-dimensional separa-
tion of concerns and the hyperspace approach, 2000.
Proc. Symposium on Software Architectures and
Component Technology: The State of the Art in
Software Development.

[9] Barbara G. Ryder and Frank Tip. Change impact
analysis for object-oriented programBroceedings

Acknowledgements of the Workshop on Program Analysis for Software
Tools and Engineering (PASTE 200fpages 46-53,
Thanks to Silvia Breu for her valuable feedback. 2001.
[10] Gregor Snelting and Frank Tip. Semantics-based
References composition of class hierarchies. ECOOR page
562ff, 2002.

[1] M. Aksit and B. Tekinerdogan. Solving the model-
ing problems of object-oriented languages by com-
posing multiple aspects using composition filters,
1998.

[2] Mehmet Aksit, Ken Wakita, Jan Bosch, Lodewijk
Bergmans, and Akinori Yonezawa. Abstracting
Object Interactions Using Composition Filters. In
Rachid Guerraoui, Oscar Nierstrasz, and Michel
Riveill, editors, Proceedings of the ECOOP’93
Workshop on Object-Based Distributed Program-
ming volume 791, pages 152—-184. Springer-Verlag,
1994,

44

Gary T. Leavens
44

Compositional

Reasoning About Aspects Using

Alternating-time Logic

Benet Devereux
Department of Computer Science
University of Toronto
10 King's College Road
Toronto, Ontario, Canada
M5S 3G4

benet@cs.toronto.edu

ABSTRACT

Aspect-oriented programming offers greater modularity to
the programmer, but it is not yet clear how best to rea-
son about an aspect-oriented program in a modular way.
We propose a translation of aspect-oriented programs into
alternating transition systems (ATSs), which provide a de-
cidable formal specification language, alternating-time logic,
that allows us to specify which component is responsible for
enforcing certain properties. We develop rules for composi-
tional reasoning using these translations.

1. INTRODUCTION

It is an observed problem [5] with aspect-oriented program-
ming that, while aspects do provide additional modularity
of development, it is not yet well established how to reason
about aspect-based programs in a modular way. Such com-
positional reasoning allows aspects to be not only designed
in isolation, but also formally verified. Such formal veri-
fication is useful for tractably proving correctness of large
programs, since the task can be decomposed, and also for
promoting re-use of aspects.

Compositional reasoning in concurrent programming is a
well-understood (though difficult) problem. Modules of con-
current programs can be verified separately through assume-
guarantee reasoning [7]. The question we pose at the outset
is: how much of this knowledge can be reused for composi-
tional reasoning about aspects?

To begin answering this question, we propose a semantics
of aspect-oriented programs based on alternating transition
systems (ATSs), a variety of state-machine model which ex-
plicitly represents how multiple components work together
to change the system’s state, each only having partial con-
trol. In our model, we treat aspects as concurrent compo-

45

nents which have the authority, at certain points, to take
control and modify program state, possibly returning at
a different point. The possible points of return are con-
strained, but allow for an aspect either to return control
where it took it, or to skip a statement. This semantics is a
direct translation from code into a low-level state machine
model, but it should be the same as a code-weaver-based se-
mantics [8], where the aspect code is woven into the source
code, and then translated; with the additional information
of the allocation of respounsibilities to components (system
and aspect). We are not proposing any new constructs for
aspect languages, but rather an approach to automated com-
positional analysis of existing languages.

Compositional reasoning for concurrent systems often pro-
ceeds as follows: there are two communicating components,
P and Q. We show first that P placed in composition with a
suitable abstraction of () is correct; then, that @) in compo-
sition with an abstraction of P is also correct. In this way,
we avoid constructing the full state-space of P || @, which
may not be possible in the available memory; we pay the
cost of having to construct and verify the abstractions.

We argue that this model is general enough to allow us to
represent complicated interactions of components to deter-
mine state transitions, and yet remain amenable to the ex-
isting methods of analysis of alternating transition systems,
such as model-checking [1] and refinement checking [2]; as
well as any new techniques which aspect verification may
make necessary.

The contribution of this paper is a translation from a sim-
ple aspect language into the ATS formalism, which allows
assume-guarantee reasoning, and a discussion of how this
translation may be used to show that an aspect modifies
a program correctly. The aspect language is similar to the
fragment of AspectJ [8] which only deals with advice to run-
ning code, and not with modifications of the class hierarchy.
We explain the proposed technique on an example, giving
definitions as needed, and suggest two compositional proof
rules for analysis of aspect-oriented programs.

2. EXAMPLE

As an example aspect, we take precondition-checking. A
program module makes use of a Point class; some class

Gary T. Leavens
45

(a) (b)
pointcut mp(x, y):
call (Point.movePoint)
&& args(x,y)
po: while (!button);
p1: pt.movePoint(x,y) over mp(x,y):
p2: goto po a1: if (x>=0, y>=0)
as: continue
a3: else
as: skipover

Figure 1: (a): code using movePoint, (b): code for
the precondition-checking aspect.

methods have preconditions, and if they are called with-
out the precondition holding, their behavior is undefined.
We take movePoint as one such method, following [5]; its
precondition is that the coordinates given are non-negative.
An aspect is defined which inserts checks of this precondi-
tion before any call to movePoint. The aspect skips over
the call if the precondition is not met. It is assumed that
movePoint is provably correct: that is, if it is invoked under
the right conditions, it terminates with its postconditions
satisfied.

The program is shown in Figure 1(a). Its user interface
contains a canvas, two numeric text fields in which the user
can fill in # and y coordinates, and a button to move an
image to the specified location on the canvas. The program
only ever reads the text fields, it does not write to them;
and so their contents are determined by the environment
alone. All other state is determined by the program. For
this aspect to be correct, the combination of the aspect with
the program must have the following properties:

e if the program calls movePoint with the proper precon-
dition, the postcondition will be satisfied at the first
program point after the invocation of movePoint; this
was true before aspect imposition, and should still be
true after the aspect is added

e the aspect should prevent movePoint from being called
with bad parameters

Additionally, the problem of aspect interaction should also
be addressed: there may be other aspects which run before,
or after, or even during the precondition-guarantee aspect.
The problem of formally representing the assumptions on
other aspects under which the aspect continues to behave
as specified seems similar to the problem of representing
the system assumptions under which the aspect of interest
behaves properly, but considerably more subtle. Though
interaction of aspects is an important consideration, this
preliminary work does not as yet deal with it.

3. ALTERNATING TRANSITION SYSTEM
SEMANTICS

In this section, we give a sketch of the proposed semantics,
using the movePoint example to illustrate it. The seman-
tics is in most respects a standard operational semantics for
an imperative language [9], only enriched with information
about how individual agents (the system, the environment,

46

and the aspect) control the state transitions. We refer the
reader to the stated references for a formal treatment, and
illustrate all definitions using the example.

Informally, an alternating transition system is a state ma-
chine where multiple agents each have partial control over
the transition relation. Thus, in a single state, each agent
may not be able to definitively choose a successor, but rather
a set of possible successors: the actual state chosen from that
set is contingent upon how the other agents choose. Thus,
in a sense, the agents play a game to control the behaviour
of the system. We say that an agent has a capability if it
has a strategy to keep the behaviour within a certain set
where every possible execution has some desired property;
these capabilities will be expressed in alternating-time logic,
to be described more in Section 4.

DEFINITION 3.1 (ALTERNATING TRANSITION SYSTEMS).
An alternating transition system is a tuple A = (Q, S, P, L, R)
where:

Q is a finite set of agents;

S is a set of states;

P is a set of atomic propositions;

o L: S — 2P is a function labelling states with sets of
atomic propositions;

o R:Sx 022 is the transition relation;

At each state s, every agent a € S chooses one set of possible
successors T, € R(s,a); the intersection (,cq Ta must be a
singleton, which is the chosen successor.

We look again at the program-aspect composition of Fig-
ure 1. At any point in execution, the environment has par-
tial control over the evolution of system state: it may change
the text fields and the button, but update of the program
counter and the canvas is up to the system. Thus, when the
environment moves at a state, it chooses a set of successors:
for instance, it can choose the set of all states where z is 5
and y is 3 as successors, but it cannot choose one uniquely,
because the system has control over the program counter
and the canvas. Symmetrically, the system chooses a set de-
termined by its choices; the intersection of these two (along
with the aspect’s actions) produces a unique successor.

To represent ATSs visually, we use state diagrams annotated
with decision nodes between states. The states are labelled
circles, and the decision nodes are small squares with the
name of the agent making the decision. Note that the de-
cision points between states are arranged in a sequence for
the sake of visual clarity, but that in fact all decisions are
made simultaneously by the agents, none having knowledge
of what the other agents are choosing. A fragment of the
ATS translation for the system/aspect composition of Fig-
ure 1 is shown in Figure 3. Solid circles are states where the
program is active, dashed circles are states where the aspect
is active. A starred transition between two states indicates
that it is reachable by collaboration of all three agents.

Gary T. Leavens
46

aspect may
forestall
PC
advance
here

error
state, to be
avoided

O

Figure 2: Fragment of the ATS translation

The states are labelled with the program point (either in
the program or the aspect: while one is active, the other is
assumed to be suspended), followed by a list of the proposi-
tional variables holding in that state. These are abstractions
of the concrete program state, defined as follows:

Abstract | Description Definition

Variable

r Precondition holds | (x > 0) A (y > 0)

b Button pressed button=true

0 Postcondition holds | (pt.x=x) A (pt.y=y)

At the root, the program is at po with a valid input. The en-
vironment can choose to either enter valid input again, enter
invalid input, or press the button. If the button is pressed,
the system attempts to advance the program counter to p;
however, the aspect is able to interrupts it, moving to ao.
Since the input is still valid, the aspect executes continue,
which returns control to the system at pi1, allowing it to ex-
ecute movePoint; since the aspect has no power to interrupt
once the call has actually been reached, the system is able
to reach ps with the postcondition satisfied.

However, in the middle subtree, we see what happens when
the environment invalidates the input, and then presses the
button; the aspect takes control, but since the input is not
valid it executes skipover, returning control at p» without
allowing the program to execute movePoint. From the sys-
tem’s perspective, the aspect could have chosen to allow this
transition: this possibility is indicated by a dotted transi-
tion. The aspect thus has the capability of preventing p1 Ab
being true while r is false.

This translation is simplified, and does not take into account
the possibility of other aspects taking control both before

47

and after the guarantee aspect. Since the ATSs are com-
piled from code, the control-flow of the code is represented
using a program counter variable; however, if ATSs are used
in high-level modelling (aspect-oriented design), then this
can be dispensed with. Formal support for such design is
another goal of this work. It is not necessary for the model
to be finite-state, as it is here, but finiteness is a sufficient
condition for model-checking to be decidable.

4. REASONING WITH ASPECTS

In this section we discuss formal specification in alternating-
time logic, and compositional reasoning about ATS transla-
tions of aspect-oriented programs.

4.1 Specification

The aspect we describe is introduced in order to guarantee
a simple temporal safety property: it is never possible to
reach a state which is a call to movePoint (p; in Figure 1)
while the precondition is violated. This is a property which
should hold in all executions of the system, regardless of
nondeterministic choices.

A classical state machine model allows us to quantify over
possible executions using temporal logic [4]. Is there an ex-
ecution where the point is never moved? Certainly, the user
need never press the button. Does the point pass through
(2,3) in every execution? No: there are sequences of inputs
which prevent this. An ATS model encodes not only this
information, but also which agents co-operate to create an
execution. In this case, both of the executions we have dis-
cussed are enforced by the environment alone: it is able to
prevent the point from ever moving, while the system must
move the point whenever the button is pressed.

We say that the environment has a strategy — a way to re-
solve the choices available to it — which prevents the point
from moving. At any given time step in the program, the
environment never has control over the entire program state:
only the two fields and the button. How the rest of the state
evolves is up to the system. However, with the system spec-
ified as it is, this limited control suffices for the environment
to keep the point still. It is often desirable to show that
environment properties are preserved [3].

DEFINITION 4.1 (STRATEGIES AND PATHS). Given an
ATS (,S,P,L, R), a strategy for agent a € § is a map
fo: St =25, such that for allw e S* and s € S,
fa(ws) € R(s,a).

The choice of a strategy by an agent constrains the possible
exzecutions. Given a strategy f, 7 € 25% is the set of all
infinite paths which the remaining agents are able to choose.

Alternating-time logic is defined with respect to strategies
and the paths they determine. For example, given a formula

©p:

e s |= (a)Xy if a has a strategy f such that for all paths
st...inmp tE@

e s = (a)Fy if a has a strategy f such that for all paths
stot1 ... in 7y, there is an ¢ such that ¢; = ¢

Gary T. Leavens
47

The purpose of adding the precondition-guarantee aspect is
to impose a new property which did not hold before: that
the environment cannot cause movePoint to be called with-
out the precondition holding. It may still press the button,
but the aspect alters the system’s response, skipping over
the call to movePoint if the precondition is violated!. At
the same time, the aspect should not prevent movePoint
from being called if the precondition does hold. An aspect’s
specification, then, as has been observed [12], is twofold: it
has new properties that it must guarantee, and old proper-
ties that it must preserve. Both are dependent upon being
used according to a contract.

We are transforming the system’s code to meet the specifi-
cation. To encode at the state-machine level the fact that
we are doing this with an aspect rather than a code patch
— that is, for modularity and maintanability rather than
correctness — we represent this modification as the actions
of another agent (the aspect) which is able to seize control
of the system’s program-counter at certain points, execute
some code, and then return control.

4.2 Compositional Reasoning

How, then, do we show that the aspect meets both parts
of its specification? The simplest approach to verifying a
program is to create a formal model of the entire program,
and prove it meets its specification. In general this is not
feasible for two reasons: first, a state-machine translation
grows exponentially in size with the number of variables, and
rapidly becomes far too large for available memory; second,
the reasoning task becomes forbiddingly complicated and
cannot be decomposed or distributed in any way.

So it has been held that reasoning should be modular: and
the most straightforward way to make reasoning modular is
to follow the modular structure of the program. That is,
given modules X and Y, which interact in a given way, we
prove that if X behaves according to specification, so will
Y; and if Y behaves according to specification, so will X.
This is compositional, modular or assume-guarantee [10, 7]
reasoning.

Since aspects form an alternative decomposition, it seems
desirable to do reasoning that follows the aspect structure
of a program. Not only would this facilitate reasoning about
aspect-oriented programs, it would also promote more flex-
ibile compositional reasoning in general, providing alterna-
tive decompositions which might be more amenable to proof.
Our goal,then, is to develop compositional proof rules for
aspect-oriented programs. The remainder of this section
presents two such proposed rules.

4.2.1 Imposition Rule

Let M be the module, and F (for ‘feature’) be the aspect;
they are attached using a binding ¢ which identifies join-
points in M with F’s pointcuts (in our example, the calls to
movePoint make up the pointcut MP). Consider first one half
of the compositional reasoning task: assuming M is correct,
and c is the correct binding, we wish to show that F' must

'If the Point class were not a black box, an aspect could
instead insert precondition-checking code at the beginning
of movePoint, changing the class specification.

48

goto py O goto p}
pi: beforeJP

ps: pt.movePoint(x,y)
pg: afterJP
Pi goto po

Figure 3: Abstraction A of the program M: O in-
dicates a nondeterministic choice

have the desired effect. That is, we wish to analyze F in
isolation. However, since it is a controller which reacts to
its environment — the program-counter changes of a module
— it is, by itself, an open system, and needs to be closed with
some model of its environment.

This model should be considerably simpler than M itself,
since most of the behavior of M is of no interest to the as-
pect — only the entering and leaving of join-points. Such an
abstraction Aas is shown in Figure 3; it is not much simpler
than the program, but button has been abstracted away as
irrelevant to the aspect’s correctness. All that matters is
that the abstraction calls movePoint some number of times
with varying values of z and y.

Given this abstraction, we construct its composition Ac (A, F);

note that the composition C' must be abstracted as well —
since the pointcuts remain the same, but the join-points
in a pointcut are different in M and Ap;. The important
property of this composition is that it preserves all the ca-
pabilities of F': the system is abstracted, but F’s behaviors
are neither expanded nor constrained. More formally, we say
that Ac(Awm, F) is an S-abstraction of C(M, F)F, which we
write:

AC(AM7 F) <s C(M: F)
and that the aspect has the same capabilities (is A-equivalent):
Ac(Am, F) <s C(M, AF)

We refer to this composition as the abstract aspect, to follow
the terminology of AspectJ; but note that it is not the aspect
which was been abstracted!

Recall that the new property we wish to demonstrate is that
the environment can be prevented from calling movePoint
when the precondition is unsatisfied; that is, that the sys-
tem and aspect together can prevent the call whatever the
environment does. If we can demonstrate this for the ab-
stract aspect, and show that it the abstract aspect has all
of the system and aspect capabilities of the full composi-
tion, we can conclude that the full composition meets its
specification.

Thus we state our first compositional reasoning rule, which
we’ll call the Imposition Rule, used to prove that an aspect
guarantees a capability (S, A)y of S and A:

Ac(Am, F) = (S, AYp Ac(Am, F) <(s.4; C(M, F)
C(M,F) (S, Ay

That is, if the abstract aspect meets the specification and it
is an S, A-abstraction of the full composition with respect to
S, then the full composition also meets the specification. By
construction, the abstract aspect is A-equivalent to the full

Gary T. Leavens
48

composition, and an S-abstraction, so the remaining obli-
gations are to show that it is an S, A-abstraction (which is
not necessarily implied by being both an S and A abstrac-
tion [2]), and that (S, A)y holds in the abstract aspect.

To sum up, the Imposition Rule enables us to verify an
abstract aspect, and show that the verification holds in the
full composition by proving the abstraction relation between
the abstract aspect and the full composition.

4.2.2 Preservation Rule

Of course, we also wish to show that the aspect preserves
some of the existing properties of the base program. We
take a similar approach: composing the module with an ab-
straction of the aspect, checking the desired property on this
composition (which we dub the program-in-contezt), and us-
ing the abstraction relation to conclude that the property
holds in the full composition, without actually needing to
construct and analyze it.

The intuition behind the program-in-context is that it is
the program in a very general aspect-oriented runtime envi-
ronment, with the join-points fixed. At any join-point, the
aspect may choose to interrupt, take control, and return to
any allowable program point, possibly with some changes
to program state. The program-in-context is not equivalent
to the unmodified program: some capabilities of the system
are likely to be broken by the imposition of the aspect.

The program-in-context C(M, Ar) for our example is a com-
position of the base program with the following abstraction:

over mp(x,y) {
continue [] skipover;

}

In other words, it is an A-abstraction of the full composition.
Note that this embodies two additional assumptions: the
aspect does not modify any state readable to the program,
and that it only inserts before and over advice — never after.
These assumptions are necessary for the program-in-context
to preserve the desired property.

Part of the ATS for the program-in-context appears in Fig-
ure 4. In the unmodified system, whenever the PC is at
line p; with the precondition satisfied, the postcondition is
satisfied at the next step. This system capability is stated
in ATL as:

(S)pr Ar = Xo

We must check the program-in-context to see that this sys-
tem capability is also preserved there. Looking at 4, we see
that although the aspect can prevent the system getting to
p1, once it is there it can execute movePoint and satisfy the
precondition.

So we state the Preservation Rule: if system capability (S)p
holds in the program-in-context M || Ar, and the program-
in-context is an S-abstraction of the full composition, then
we can conclude that (S)p holds in the full composition:

49

Figure 4: Fragment of ATS for program-in-context

C(M,Ar) E(S)p C(M,Ar) <s C(M, F)
C(M,F) = (S)¢

5. RELATED WORK

Researchers studying the feature interaction problem have
encountered similar issues, since features often have simi-
larly cross-cutting effects. Ryan et al. [11] have developed a
feature construct for state-based modeling languages; their
features are expressed at the state-machine level of abstrac-
tion rather than the program-code level. They have also [3]
used an alternating transition system framework to prove
that imposition of a feature maintains desirable properties
of a system, even though it is a non-monotonic composition
in general. The difference is that in their formalization, each
module is represented by an agent; this allows for reasoning
about capabilities of agents before and after feature impo-
sition, but does not allow for the distinction of base and
feature as separate agents, and thus does not lead to the
kind of modular reasoning we wish to do.

Clifton and Leavens [5] address modular reasoning with as-
pects, and suggest two types of explicit contracts: observers
and assistants. An observer is an aspect which does not
change the existing specification of any module it is attached
to; it only ever changes its own state. That is to say, the
capabilities of the module by itself are identical to the ca-
pabilities of the composition of module and observer; only
the aspect gains new capabilities. Assistants may modify
system capability.

Fisler and Krishnamurti et al. [6] also use a state-based
model of feature composition, and aim towards composi-
tional reasoning. They have an effective decision procedure
for proving that a feature preserves and guarantees proper-
ties without needing to construct the full state space; how-
ever, they do not consider the situation where a feature can
disable a transition of the system it modifies.

Gary T. Leavens
49

We are not aware of any work which formalizes, in a general
way, the weaving of aspects in general, dealing with cases
like weaving of class hierarchies or data-flow graphs that are
not handled by the proposed method.

6. CONCLUSION AND FUTURE WORK

We have discussed a proposed approach to modular reason-
ing with aspects. This approach is a variety of assume-
guarantee reasoning, using an alternating transition system
model, with alternating temporal logic [1] as a specifica-
tion language. We have illustrated the fundamentals of this
approach on an example, demonstrating how the proposed
formalism enables compositional reasoning.

This work is in its early stages, and there is much to be
done. Proving the necessary abstraction relations is the
difficult part of the approach, and this must be shown to
be scalable and relatively automatable. Further, the decid-
ability of the analysis depends on a finite-state model, and
so abstractions of the state-space are necessary to make a
general program finite-state; any interactions between these
abstractions and those of the proposed compositional rules
must also be considered.

7. ACKNOWLEDGMENTS

I thank Marsha Chechik for extensive assistance with the
ideas and presentation and Steve Easterbrook for fruitful
discussions. Shmuel Katz started me thinking about the
problem, and directed me to the literature on superpositions.
The reviewers’ comments helped to improve and clarify the
material.

8. REFERENCES
[1] Rajeev Alur, Thomas A. Henzinger, and Orna
Kupferman. “Alternating-time Temporal Logic”. In
Proc. 38th IEEE Symposium on Foundations of
Computer Science, pages pp.100-109, 1997.

Rajeev Alur, Thomas A. Henzinger, Orna Kupferman,
and Moshe Y. Vardi. “Alternating Refinement
Relations”. In Proceedings of CONCUR ’98, pages
163-178, 1998.

F. Cassez, M. D. Ryan, and P.-Y. Schobbens.
“Proving Feature Non-interaction with
Alternating-Time Temporal Logic”. In S. Gilmore and
M.D. Ryan, editors, Language Constructs for
Describing Features. Springer-Verlag, 2001.

E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 1999.

[3]

C. Clifton and G.T. Leavens. “Observers and
Assistants: A Proposal for Modular Aspect-Oriented
Reasoning”. In Proceedings of FOAL 2002
(Foundations of Aspect-oriented Languages), 2002.

K. Fisler and S. Krishnamurthi. “Modular Verification
of Collaboration-Based Software Designs”. In
Proceedings of FSE 01, September 2001.

Thomas A. Henzinger, Shaz Qadeer, and Sriram K.
Rajamani. “You Assume, We Guarantee:
Methodology and Case Studies”. In Proceedings of
CAV 98, pages 440-451, 1998.

50

[8] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. “An
Overview of AspectJ”. Lecture Notes in Computer
Science, 2072:327-355, 2001.

[9]

John Mitchell. Foundations for Programming
Languages. MIT Press, 1996.

[10] Corina S. Pasareanu, Matthew B. Dwyer, and Michael
Huth. “Assume-Guarantee Model Checking of
Software: A Comparative Case Study”. In Proceedings
of the 1999 SPIN Workshop on Software Model
Checking, 1999.

[11] M. Plath and M. Ryan. “Feature Integration using a
Feature Construct”. Science of Computer

Programming, 41(1):53-84, 2001.

[12] M. Sihman and S.Katz. “A Calculus of
Superimpositions for Distributed Systems”. In

Procedings of AOSD 2002, 2002.

Gary T. Leavens
50

Model Checking Applications of Aspects and
Superimpositions

Marcelo Sihman and Shmuel Katz
Department of Computer Science
Technion - Israel Institute of Technology
Haifa 32000, Israel

{sihman, katzy@cs.technion.ac.il

ABSTRACT

The model checking of applications of aspects is explained,
by showing the stages and proof obligations when a collec-
tion of generic aspects (called a superimposition) is com-
bined with a basic program. We assume that both the basic
program and the collection of aspects have their own spec-
ifications. The Bandera tool for Java programs is used to
generate input for model checkers, although any similar tool
could be employed. New verification aspects and superimpo-
sitions are defined to modularize the proofs, and separate the
proof-related code from the program and the aspects. This
allows generating and activating a series of model checking
tasks automatically each time a superimposition is applied
to a basic program, achieving superimposition validation. A
case study that monitors and checks an underlying bounded
buffer program is presented.

1. INTRODUCTION

Aspects help to isolate cross-cutting concerns in programs
and designs. Many researchers have been working on pro-
gramming and design techniques, software evolution and
other implications of AOP. However, little work has been
done about formal verification of aspects. In this paper,
we show in detail how to verify the combination of collec-
tions of aspects over basic programs, using model checking
techniques. The use of special aspects for verification is
also presented, providing yet another natural application of
aspect-oriented software design.

We introduce this approach as a new feature of SuperJ, an
AOP construct that we have proposed in [15]. SuperJ pro-
vides language support for defining collections of parameter-
ized aspects independently of any basic program, where such
a collection is called a superimposition. A superimposition
is a module describing an algorithm that may be applied to
different underlying basic programs. A brief introduction to
SuperJ is presented in Section 2.

In this paper we consider how model checking of software
can be used in the formal verification of combinations of
superimpositions and basic programs. Model checking has
the advantages of automatic verification (in that difficult
invariants do not need to be supplied, as is the case in for-
mal verification based on theorem proving), yet provides full
verification, as long as any data abstractions preserve the
properties being checked. Additionally, it has proven pop-

51

ular with verification of hardware designs mainly because
it provides counter-examples when the property of interest
does not hold.

We have chosen Bandera [5] as the prototype generator of
input to model checkers such as SMV or Java Pathfinder,
and thus use Bandera’s specification notation BSL for de-
scribing temporal properties to be model checked. A brief
introduction to Bandera is given in Section 3.

When binding a collection of aspects (a superimposition) to
a basic program (a collection of basic classes), we need to
bind each relevant class of the basic program to a generic
aspect (of the superimposition), where basic classes may be
left unbound to any generic aspect if they do not play a role
in the superimposed algorithm.

In a superimposition, we specify assumptions about the ba-
sic programs and parameters to be bound and desired results
that must be true in the augmented program, where an aug-
mented program is the result after binding a superimposition
to a basic program. We assume here that the result of such
binding and instantiation (often called weaving) is a Java
program in itself, rather than, for example, Java byte-code.
(The implications of this assumption for our implementa-
tion are considered later.) A superimposition is correct if,
when the aspects in it are woven into a basic program that
satisfies the superimposition’s assumptions, the augmented
program satisfies the desired results and does not violate the
original specification of the basic program.

As will be shown, in Bandera, code is added to the program
to be model checked in order to define functions, predicates,
control locations, and assertions used only for the model
checking. We take advantage of the superimposition con-
struct to define wverification aspects that are used to sepa-
rate these additions from the code of the programs. All
of the verification aspects concerning the assumptions are
grouped into an assumptions superimposition, and similarly,
those related to the results are in a results superimposition.
The superimpositions and basic programs of the application
under consideration can thus be kept free of verification aug-
mentations. This is possible in SuperJ because it supports
weaving multiple superimpositions over a basic program, so
both the application superimpositions and those needed for
verification can be combined before applying Bandera to

Gary T. Leavens
51

generate input for a model checker.

There are several possibilities for using the approach seen
here to check superimpositions and their combination with
basic programs. These vary according to the modularity
in the proof itself, and whether we wish to prove the su-
perimposition correct independently from any specific basic
program. In the case of model checking, this may be done
by writing a suitable abstraction of a basic program that
respects the superimposition requirements, along with an
inductive proof. However, we claim here that a more prac-
tical alternative is to use the verification superimpositions
to set up the automatic generation and activation of four
model checking tasks each time a superimposition is applied
to a basic program. This procedure, explained and justified
later in the paper, is known as superimposition validation.

2. SUPERJ

SuperJ introduces constructs that extend the expressiveness
and modularity of AOP. Among the new facilities in Su-
perJ are grouping related aspects into a superimposition,
providing specifications, extending parameterization of as-
pects, dealing with interaction and interference among as-
pects, and combining superimpositions to obtain new su-
perimpositions. The new superimposition construct comes
from the merging of ideas from two distinct research sub-
jects: ‘classic’ superimposition and AOP.

Well-known examples of ‘classic’ superimpositions are ter-
mination and deadlock detection, monitoring or debugging,
adding scheduling restrictions, imposing mutual exclusion,
or bounding the possible values of variables that were un-
bounded in the basic program. These examples have in com-
mon the need to add or superimpose an algorithm over a
basic program. Numerous suggestions ([1, 2, 3, 4, 10, 11])
have been made for a syntax that allows augmenting pro-
gram units, such as processes. A brief survey about several
proposals of a language construct for superimpositions may
be found in [16].

In SuperJ, a superimposition is defined as a collection of
generic parameterized aspects and singleton concrete classes.
A generic aspect has no built-in connection with any pro-
gram unit of any basic program, and in contrast to usual
aspects, a generic aspect contains an extensive parameter
list that allows binding it to any appropriate basic class.
The singleton concrete classes define unique objects that
must be instantiated in an augmented system, where these
unique objects interact with the generic aspects. We have
defined an AspectJ-based implementation for SuperJ, and
have written a preprocessor that translates SuperJ to pure
AspectJ code. The same preprocessor is responsible for
several tasks, such as: binding arguments from the basic
program (classes, methods, etc.) to the parameters of the
generic aspects, and applying a superimposition to a basic
program, generating concrete aspects from generic aspects
and then weaving them to the basic classes.

3. BANDERA

The Bandera Tool Set [5], as defined by its authors, is an in-
tegrated collection of program analysis, transformation, and
visualization components designated to allow experimenta-
tion with model-checking properties of Java source code.

52

Bandera takes as input an augmented Java source code and a
program specification written in Bandera’s temporal Specifi-
cation Language (BSL), and produces a program model and
a specification as input to one of four model-checking appli-
cations: SMV [12], Spin [8], dSpin [9] and Java PathFinder
[7]. This ‘input’ generated by Bandera is written in the
model and specification languages of one of the four model-
checking applications mentioned. Then Bandera uses the
model-checking application to prove whether the model sat-
isfies the required specification (the Java program satisfies
the BSL specification). If the specification is not satisfied,
then a counter-example is returned, as is common in model-
checking tools. Moreover, Bandera shows the problematic
execution path, which does not satisfy the required specifi-
cation, directly in the Java code.

Bandera deals with the state explosion problem, as the pro-
gram state model must be finite, by providing data ab-
straction and program slicing features when customizing the
model. These features help produce a much simpler finite-
state model of the Java program.

To understand the changes we propose in the verification
process, we first need to give a brief introduction to the
specification and verification stages in Bandera, and other
software model checkers. We ignore some actual limitations
imposed by Bandera due to implementation restrictions or
arbitrary design decisions not to implement some features
of Java, and relate to a somewhat idealized version.

Given a Java program, we need to augment it to include
definitions using BSL. For a simple assertion about the state
whenever a given location is reached, or pre and post-condi-
tions of a method, we write the assertion definitions - using
BSL - as Javadoc comments directly in the source code. An
assertion is identified by a @assert tag in BSL, where the
three assertion types supported by BSL are identified by
the identifiers: LOCATION, PRE and POST.

The specification of a more general temporal program prop-
erty is divided into defining the predicates to be used in
the property’s definition, and then separately writing the
property itself, using the defined predicates. Predicates are,
like simple assertions, also planted directly in the source
code, where there are several types of predicates that Ban-
dera allows us to define. For example, we may define a
location predicate, which is true whenever the location is
reached (and false otherwise), by introducing a Java label
at a given control point (inside a method) of the program,
and also writing a Javadoc comment (right before the asso-
ciated method heading) containing the predicate definition
in BSL.

An instance predicate defines a given property that is not
connected to any control point of the program, e.g., invariant
properties that must hold during the whole life cycle of an
object. In addition, it is also possible to define predicates as-
sociated with two different method call control points: when
a given method is invoked and when it returns a value. In
this case, the predicate evaluates to true both when the
given method is invoked and when it returns a value. Ev-
ery predicate definition is written in a Javadoc comment.
A predicate definition is identified by a @observable tag in

Gary T. Leavens
52

BSL, where the four predicate types supported by BSL are
identified by the identifiers: LOCATION, EXP, INVOKE
and RETURN; location, instance, method invoking, and re-
turn predicates, respectively.

In the second step needed for defining a given temporal prop-
erty, after having defined all the predicates that it needs,
we need to specify the required temporal property using
the temporal specification patterns supported by Bandera,
which are: absence, existence, precedence, response and uni-
versality. Let P,), R be predicates defined using BSL. P
is absent in a program if it never evaluates to true. P ez-
ists if it is evaluated to true at least once in the program.
P precedes @@ when P does not evaluate to true before Q
is true (which is automatically satisfied when P is absent).
P responds to @Q if after @Q is true, then P exists (which is
automatically satisfied when @Q is absent). P is universal if
P always evaluates to true.

In Bandera’s temporal specification pattern system, we may
require a temporal property to hold globally, i.e. during all
the program execution, or at certain points during the pro-
gram execution, such as after Q, after Q until R, before
Q, between Q@ and R, where Q and R are predicates defined
using BSL.

The temporal specification of a given program is stored in
a separate specification file. After having specified all the
assertions and temporal properties required for verifying the
correctness of the program, we may use Bandera’s graphic
tool to define a verification session and supply all the data
needed, such as the names of the files containing the source
code and the specification. When running a correctness
check, we may choose exactly which of the assertions and
temporal properties defined we want to verify.

Moreover, it is also possible to use data abstractions to sim-
plify the finite-state model generated by Bandera. For ex-
ample, in a pipeline program shown in [6], a series of integer
values, ranging from 1 to 100, is sent from the first stage
to the last, passing by all the pipeline stages. When the
pipeline program finishes, the first stage sends a 0 value,
and then all the stages finish consecutively. In the specifi-
cation of this example, the integer values - ranging from 1
to 100 - sent in the pipeline are not important. We only
need to know when a stage receives a 0 value. Therefore,
we may use Bandera’s Signs data abstraction, which will
generate only three different states for the possible values
that are sent in the pipeline: negative, zero and positive;
instead of more than a hundred different states. Bandera’s
graphic tool has an interface for defining data abstractions,
which we can afterwards store in a separate file. We may
also select Bandera’s program slicing feature for simplifying
the finite-state model generated. After defining the verifi-
cation session, we only need to run the verification checker,
obtaining formal verification of the property if the model
checking completes without discovering an error, and other-
wise provides a counter-example in terms of the Java code.

In the Appendix, we use a bounded buffer program to give a
brief demonstration of all the Bandera concepts introduced
in this section. This program is a slightly changed version
of an example seen in [6]. Explanations of the example may

53

be also found in the Appendix.

4. PROVING CORRECTNESS IN SUPERJ

4.1 Introduction

In this and the following sections we explain and demon-
strate the different options for verifying that a combination
of a superimposition and a basic program is correct, as sup-
ported by the new features of SuperJ. In Section 4.2, we
explain the verification of a combination of a superimposi-
tion and a basic program. In Section 4.3, we introduce the
intuitively attractive option of proving the correctness of a
superimposition independently of any basic program, and
discuss the practicality of this option. In Section 5, we use a
simple superimposition example to demonstrate some of the
concepts introduced by the new SuperJ features, and discuss
the implications for superimposition validation in Section 6.

4.2 Superimposition over a Basic Program
In this subsection, we assume a superimposition and a ba-
sic program. We want to apply the superimposition over
the basic program, checking that the basic program satis-
fies the superimposition assumptions and that the resulting
augmented program is indeed correct, i.e., satisfies all the
desired results of the superimposition, as well as the original
specification of the basic program. The simplest possibility
is to simply view the result of weaving the superimposi-
tion’s aspects with the basic program as a Java program
that should satisfy the original specification, plus the result
assertions of the superimposition. Following the description
in Section 3, we then may build in all the needed functions,
predicates, labels, and BSL statements to the augmented
program, create the separate specification file, and model
check all at once that the needed temporal BSL assertions
are satisfied (or obtain counter-examples).

This is the simplest option for verifying the correctness of
a combination of a superimposition over a basic program,
since we directly consider the augmented program, and add
in all of the needed predicates and assertions in BSL, as seen
in the previous section. However, in this case the assump-
tions and desired results of the superimposition are already
instantiated for the combination, and are mixed together
with the original specification of the basic program. When
a new combination is done, a completely new annotation has
to be added before Bandera can be applied. This makes the
model checking impractical when the superimpositions are
to be used in many contexts. Thus we now propose a better
option.

In order to more clearly organize the proofs, and thus to
help in identifying the source of any errors, new verification
aspects and superimpositions can be used to modularize the
treatment. This allows having regular superimpositions and
basic programs, free of verification definitions. The extra
definitions needed for Bandera’s verification are isolated in
dedicated aspects, which are used just for proving the cor-
rectness of the augmented program in separate steps.

When completely separating the verification definitions from
the superimposition and basic program, we have a series of
verification aspects that may be sequentially applied to the
basic program, or may be combined using combinations of

Gary T. Leavens
53

superimpositions. Moreover, we may now define a verifica-
tion superimposition as a collection of verification aspects.
We may classify the verification superimpositions in three
different types, defining:

Spec the specification of the basic program;
Asm the superimposition assumptions;

Res the superimposition desired results.

The Spec superimposition will have one or more verifica-
tion aspects, which will contain (AspectJ) advice declara-
tions needed for introducing the verification definitions of
the basic program’s specification. It also includes the BSL
temporal properties which in Bandera are kept in a separate
file.

The Asm superimposition, dealing with assumptions, will
have a collection of verification aspects: one verification as-
pect for each generic aspect that assumes some properties
about the basic class to be bound to it; and one verification
aspect for the global assumptions of the superimposition
that must be satisfied by the basic program, where these
assumptions are not connected to only a generic aspect and
its (bound) basic class. Clearly, the assumptions should be
as weak as possible, in order to allow applying the superim-
position to a large class of basic programs.

A Res superimposition is very similar to an Asm superimpo-
sition, except that it specifies the superimpositions desired
results instead of its assumptions. Res will also have a col-
lection of verification aspects, like Asm.

The complete verification process is composed of four steps:

1. apply Spec over the basic program and check its cor-
rectness;

2. apply Asm over the basic program, and check that the
basic program satisfies the superimposition assump-
tions;

3. apply the superimposition over the basic program, ap-
ply Spec over the augmented program, and then check
that the superimposition does not cancel any desired
result of the basic program;

4. apply the superimposition over the basic program, ap-
ply Res over the augmented program, and check that
the augmented program achieves the desired results.

Note that Spec is used twice, and that the separation of the
verification definitions into aspects and superimpositions is
a cleaner solution than the comments used by Bandera to
sometimes use and sometimes ignore the verification defini-
tions. Of course, if some of the model checking has already
been done for a basic or augmented program, it need not be
redone. For example, if the basic program has been shown
to satisfy Spec once, this need not be redone when applying
a superimposition. The parameterization in the verification
aspects allows their reuse for different basic programs, with
different weavings and instantiations. The advantages of
this reuse are further considered in the Discussion section.

54

4.3 Proving Superimposition Correctness

In this section we consider how to prove that a superimpo-
sition is correct independently of any basic program. If we
succeed, then we are assured that when this superimposition
is applied over a basic program that satisfies its assumptions,
then the augmented program will have the superimposition’s
desired properties. Such a verification is desirable if the su-
perimposition is intended to be put in a library for reuse in
many contexts. Of course, if such a proof has been done, we
still need only the model checking proofs that the basic pro-
gram satisfies the assumptions of the superimposition, and
that the result of weaving does not violate the specification
of the basic program.

The generic correctness requirements and stages in such a
proof are not difficult to state in terms of inductive asser-
tions about the structure of every possible basic program to
which the superimposition can be applied. However, any
such proof has a part which is inductive, and thus non-
algorithmic, requiring the invention of inductive assertions.
This is true both when the entire proof is based on inductive
theorem proving, and when the proof can be divided into a
model checking part and an inductive part proving that if
the model checking part is successful, then the desired con-
clusion is justified.

One way to do such a combination of model checking with
an inductive proof to obtain a correctness proof of a super-
imposition uses what can be called dummy basic programs,
first proposed in [11]. Note that model checking tools verify
a model of a fully defined program by checking that the spec-
ified properties hold in all execution paths of the program.
A superimposition, however, is itself not a program, since it
cannot be run, so there are no execution paths. Therefore,
we need to write an abstraction of a basic program that fits
the superimposition’s assumptions, so that we can apply the
superimposition over the abstraction. Then we will have ex-
ecution paths that may be used to prove the correctness of
the superimposition combined with the abstract program.
This program abstraction may be seen as a dummy basic
program.

The dummy program will have no desired results, since it
does not do any useful computation. Thus, there will be
no Spec verification superimposition in the correctness ver-
ification process. On the other hand, the other types of
verification aspects and superimpositions will still appear,
as explained in the previous section. The abstract program
must have classes and states that satisfy the assumptions
of the superimposition, and also states that correspond to
predicates tested by the superimposition or locations that
can be reached. That is, if a predicate is tested whenever a
(parametric) method is called, the abstract program should
have a state where the predicate is false when a (correspond-
ing concrete) method is called, and another where it is true.

This is analogous to the abstraction seen in usual Ban-
dera verifications, where only the ‘significant’ differences are
maintained, as in the abstraction of message values already
mentioned. It is also related to work on model checking a
representative model built from a model-generating graph
grammar and then concluding that any model that can be
generated from the grammar will be correct [14].

Gary T. Leavens
54

Ideally, if the model checking succeeds for the combination of
the superimposition over the abstract basic program, then
it would succeed for any basic program satisfying the as-
sumptions of the superimposition. However, techniques for
proving this ideal conclusion are not yet developed, and in
any case they are inductive except when there are trivial
structural similarities between the ‘real’ basic program and
the dummy actually model checked. If done successfully,
any basic program satisfying the assumptions, and with suf-
ficient components and states to allow binding to the super-
imposition and its aspects, can be abstracted to this canonic
abstract basic program.

In general, the justification that a representative abstraction
is indeed sufficient can itself involve infinite or very large
state spaces and may require inductive theorem proving.
In the Discussion section, we show that by carefully using
the techniques in the previous subsection, it may not be
necessary to generate such non-algorithmic proof obligations
to obtain fully verified combinations of aspects and basic
programs in practice.

5. CASE STUDY
5.1 Introduction

In this section, we demonstrate the stages in verifying a
combination of a superimposition and a basic program us-
ing SuperJ by means of a case study over the Monitoring
superimposition, which is shown in Figure 1. Monitoring is
a simple superimposition that gathers statistics on basic ob-
jects, such as counting the total number of external method
calls for all relevant basic objects. The superimposition does
not modify the values of the variables. It also checks that
objects intended to be constant, actually are - and stops the
program when a violation is discovered. It thus does reg-
ulate the behavior of the basic program and can affect its
properties. In reading the example, note that SuperJ has
a keyword BC (an abbreviation for Bound Class) which is
like this of Java, indicating the class to which this instance
of the aspect is bound. Formal parameters are in capital
letters, to distinguish them from local variables.

The Monitoring superimposition contains two generic as-
pects (Constant and Mutable) and one singleton class (Co-
ordinator). Constant and Mutable extend the Common ab-
stract aspect, which contains code common to both generic
aspects. The Common aspect defines the Coordinator class
and creates its single instance coord, which is used by Con-
stant and Mutable; moreover, Common’s advice increments
the nCalls counter after each external call to any method
of the bound class, where each aspect instance will have its
particular nCalls counter. The Common’s allExternalCalls
pointcut is defined in both generic aspects of the superimpo-
sition (Mutable and Constant). The join points determined
by this pointcut - in some bound (basic) object - are all the
method calls where the basic object is the callee, but not
the caller. In a basic object bound to Mutable, after each
field assignment performed, Mutable’s advice increments the
nAssigns counter, where each instance of Mutable has its
particular nAssigns counter. The only instance of Coordi-
nator (coord) accumulates the global statistics gathered by
Constant and Mutable. Basic objects intended to be con-
stant, whose field values should not be changed, must be
bound to the Constant aspect; and then, if a field assign-

55

superimposition Monitoring {
class Coordinator {
private int totCalls = 0;
private int totConCalls = 0;
private int totMutCalls = 0;
private int totMutAssigns = 0;

public void conMethodCount(int x) {
totConCalls += x; totCalls += x;

public void mutMethodCount(int x) {
totMutCalls += x; totCalls += x;

public void mutAssignCount(int x) {
totMutAssigns += x;
}
}

abstract aspect Common {
protected final static Coordinator coord =
new Coordinator();
protected int nCalls = 0;

abstract protected pointcut allExternalCalls();
after(): allExternalCalls() {
nCalls++;
}
}

aspect Constant(EM) extends Common {
protected pointcut allExternalCalls(): !cflowbelow
(within(Element)) && execution(* BC.* (..));
before(): set(* BC.*) &&
lcflow (initialization(BC.new(..))) {
System.out.println(” Constant err: illegal assignment”);
System.out.exit(-1);

after(): execution(* BC.EM(..)) {
coord.conMethodCount(nCalls);
}
}

aspect Mutable(EM) extends Common {
protected int nAssigns = 0;

protected pointcut allExternalCalls(): !cflowbelow
(within(Element)) && execution(* BC.* (..));
after(): set(* BC.*) {
nAssigns+-+;

after(): execution(* BC.EM(..)) {
coord.mutMethodCount(nCalls);
coord.mutAssignCount(nAssigns);

}
}

Figure 1: A monitoring superimposition.

Gary T. Leavens
55

ment is tried, the aspect prints an error message and finishes
the execution of the augmented program.

Each basic object augmented by Mutable will call coord’s
mutMethodCount and mutAssignCount methods, while
objects bound to Constant will call coord’s con M ethodCount

method. The mutM ethodCount and con M ethodCount meth-

ods both update the totCalls common method call counter,

and, respectively, update their tot MutCalls and totConCalls

individual counters. The mutAssignCount method updates
the totMutAssigns assignment counter. Of course, Moni-
toring could make more sophisticated use of the gathered
statistics. Generalizations of the same idea should be useful
for bookkeeping and debugging. In particular, superimposi-
tion is especially appropriate when the generic aspects have
more interaction, as when the statistics collected by each
generic aspect are combined.

The assumptions and desired results of the superimposition
are introduced stepwise in Section 5.2, where we verify the
correctness of Monitoring over the bounded buffer program
(seen in the Appendix), which is used as an example of a
basic program.

5.2 Superimposition over a Basic Program
In this subsection we want to apply the Monitoring superim-
position over the bounded buffer basic program, and verify
the correctness of the augmented program, which we get
as a result of their combination. We apply Mutable over
BoundedBuffer, binding BoundedBuffer’s finish method to
Mutable’s EM parameter (an abbreviation for End Method).
In addition, we apply Constant over Element, binding El-
ement’s finish method to Constant’s EM parameter. We
show the whole verification process stepwise, as introduced
in Section 4.

In the first step, we want to check that the basic program
itself is correct, i.e., satisfies its specification. In the Ap-
pendix, we show the BoundedBuffer class with all the Ban-
dera specification definitions interleaved with its code, where
all these definitions are needed for verifying that the basic
program satisfies BoundedBuffer’s specification when using
Bandera. In our approach this is already the result of ap-
plying the Spec superimposition of the bounded buffer to
the original version of the program. This is given as input
to Bandera, defining a new verification session with all the
information needed by Bandera for running the verification,
as shown in Section 3. We then run Bandera’s verification
to check if all the properties specified are satisfied. In this
example, we succeed to show that the basic program is cor-
rect, since it indeed satisfies its specification, completing the
first stage of the model checking.

In the second step, we want to check that the basic program
satisfies all the assumptions specified by the superimposi-
tion. For this purpose, we use an Asm verification super-
imposition. Asm has a verification aspect for each generic
aspect of Monitoring that assumes some property about the
basic class to be bound to it. In addition, Asm has a verifica-
tion aspect for the global properties assumed by Monitoring
about the basic program, such as invariant properties, which
are not connected to only a specific generic aspect.

56

superimposition MonitoringAsm {

aspect CommonAsm {
ok
* @observable
* LOCATION beforeCall] beforeCallLoc;
* LOCATION]afterCall] afterCallLoc;
*

void around(BC C): target(C) &&

execution(* BC.*(..)) {

beforeCallLoc:
proceed(C);
afterCallLoc:

}

properties {
alwaysFinishProp: forall [bc:BC].
{BC.EM.beforeCall(bc)} exists globally;
singleNoCallAfterFinishProp: forall [bc:BC].
{BC.*.beforeCall(bc)}
is absent after {BC.EM.afterCall(bc)};

Figure 2: Monitoring’s Asm superimposition

A property that both Mutable and Constant assume about
basic classes is that the basic method that is bound to the
EM parameter is called exactly once, where the EM param-
eter must be bound to the last method that is called in the
basic object. In the sequel, the basic method bound to EM
is called bound-EM. Another property that both Mutable
and Constant assume is that bound_EM is the last method
called in every instance of the basic class.

As explained in Section 3, in a usual Bandera verification
session we write the specification of the temporal proper-
ties to be checked in a separate specification file. However,
in SuperJ, we write this specification in a new properties
section of the verification superimposition. We have writ-
ten a preprocessor that supports this design decision, which
separates the definitions in the properties section from the
rest of the superimposition code and then prepares a new
verification session for running the verification.

The specification of the properties assumed by the generic
aspects need to use two location predicates that must be
defined in the basic classes. These two predicates are defined
in the verification aspect by the same advice, as shown in
Monitoring’s Asm superimposition, seen in Figure 2.

The single Asm verification aspect must be applied over
all the basic classes to be bound to Constant and Muta-
ble. In the bounded buffer example, they are applied, in
turn, over Element and BoundedBuffer. The two predicates
defined in the verification aspects are associated with two
locations in each method of every basic class bound to Con-
stant or Mutable (e.g. Element and BoundedBuffer). Each
of these predicates is true during execution when the aug-
mented program reaches the control points where they were
defined, i.e., in an execution path. The control points asso-
ciated with these predicates (beforeCall and afterCall) are
right before the first and after the last commands executed

Gary T. Leavens
56

in the basic methods of Element and BoundedBuffer.

After having defined the two predicates needed for the verifi-
cation, we can write the two properties that, if satisfied, will
ensure that the basic program satisfies the two assumptions,
which are required by both Mutable and Constant. These
two properties are written in temporal logic using BSL, and
appear in the properties section of the Asm superimposition.

The first property, which is called alwaysFinishProp, checks
that bound_EM is eventually called. However, that is not
enough, since we want this method to be called exactly once,
and no other method to be called after that. Therefore, the
second property (singleNoCallAfterFinishProp) checks that
no basic method will be called after bound_EM is called.

We put a ‘*’ character in the place where we should write
the name of the basic method where beforeCall was defined.
The ‘*’ character fits every method of the basic class. Un-
fortunately, BSL does not support this special “*’ character.
In a usual Bandera specification, we need to write separate
temporal properties for each method of the basic class. How-
ever, our preprocessor overcomes this limitation, generating
all the properties needed for every method of the basic class.

In the example seen, both Mutable and Constant shared
exactly the same requirements, so in this particular case
we can use the same Asm aspect for both generic aspects.
However, if the assumptions required by two distinct generic
aspects differ, then we obviously need to write them in two
separate aspects. Moreover, Monitoring does not assume
any global property about the basic program, so there is
no Asm aspect for checking if the global assumptions are
satisfied.

At this stage, we are able to apply the verification super-
imposition over the basic program. We then create a new
verification session for checking the superimposition assump-
tions, and then run the verification in Bandera.

After having demonstrated the second step of the new ver-
ification feature, we now go on to the third step, where we
check that the superimposition does not cancel any of the de-
sired results of the basic program. Initially, we need to apply
the superimposition over the basic program, e.g., Mutable
over BoundedBuffer and Constant over Element. Finally, we
apply the Spec verification superimposition - containing the
verification definitions needed for checking the basic pro-
gram’s specification - over the augmented program. Here
we do not show the Spec superimposition, since we show
its verification definitions interleaved with the code of the
bounded buffer in the Appendix, together with its specifi-
cation file. We then supply all the data that Bandera needs
for the desired check and run the verification. If the aug-
mented program passes the verification, then we are assured
that the superimposition does not cancel any desired result
of the basic program.

In the fourth and last step of the verification process, we
want to check that the augmented program has all the de-
sired results specified by the superimposition. For this pur-
pose, we apply the superimposition over the basic program
(Monitoring over the bounded buffer program), and then

57

superimposition MonitoringRes {
J**
* @observable
* EXP Eq: (totCalls == (totConCalls 4+ totMutCalls));
*

aspect GlobalRes {
ok
* @observable
* LOCATION beforeConMC] beforeConMCLoc;
* LOCATION]JafterConMC] afterConMCLoc;
*/

void around(Coordinator C): target(C) &&
execution(void Coordinator.conMethodCount(int)) {

beforeConMCLoc:
proceed(C);
afterConMCLoc:

*%

* @observable

* LOCATION/[beforeMutMC] beforeMutMCLoc;

* LOCATION][afterMutMC] afterMutMCLoc;

*

void around(Coordinator C): target(C) &&
execution(void Coordinator.mutMethodCount(int)) {
beforeMutMCLoc:
proceed(C);
afterMutMCLoc:
}
}

aspect ConstantRes {

5
* @observable
* LOCATION beforeConFieldSet] beforeConFieldSetLoc;
* LOCATION]JafterConFieldSet] afterConFieldSetLoc;
*/

before(): set(* Element.*) &&

lcflow (initialization(Element.new(..))) {

beforeConFieldSetLoc:

after(): set(* Element.*) &&
Icflow (initialization(Element.new(..))) {
afterConFieldSetLoc:
}
properties {
totCallsEqBeforeProp: forall [c:Coordinator].
{Eq(c)} is universal
before{Coordinator.conMethodCount.beforeConMC(c) ||
Coordinator.mutMethodCount.beforeMutMC(c) };
totCallsEqAfterProp: forall [c:Coordinator].
{Eq(c)} is universal
after{ Coordinator.conMethodCount.afterConMC(c) ||
Coordinator.mutMethodCount.afterMutMC(c) };
until{ Coordinator.conMethodCount.beforeConMC(c) ||
Coordinator.mutMethodCount.beforeMutMC(c) };
conObjTermIfSetProp: forall [be:BC].
{BC.*.afterConFieldSetLoc(bc)}
is absent after {BC.*.beforeConFieldSetLoc(bc)};

}
}

Figure 3: Monitoring’s Res superimposition

Gary T. Leavens
57

we apply the Res superimposition over the augmented pro-
gram, where the Res superimposition checks that all the
desired results of Monitoring are present in the augmented
program. The complete Res verification superimposition is
shown in Figure 3.

A desired result that the superimposition requires the aug-
mented program to satisfy is that the value of Coordina-
tor’s field totCalls must be always equal to the value of its
totConClalls field plus the value of its totMutCalls field,
except when the augmented program is executing one of
the two methods of Coordinator that change the values of
these fields (conM ethodCount and mutMethodCount). We
need to define four predicates in the Coordinator class be-
fore specifying the required property in BSL. In addition, an
instance predicate must be also defined, stating the desired
result itself. Thus, the Res aspect associated with Moni-
toring must contain the definition of the instance predicate,
and two advice declarations defining the other four predi-
cates needed.

Moreover, Constant has one desired result and Mutant has
none. The desired result of Constant is that the augmented
program terminates if a field assignment is tried in the basic
object bound to Constant. Therefore, we must write a Res
aspect associated with Constant. Mutable does not need a
separate Res aspect beyond the global required result of the
Monitoring superimposition.

The four predicates - defined by the global Res aspect - are
associated with the augmented program’s control points be-
fore and after the con MethodCount and mutM ethodCount
method, respectively. The Eq instance predicate defines the
property that must be satisfied in the augmented program.
The two predicates - defined by the Res aspect associated
with Constant - will be true before and after a field assign-
ment is tried in the basic object bound to Constant (an
instance of Element).

We write the specification of the superimposition desired re-
sults, using BSL, in the properties section. In the two first
properties seen, we specify that the Fq property must hold
from the beginning of the execution of the augmented pro-
gram until either conM ethodCount or mutMethodCount is
called, and after finishing to execute either one of them un-
til calling one of them again. The third temporal property
specifies that if the augmented object bound to Constant
(an instance of Element) reaches the control point right be-
fore a field assignment, then it will not reach the control
point right after the field assignment.

Above, we have seen a demonstration of the complete pro-
cess of verifying the correctness of a superimposition over
a basic program. The augmented program that we get
from applying Monitoring over the bounded buffer program
passes all the stages of the verification process. However,
some slight changes in the bounded buffer program could
cause it to not satisfy the assumptions required. For ex-
ample, if we substitute an infinite loop in place of the for
loops of InOutl or InOut2 that take and add an element
from the buffer one hundred times, the model checking pro-
duces a counter-example and shows incorrectness. This is
because the finish methods of the buffer and its elements

58

would never be called, violating one of the assumptions of
the Monitoring superimposition.

If the Monitoring superimposition could change the indices
of the buffer of the underlying bounded buffer program, a
counter-example would be produced when Spec were model
checked for the augmented program (in stage 3), because
the assertions involving the indices would be violated.

6. DISCUSSION: SUPERIMPOSITION VAL-
IDATION

The separation of verification annotations into the different
verification superimpositions described above allows a clean
application of instances of model checking for combinations
of superimpositions and basic programs. Note that when
a verification superimposition is woven either with a new
basic program or with the augmented program obtained af-
ter weaving the application superimposition and the basic
program, the weaving process binds classes, methods, fields,
and pointcuts of the generic verification superimposition to
those of the application. No change is needed in Asm or
Res themselves. Of course, the specification of the new ba-
sic program, Spec needs to be produced, and expressed as a
verification superimposition.

Once the bindings have been determined, the entire pro-
cess is in principle automatic, ignoring practical restrictions
of the tools involved. When a superimposition is woven
with a basic program, SuperJ’s preprocessor generates As-
pectJ code, and AspectJ’s preprocessor is used in the mode
which generates source Java code. Then for each of the
four steps described, the appropriate verification superim-
position is woven with the basic or augmented program, as
appropriate, and the processing of SuperJ and AspectJ are
again activated, to obtain ‘Bandera-ready’ Java. Bandera
then is applied to generate input to a model checker such as
SMV, and the algorithmic model-checking either succeeds
in verifying or generates a counter-example.

Therefore, although it might seem expensive to model check
every combination of a superimposition with a basic pro-
gram, this is in fact a viable alternative to the inductive
(non-algorithmic and therefore very difficult) proof that a
superimposition is always correct. The time-consuming, and
difficult manual creation of the BSL annotations only needs
to be done once for each superimposition, even though the
model checker is used for each combination.

Such an alternative is analogous to the idea of translation
validation, first seen in [13], where assertions are generated
and automatically checked whenever a compiler is applied
to a source program. The correctness of the assertions im-
plies that for this activation the translation of the compiler
is correct. This is instead of a full verification of the cor-
rectness of the compiler, which is too difficult for non-toy
compilers. As here, the key to its practicality is that the
generation and verification of the needed assertions is com-
pletely automatic for each compilation, and only takes sec-
onds to perform. Similar ideas are seen in some versions of
proof-carrying code, that show there are no memory leaks
for a particular instance of an applet.

In this paper we have shown how superimposition validation

Gary T. Leavens
58

can be similarly applied whenever an application superim-
position is woven, if the needed verification superimpositions
have been prepared. The other alternative - of a full cor-
rectness proof for a superimposition - is, of course still a
desirable research goal. However, due to the inductive proof
involved, doubt remains that such results can be applied in
practice. In any case, the direction seen here does provide
the first pathway to practical machine proofs for combina-
tions of aspects and superimpositions with basic programs.

7. REFERENCES

[1] R. Back and K. Sere. Superposition refinement of
reactive systems. Formal Aspects of Computing,
8(3):324-346, 1996.

[2] L. Bougé and N. Francez. A compositional approach

to superimposition. In ACM Symposium on Principles

of Programming Languages, pages 240-249, Jan 1988.

[3] K. Chandy and J. Misra. Parallel Program Design - a

Foundation. Addison-Wesley, 1988.

N. Francez and I. Forman. Interacting Processes.
Addison-Wesley, 1996.

J. Hatcliff and M. Dwyer. Using the Bandera tool set
to model-check properties of concurrent Java software.
In CONCUR 2001, LNCS 2154, pages 39-58, Aug
2001.

J. Hatcliff and O. Tkachuk. The Bandera tools for
model-checking Java source code: A user’s manual.
Technical report, Kansas State University,
Department of Computing and Information Sciences,
March 2001. http://wuw.cis.ksu.edu/%7Esantos/
bandera/tut/tut-html.tar.gz.

[6]

K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. International
Journal on Software Tools for Technology Transfer
(STTT), 2(4), Apr 2000.

G. J. Holzmann and M. H. Smith. The model checker
SPIN. [EEE trans. SE, 23(5):279-295, 1997.

R. Tosif and R. Sisto. dspin: A dynamic extension of
spin. In Proc. of the 6th SPIN Workshop, LNCS 1680,
pages 261-276, Sep 1999.

H.-M. Jarvinen, R. Kurki-Suonio, M. Sakkinen, and
K. Systé. Object-oriented specification of reactive
systems. In Proceedings ICSE’90, pages 63-71. IEEE
Press, 1990. http://disco.cs.tut.fi.

S. Katz. A superimposition control construct for
distributed systems. ACM Trans. on Programming
Languages and Systems, 15(2):337-356, Apr 1993.

K. L. McMillan. Symbolic Model Checking: An
Approach to the State Explosion Problem. Kluwer
Academic, 1993.

A. Pnueli, O.Shtrichman, and M.Siegel. The code
validation tool(cvt) - automatic verification of a
compilation process. Software Tools for Technology
Transfer, 2:192-201, 1999.

59

[14] Z. Shtadler and O. Grumberg. Network grammars,
communication behaviors and automatic verification.
In Proc. of the international workshop on Automatic
verification methods for finite state systems, pages
151-165. Springer-Verlag, 1990.
[15] M. Sihman and S. Katz. Superimposition and
aspect-oriented programming. to appear in BCS
Computer Journal. Available at
http://wuw.cs.technion.ac.il/"katz/cj.ps.
[16] M. Sihman and S. Katz. A calculus of
superimpositions for distributed systems. In
Proceedings of AOSD 2002, pages 28-40. ACM Press,
Apr 2002.

APPENDIX
A. BOUNDED BUFFER EXAMPLE
A.1 Introduction

The bounded buffer example is a multi-threaded Java pro-
gram introduced in [6] as an example for demonstrating a
verification session in Bandera. The BoundedBuffer class
has three methods: add(Element), take(), isEmpty(). When
the buffer is not full, the add method adds an Element ob-
ject to the buffer, which is defined as a fixed array of El-
ement objects. The take method takes an Element object
(element) from the buffer, if the last is not empty. The
isEmpty method returns true when the buffer is empty, and
false otherwise. The constructor of BoundedBuffer receives
(as parameters) the size of the buffer array and the num-
ber of threads running (using the bounded buffer), and then
initializes all the object fields.

The other classes that appear in this example are: Com-
pleteBoundedBuffer, InOutl, InOut2 and Element. The
first is the main driver class that runs the program, creating
two BoundedBuffer instances and single instances of InOut1
and InOut2. The InOutl instance is a thread that contains
a finite loop where it takes an element from the first buffer
and adds it to the second, while the InOut2 instance has an
identical finite loop that takes an element from the second
buffer and adds it to the first buffer. CompleteBounded-
Buffer creates two elements and adds them respectively to
the first and second buffers, where an element contains an
Object instance as its only field, and has two methods that
allow changing and getting the Object instance that it con-
tains. Both BoundedBuffer and Element classes contain a
finish method that performs computation destined to be
executed when the program finishes.

Five properties are checked in the bounded buffer exam-
ple. The BoundedBuffer’s constructor parameter (for the
size of its array) must be a positive number, which is spec-
ified by the PositiveBound assertion. The add method al-
ways adds the element in correct position, which is specified
by the addPost assertion. The buffer indices (head- and
tail_ BoundedBuffer fields) always stay in range, which is
specified by the temporal property IndexRange, which uses
the IndexRange instance predicate. A full buffer eventu-
ally becomes non-full, which is specified by the FullToNon-
Full temporal property, which uses the Full instance pred-
icate. An empty buffer must have an element added to it
before an element is taken from it, which is specified by

Gary T. Leavens
59

the NoTakeWhileEmpty temporal property, which uses the

Empty instance predicate and the takeReturn and addIn- public synchronized void threadFinished() {
voke location-sensitive predicates. if (++nThreadsEnd == nThreadsRun) {
finish();
A.2 Source Code
public class CompleteBoundedBuffer { 1
public static void main (String [] args) {

BoundedBuffer bl = new BoundedBuffer(3,2); }pubhc synchronized void finish() {---}
BoundedBuffer b2 = new BoundedBuffer(3,2);

bl.add(new Element(new String(”1”)));
b2.add(new Element(new String(”2”)));

. BoundedBuffer in_jout_;
EEEX %2832;%;23;:@28’ public InOutl(BoundedBuffer in, BoundedBuffer out) {---}

} public void run() {

class InOutl extends Thread {

J for(int i=0; i<100; i++) {---}

in_.threadFinished();

class Element { o .
Object obj: } out_.threadFinished();
Element(Object o) {---})
public void set(Object o) {---}
publ%c ObJeCt get() (-} class InOut2 extends Thread {
public void finish() {--} BoundedBuffer in_,out_;
} public InOut2(BoundedBuffer in, BoundedBuffer out) {---}
[public void run() {
* @observable o
. for(int i=0; i<100; i++) {---
, ZXP Full: (head. == tall*);. in,.(threadFinished()' A
* EXP Empty: head- == ((tail-+1) % bound.); out threadFinished()'
* EXP IndexRange: (head_ >= 0 && tail. >= 0 && } - ’
* head_ < bound- && tail- < bound.); }
*/
class BoundedBuffer { A3 SpeC'f'Cat'on
Element [] buffer_; . mcatl
int bound_; PositiveBound AndPost: enable assertions
int head_, tail_; {PositiveBound, addPost};

int nThreadsRun, nThreadskEnd = 0;
IndexRange: forall[b:BoundedBuffer].

/x* {IndexRange(b)} is universal globally;
* Qassert
* PRE PositiveBound: (b > 0)7 FullToNonFull: fOraH[b:BOquedBuﬁ‘er]-
*/ {!Full(b)} responds to {Full(b)} globally;

public BoundedBuffer(int b, int n) {---}
NoTakeWhileEmpty: forall[b:BoundedBuffer].

o {BoundedBuffer.take.takeReturn(b)} is absent
* Q@assert after {BoundedBuffer.Empty(b)}
* POST addPost: (head-==0) ? buffer_[bound_-1]==o0 : until {BoundedBuffer.add.addInvoke(b)};
* buffer_[head -1]==o;

* @observable
* INVOKE addInvoke;

*/
public synchronized void add(Element o) {---}

/¥
* @observable
* RETURN takeReturn;
*/

public synchronized Element take() {

successTake:

}

public synchronized boolean isEmpty() {---}

60

Gary T. Leavens
60

Understanding AOP through the Study of Interpreters

Robert E. Filman
Research Institute for Advanced Computer Science
NASA Ames Research Center, MS 269-2
Moffett Field, CA 94035

rfilman@mail.arc.nasa.gov

ABSTRACT

I return to the question of what distinguishes AOP lan-
guages by considering how the interpreters of AOP lan-
guages differ from conventional interpreters. Key elements
for static transformation are seen to be redefinition of the
set and lookup operators in the interpretation of the lan-
guage. This analysis also yields a definition of crosscutting
in terms of interlacing of interpreter actions.

1. INTRODUCTION

I return to the question of what distinguishes AOP lan-
guages from others [12, 14].

A good way of understanding a programming language is by
studying its interpreter [17]. This motif has been recently
emphasized in recent work by Masuhara and Kiczales [21],
and is a theme of the work on the Aspect Sandbox [22,
30]. This position paper suggests studying the foundations
of Aspect-Oriented Languages by considering what changes
have to be made to conventional language interpreters to get
aspect behaviors.

Interpreters express meaning. Compilers can be understood
as optimizations that enable more efficient renderings of the
work of interpreters, without changing the underlying mean-
ing of programs. A compiler that builds a “new program”
from several fragments can be understood as a substitute for
the dynamic, run-time building of that new program from
fragments. Thus, while compilation techniques for AOP
(e.g., partial evaluation as weaving [22]) are quite worth-
while activities, they do address the question of the nature
of AOP.

2. A GENERIC INTERPRETER

Consider the pseudo-code for interpreter for A Generic Pro-
gramming Language (AGPL) in Figure 1. This is a “mean-
ing” function over an “expression” (an object in expression
space), and an “environment,” a structure that maps names
to values, perhaps with a characterization of what kind of

61

mapping is of interest (e.g., variables vs. functions). The
pseudo-code includes only enough detail to convey the ideas
I’'m trying to express.

Of course, a real implementation would need implementa-
tions of the helper functions. In general, the helper functions
on environments—lookup, set, and extend—can be manip-
ulated to create a large variety of different language fea-
tures. The most straightforward implementation makes an
environment a set of symbol-value pairs (a map from sym-
bols to values) joined to a pointer to a parent environment.
Lookup finds the pair of the appropriate symbol, (perhaps
chaining through the parent environments in its search), re-
turning its value; set finds the pair and changes its value
field; and extend builds a new map with some initial val-
ues whose parent is the environment being extended. In
this model, lookup and set are “reference assignment” pairs:
they act like elements setting and retrieving the value of a
location. Programming languages vary by their use of chain-
ing in environments. Most languages have some notions of
global environment (a parent of or shared by all elements)
and of constant elements (ones that don’t change, such as a
global function being assigned to a particular value.) Some
languages may use the name being looked up or set as a
structured object that guides the search in the environment
space. More formal approaches would substitute a monad
for the state expressed in the environment, but that level of
formality would only obscure the discussion here.

I have provided set and lookup types (e.g., VARIABLE and
FUNCTION) so that the implementations of set and lookup
can be manipulated to separate things such as the function
and variable space (as in Common Lisp [26]) or to conflate
them (as in Scheme ([5]). By providing a richer notion of
“set,” one can create languages that export and restrict vis-
ibility; by providing a richer notion of “lookup” one can get
inheritance. Most appropriate for doing independently cre-
ated aspects (as opposed to aspects merely defined in the
same “file”) is the idea that certain varieties of environ-
ment.set change or extend some root (or at least non-leaf)
environment.

Focusing on set and lookup corresponds to the importance
of naming in practical programming languages. Much of the
art of programming language design is the rules for associat-
ing names with meanings and groupings, and the visibility
of these names; much of the act of programming is invoking
named entities, dynamically associating names with values,
and retrieving the values of names.

/* Compute the meaning of an expression, exp, given a environment, env

<0>

<1>
<2>

<3>

<4>

<5>

<6>

I cheat by using the stack of the machine interpreting meaning as the stack for meaning. A richer (and perhaps more appropriate)
system can be build by maintaining our own stack, allowing searches within that stack for elements like catch/throw and dynamic
calling scope.

The meaning of a literal expression is the constant of the expression. Numerals, strings, and quoted expressions are literals.
If exp is a variable, look up its meaning in the environment with respect to variable lookup.

If exp is a primitive operator (one that executes on the underlying machine, like “plus” or “print,”) evaluate the meanings of its
arguments in the current environment, assemble them into a “value list,” and invoke the primitive operator on that list.

If exp is some form of language-explicit interpreter control (like an “if” or “switch” statement), compute the meaning of the
condition of the expression, and then return the meaning of the appropriate choice element (like the “else part” or the “default
case.”)

If exp is an assignment statement, change the environment appropriately. The assignmentType covers the varieties of assignments
one might want to make—for example, assigning to a variable, defining a local function, defining the fields of a record, or defining
a new global function.

Call a function. Find the body associated with that function. Build a new environment, based on the original environment and
perhaps some environmental information of the definition itself, which binds the formals of the called function to the values of the
actual parameters, and compute the meaning of the body in this new environment. I could have generalized this a bit beyond call

by value, but it’s not worth the trouble for the ideas I'm trying to convey.

*/
meaning (exp, env) =
typecase (exp)

literal
variable (exp)
primop (exp)
conditional (exp)
assignment (exp)
funcall (exp)

(exp) exp.literalValue

let definition =

env.lookup (exp.variableName, °’VARIABLE)

apply (exp.primop, meaninglList (exp.args, env))

meaning (exp.conditionChoice (meaning (exp.condition, env)), env)
env.set (exp.variableName, meaning(exp.value, env), exp.assignmentType)
env.lookup (exp.functor, ’FUNCTION)

/* <0> x/
/%
/%
/%
/%
/*
/%

<1>
<2>
<3>
<4>
<5>
<6>

*/
*/
*/
*/
*/
*/

in meaning (definition.body,
env.extend (definition.formals,

definition.environment,
meaninglist (exp.args, env)))

Figure 1: AGPL interpreter

3. CROSSCUTTING AND BLAME

One can assign credit (or blame) to every external action
(a primop) or manipulation in the interpreter. Each action
in the interpreter is associated with a particular expression,
the most immediate cause for that action. One can divide
expressions into “modules.” In general, actions follow the
structure of expressions, and actions tend to proceed within
a module. I call this overall notion of the corresponding
continuity in the expression space and the action sequence
locality.

We have crosscutting when sequences of actions intermix
from different modules. In conventional languages crosscut-
ting arises most often as explicit invocation: an expression
in one module names an entry of another module, and the
system transfers control to that other module. Some conven-
tional languages allow other crosscutting mechanisms. For
example, in languages with function pointers or dynamic
binding, the value of a dynamic environmental element can
be used as an expression for further evaluation. Inheri-
tance mechanisms also combine the code of several mod-
ules (equivalent to modifying the lookup function to search
parent environments). In some languages, type declarations
can have the effect of remotely modifying behavior. (Such
mechanisms lie between the explicit invocation of a Fortran
subroutine call and AOP.) Exception generation and han-
dling can cause jumps in the execution sequence. One can
also define the system in a “feature specific” manner, so
that user-supplied code always runs in some specific circum-
stance. These latter mechanisms cause crosscutting.

62

The novelty of AOP is that the crosscutting mechanisms are
implicit (oblivious) and general-purpose. That is, examina-
tion of the source code doesn’t indicate that the crosscutting
takes place. Instead, some external mechanism performs the
surgery on the execution process. Modern AOP demands
that the crosscutting mechanism be “general purpose,” al-
lowing modifying any code with respect to the structure
of that code, not just a particular semantics. (This con-
trasts with some of the earlier special-purpose “aspect” lan-
guages [20].) Thus, a system that allows the user to define,
say, “security code” to be invoked in particular contexts is
a framework, not an AOP language.

4. MODIFYING THE INTERPRETER

The purpose of this exercise is to ask what does one have
to do to make AGPL aspect-oriented? Here we are con-
cerned with general aspect behavior, not a hook for solving
a particular problem. That is, we want to be able to invoke
arbitrary user code at joint points, not merely a selection
from some predefined or parameterized behaviors.

We first note that modifying the interpreter for the spe-
cific requirements of a particular aspect language can always
yield any (implementable) aspect language. Most generally
this is true because any implemented aspect language has
an interpreter. More specifically, every aspect language de-
fines certain elements or events as joint points, places where
it is possible to associate aspect behavior with the underly-
ing code. We can change the interpreter to pause at every
such join point and consult the (perhaps dynamic) dictio-
nary of current aspects to see which apply. (And, as many

have observed, “Anything you can do I can do meta”—in
a meta-interpreter architecture, we can delay to the meta
level the decision about whether each execution point is a
join point [4, 27].) Given a rich enough language for describ-
ing the desired aspect conditions, determining the places
that need modification (effectively, the shadow points in the
program or the execution points of such shadows in the in-
terpreter) may be an interesting problem [15, 22].

The problem with such an analysis is that changing the body
of the interpreter is the way to implement any conceivable
language. We’d prefer to restrict the changes to more neatly
describe the aspect space. More specifically, the problem is
not so much describing mechanisms to implement aspect
languages but, ideally, mechanisms that implement only as-
pect languages, or, more realistically, mechanisms whose pa-
rameterization approximates the space of aspect languages.

4.1 Advising a function

More than one research group has provided its interpreta-
tion of how best to implement AOP. Perhaps the most prim-
itive mechanism, common to most approaches is “advice”
(wrapping) [28]. With advice, the definition of a function
is embedded inside other behavior, which can execute be-
fore, after, or around the original function. Systems that
allow wrapping include Composition Filters 3], OIF [13],
AspectJ [18], and JAC [25]. A structurally consistent way
to get advice is to change the definition of functions to in-
clude advice. To advise a single function F' with advice A,
creating A(F'), we could find the pair that joins F' to its
definition, and replace its value by A(F).

More commonly, we want to advise not one function, but
an entire set of them, particularly the ones that pass some
predicate test. That is, we want to quantify over the func-
tion space. An AOP system can be built with either an
open-world or closed-world assumption. Closed world sys-
tems know at the start of execution all the code that might
run in the system. Thus, a closed-world system could im-
plement quantified advice by finding all the function def-
initions and redefining the ones that need the advice. An
open-world system can dynamically acquire new code. In an
open-world system, we also need to modify environment.set
so that function definition and redefinition work with the
advice mechanism—defining or redefining an advice-worthy
function, must make the setting include the advice.

Note that there is also a natural symmetry between set and
lookup. Anything one imagines doing at “set” time can be
done at “lookup” time, so long as sufficient information is
retained to perform the action.

4.2 Advising a field

Some AOP approaches (e.g., Hyper/J [24]) treat object fields
as combinations of other elements. For example, one has the
ability to externally state that field f in object r is to be
the same as field f’ in object ' when r and r’ are regarded
as parts of the definition of the same object, or that f in
r and f in v’ are not the same, even when r is merged
with r’. Treating a variable as a combination of other ele-
ments in some sense, is symmetric to the functional advice
problem. With functional advice, we are working in func-
tion space and know only a few combinators (e.g., before,
after, and around), though others are easy to imagine (for

63

example, consider mixins in Flavors [23]). With variables,
we’re working in variable space, and can think of a variety
of combinators—for example, the “same as” and “different”
examples, above, “union” for set-valued fields, “append” for
sequence valued ones, and so forth.

4.3 Program transformation

Several authors have argued for doing AOP by program
transformation [6, 11, 15, 16, 19]. From the point of view of
an interpreter, program transformation can be realized by
performing the transformation steps as part of the function
definition process. (This is, of course, a somewhat heavy-
handed interpretation of transformation.)

4.4 Frameworks

Frameworks (e.g., [8]) combine functional wrapping with
wrappers specific to framework decision points. This can
be seen as a structured step in function assignment. How-
ever, frameworks more naturally resemble modifying the in-
terpreter to the special case doing additional behavior on
function calling.

4.5 Field and method insertion

Some AOP approaches (e.g., [18]) allow the introduction of
additional fields and methods. Once again, these are exam-
ples of changing the semantics of environment setting.

4.6 Dynamic flow

There have been several proposals for aspects that pay at-
tention to the dynamic behavior of program execution. For
example, aspect invocation in AspectJ can be predicated
on what’s in the calling history (cflow) [18]. At the first
FOAL workshop, we argued for generally treating AOP as
generically reacting to execution events [15], a theme also
expressed by others [7, 10, 9, 16, 29]. The effects of such
proposals are more problematic for interpreter transforma-
tion. Cflow can be accommodated if we create our own stack
for the interpreter, rather than using the implicit stack of
the system executing the interpreter and search that stack at
appropriate join points. Alternatively we could change the
definitions of functions to leave appropriate markers lying
around to be recognized at the right instants. These require
some structural changes to the interpreter. Similarly, event
reaction can be seen to be requiring pervasive interpreter
change.

5. CLOSING REMARKS

In this position paper, I’ve explored the idea that the changes
required in “ordinary” interpreters to realize AOP languages
reveals elements about the essence of AOP languages. Many
(particularly the static varieties) of AOP mechanisms can be
seen as redefinition of the storage or retrieval actions in the
interpreter, often at record and method definition time. Join
point definitions that span multiple locations require the def-
inition, storage or retrieval mechanisms to “quantify” over
the space of candidate points. I've also defined crosscutting
in terms of the mixture of modules causing actions to exe-
cute, and identified AOP with that crosscutting that lacks
explicit or implicit mention in the module code.

6. REFERENCES

[1] Workshop on Advanced Separation of Concerns
(ECOOP 2001), June 2001.

2]

3]

7]

[9]

[10]

[11]

[13]

[14]

[15]

[16]

FOAL 2002: Foundations of Aspect-Oriented
Langauges (AOSD-2002), Mar. 2002.

L. Bergmans and M. Aksit. Composing crosscutting
concerns using composition filters. Comm. ACM,
44(10):51-57, Oct. 2001.

N. M. N. Bouragadi-Saddanii and T. Ledoux. How to
weave? In Workshop on Advanced Separation of
Concerns (ECOOP 2001) [1].

W. Clinger and J. Rees. Revised4 report on the
algorithmic programming language scheme. LiSP
Pointers, 4(3), 1991.

G. A. Cohen. Recombing concerns: Experience with
transformation. In Workshop on Multi- Dimensional
Separation of Concerns (OOPSLA 1999), Nov. 1999.

T. Colcombet and P. Fradet. Enforcing trace
properties by program transformation. In Proc. 27th
ACM Symp. on Principles of Programming Languages,
pages 54-66, Jan. 2000.

C. A. Constantinides, T. Elrad, and M. Fayad.
Extending the object model to provide explicit
support for crosscutting concerns. Software Practice
and Ezperience, 32(7):703-734, May 2002.

K. De Volder, J. Brichau, K. Mens, and T. D’Hondt.
Logic meta-programming, a framework for
domain-specific aspect programming languages.
http://www.cs.ubc.ca/kdvolder/binaries/cacm-aop-
paper.pdf.

K. De Volder and T. D’Hondt. Aspect-oriented logic
meta programming. In P. Cointe, editor, Meta-Level
Architectures and Reflection, 2nd International
Conference on Reflection, volume 1616 of LNCS,
pages 250-272. Springer Verlag, 1999.

K. De Volder, T. Tourwé, and J. Brichau. Logic meta
programming as a tool for separation of concerns. In

Workshop on Aspects and Dimensions of Concerns
(ECOOP 2000), June 2000.

R. E. Filman. What is aspect-oriented programming,
revisited. In Workshop on Advanced Separation of
Concerns (ECOOP 2001) [1].

R. E. Filman, S. Barrett, D. D. Lee, and T. Linden.
Inserting ilities by controlling communications.
Comm. ACM, 45(1):116-122, Jan. 2002.

R. E. Filman and D. P. Friedman. Aspect-oriented
programming is quantification and obliviousness. In

Workshop on Advanced Separation of Concerns
(OOPSLA 2000), Oct. 2000.

R. E. Filman and K. Havelund. Source-code
instrumentation and quantification of events. In
AOSD-FOALO2 [2], pages 45—49.

P. Fradet and M. Siidholt. AOP: Towards a generic
framework using program transformation and
analysis. In Workshop on Aspect Oriented
Programming (ECOOP 1998), June 1998.

64

(17]

20]

(21]

(22]

[25]

[26]

27]

28]

29]

(30]

D. P. Friedman, C. T. Haynes, and M. Wand.
Essentials of programming languages (2nd ed.).
Massachusetts Institute of Technology, 2001.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. Getting started with
AspectJ. Comm. ACM, 44(10):59-65, Oct. 2001.

G. Kniesel, P. Costanza, and M. Austermann.
JMangler—a framework for load-time transformation
of Java class files. In First IEEE Int’l Workshop on
Source Code Analysis and Manipulation (SCAM
2001), Nov. 2001.

C. V. Lopes. D: A Language Framework for
Distributed Programming. PhD thesis, College of
Computer Science, Northeastern University, 1997.

H. Masuhara and G. Kiczales. A modeling framework
for aspect-oriented mechanisms; draft.
http://www.cs.ubc.ca/

H. Masuhara, G. Kiczales, and C. Dutchyn.
Compilation semantics of aspect-oriented programs. In
AOSD-FOALO? [2], pages 17-26.

D. A. Moon. Object-oriented programming with
flavors. In Proc. ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 1-8. ACM Press, Nov. 1986.

H. Ossher and P. Tarr. The shape of things to come:
Using multi-dimensional separation of concerns with
Hyper/J to (re)shape evolving software. Comm. ACM,
44(10):43-50, Oct. 2001.

R. Pawlak, L. Seinturier, L.. Duchien, and G. Florin.
JAC: A flexible solution for aspect-oriented
programming in Java. In A. Yonezawa and

S. Matsuoka, editors, Metalevel Architectures and
Separation of Crosscutting Concerns 3rd Int’l Conf.
(Reflection 2001), LNCS 2192, pages 1-24.
Springer-Verlag, Sept. 2001.

G. Steele Jr. Common Lisp: The Language, 2nd
Edition. Digital Press, Bedford, Massachusetts, 1990.

G. T. Sullivan. Aspect-oriented programming using
reflection and meta-object protocols. Comm. ACM,
44(10):95-97, Oct. 2001.

W. Teitelman and L. Masinter. The Interlisp
programming environment. Computer, 14(4):25-34,
Apr. 1981.

R. J. Walker and G. C. Murphy. Joinpoints as ordered
events: Towards applying implicit context to
aspect-orientation. In Workshop on Advanced

Separation of Concerns in Software Engineering
(ICSE 2001), May 2001.

M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. In AOSD-FOALO02 [2], pages 1-8.

Adding Superimposition To a Langua ge Semantics
— Extended Abstract —

Ralf Lamme

|1,2

1 cwi, Kruislaan 413, NL-1098 SJ Amsterdam
2 Vrije Universiteit, De Boelelaan 1081a, NL-1081 HV Amsterdam

Ralf.Laemmel@cwi.nl

Abstract

Giventhe denotationakemanticof a programminganguagewe
describea generalmethodto extendthe languagein a way thatit
supportsa form of superimposition— justin the senseof aspect-
orientedprogramming.In the extendedanguagethe programmer
cansuperimposeadditionalor alternatve functionality (akaadvice)
onto pointsalongthe executionof a program.Adding superimpo-
sition to a languagesemanticccomesdown to threesteps: (i) the
semantidunctionsareelaboratedo carryadvice;(ii) the semantic
equationsareturnedinto ‘reflective’ style so that they canbe al-
teredat will; (iii) a constructfor binding adviceis integrated. We
illustratethe approactby representingemanticslefinitionsasin-
terpretersn Haslell.

1 Intr oduction

Onemight saythatthe essencef anaspect-orientegrogramming
(AOP)languagdik e Aspectdis thatit is anamal@amatedanguage
in thefollowing senseBesidesrdinaryobject-oriente@xpressve-
nessonecanalsowrite codethatsuperimposeadviceonto points
alongthe executionof object-orientedunctionality An important
classof join pointsare methodcalls. Onecangive a precisedefi-
nition of this sortof AOP on the basisof a formal semanticq8].
(There are further modelsof AOR e.g., the Hyper/J-like model,
whichwewill notaddressn this paper)

Question:Cantheperceptiorof ‘superimposition’be capturedn a

language-parametrimanneythatis, without talking aboutmethod
calls, or other constructs without commitmentto a specificlan-

guage?Therehasbeenwork on studyingsomeforms of superim-
position(say AOP) at a fundamentalevel [3, 6, 1, 4] on the basis
of specificcomputationamodels. However, we seekan approach
thatappliesimmediatelyto actualprogrammindanguages.

In this extendedabstractwe describea generalmethodto addsu-
perimpositionto the denotationalsemanticsof a language. The
overall approachis describedin Sec.2. An illustrative example
is developedin full detailin Sec.3. The designspacefor our form
of superimpositioris briefly scannedn Sec.4. Relatedwork is
discussedn Sec.5, andthe paperis concludedn Sec.6.

2 The overall approach

Supposeve considera semantidunction of thefollowing type:
[-1:S — Di

Here,S is asyntacticadomain,andD; is theassociatediomainof
semantianeaningssaydenotations Semantidunctionsarespeci-

65

fiedusingcasediscriminationon § while themeaningpf asyntacti-
calform is expressedn termsof the meaningof its subtermqaka
compositionality). Let us considera specific semanticequation.
Without lossof generality we pick up an equationfor a construct
with onesubconstruct:

[CX]=f[X]

Here,C xisthesyntacticapatternathand,andf is anoperatiorthat
turnsthedenotatiorof x into the denotatiorof C x. (We usecurried
functionapplication.)Adding superimpositioris now performedn
threesteps:

1. Thesemantidunctionsareelaboratedo carryadvice.
2. Denotationaremade'reflective’ sothatthey canbealtered.
3. A construcffor bindingadviceis integrated.

Thetypeof theabore semantidunctionis adaptechsfollows:
[-T : S—RD

Here,Ris adomainconstructoto addaregistry with superimposed
adviceto domainsof ordinarydenotationsThereareafew options
for theactualtype of theregistry. In essenceheregistryis atrans-
former for reflective denotations.To obtaina modularsemantics,
we assumehat R is a monad. Dependingon the binding policy
and otherlanguage-desigdecisions,R could be the ervironment
monad the statemonad,or acombinationof both.

The semantieequationfrom above is adaptedasfollows:
[Cx] = (Cx) :-([X] == AX.return(f X))

The occurrence®f “>=" andreturn point to monadicstyle. (We
usethe commoncorvention that the monadoperatoy which lifts

valuesto computationsjs denotedby return, whereashe monad
operatoy which appliesa value consumerto a computation,is

denotedby “>=".) The semanticequationscan be turnedinto

monadicstyle by a systematidransformationlt is avoidableto in-

troducemonadicstyleif we fix the binding policy for advice,e.g.,
by explicitly passingaroundanenvironmentfor theregistry.

The occurrenceof the infix operator* :- ” in the above equation
pointsto reflective style. Both the operator :- " andthis useof

the term ‘reflective style’ areinventionsof the presentpaper The
operator” :- " shapeshe reflectve denotationasfollows. If d is

the original denotationfor atermt, anddy, is d in monadicstyle,
thenthe reflectve denotationis of theformt :- dy,. This is read
as'‘by default,att dody’. Thereareafew optionsfor the precise
definitionof “ :- ”. In essencethe operatordoesnothingbut appli-
cationof denotatiortransformersasprovided by the registry. That

Gary T. Leavens
65

is, giventheregistry r, thetermt, andthe denotationd, the opera-
tiont :- d appliesr tot andd. Sobasically eachsemanticequation
canberevisedvia theregistryr.

It remaingo performthethird stepfrom above, thatis, theintegra-
tion of a constructfor bindingadvice. This comesdown to adding
oneequationfor [-]. Therearea few optionsdependingon the
favouredbinding policy andotherlanguage-desigdecisions.One
option is to hold superimposeadvicein an environmentwith a
bindingscopethatis local to a givenprogramfragment.Thatis:

[hadaptst] =AK.[t]h

We call h andh’ hooks The old hook I is replacedby the new
hook h. We saythat h adaptsthe programfragmentt. The de-
notationtransformersaccomplishedy h will transformthe deno-
tationsdeterminedor t andits subconstructs(We try not to use
the AOP term ‘advice’ for h becausén accomplishedoth the ad-
vice codeandthedefinitionof join pointsor pointcuts.)Hooksand
registriesareof the sametype: a family of denotatiortransformers
indexed by the syntacticaldomains. For example,the denotation
transformerfor § is of type§ — RD;j — R D;. Thefirst agu-
mentof type § emphasisethatreflective denotationtransformers
canlook atthe programtext to make a decision.

Ourmethodworks,in principle,for all possibldanguagesemantics
(suchasimperatie languagesdifferentobject-orientedanguages,
functionallanguagesetc.). However, language-specifiproperties
andobligationsoccurin this process.Thosehave to be studiedto
arrive ata usefulnotion of language-parametrguperimposition.

In thepresenpaperwewill only dealwith dynamicsemanticsilt is
desirableo couplethe adaptatiorof dynamicandstaticsemantics.
In the ideal situation, type safetyof programsthat involve super
impositionshouldhold by construction We might actuallywantto
amalgmatestaticand dynamicsemanticgo be ableto formulate
certainkinds of pointcutsfor superimpositiorthatdealwith types.

From hereon, we will represensemanticdefinitionsin Haslell.
Thisimmediatelyallows usto run thesedefinitionsasinterpreters.

3 An example

We will now illustratehow to make the semanticof a very simple

expressionanguagsit for superimpositionandhow to make use

of superimposition.The languagecomprehendgxpressionforms

for integer constantsyariables,andbinary arithmeticexpressions.
Superimpositiowill beusedin away to catchdivision by zero.

In Fig. 1, thesemantic®f the expressiorlanguages definedin the
denotationastyle. We defineatype of denotationgor eachsyntac-
tical catggory, namelyDexpr for Expr, andDbinopfor Binop. The
type Dexpr expresseshatthe meaningof an expressionis a map-
ping from environmentsto values.The ervironmentmapsvariable
identifiers(i.e., strings)to values. The type Dbinop expresseshat
themeaningof abinaryoperatoiis afunctionthatmapstwo values
to asinglevalue.We defineonemeaningunctionfor eachsyntacti-
cal catgory using casediscriminationaccordingto the syntactical
forms. The definitionis compositional that is, the meaningof a
constructis definedin termsof the meaningsof its subconstructs
only, but notthe subconstructthemseles.

We will now addsuperimpositiorio the semanticaccordingto the
threestepslisted in Sec.2. The first stepis to elaboratethe se-

66

Expressiorsyntax

dataExpr = Constint| Var String| Bin BinOpExpr Expr
dataBinOp = Div]|---

Denotations
typeDexpr = Env— Val

type Dbinop = Val — Val — \al

Variableenvironments
typeErnv = String— Val

Valuesincl. anerrorvalue
type Val = Maybelnt

Expressiorevaluation
expr:: Expr— Dexpr
expr (Constint) p Justint
expr (Varid) p pid
expr (Binoele2) p = bhinopo (exprelp) (expre2p)

Interpretatiorof binaryoperators
binop:: BinOp— Dbinop
binopDiv (Justx) (Justy)
binop...
binop_ _ _ =

Just(x‘div' y)

i\ibthing

Figure 1. Denotational semanticsof a simple expressionlan-
guage. Becauseit is a Haskell program it can be viewedasan
interpreter aswell.

Evaluationfunction
expr :» Monadm=- Expr — m Dexpr
expr (Constint) return(Ap — Justint)
expr (Var id) = return(Ap — pid)
expr (Binoele2) = dodel— exprel
de2+— expre2
dop+« bhinopo
return(Ap — dop(delp) (de2p))

Interpretatiorof binary operators

binop Monadm =- BinOp— mDbinop
binopDiv. = return(Avlv2—
case(vl,v2) of
(Justx, Justy) — Just(x‘div' y)
_— Nothing
binop... =

Figure 2. The interpreter in monadic style

manticfunctionsto carry advice. Oneway to realisethis stepis to
perform‘monadintroduction’,thatis, to migrateto monadicstyle.
This stepis independensf thefactthatwe dealwith semanticsnd
superimpositionln principle,ary family of recursve functiondef-
initions canbe turnedinto monadicstyle. In [7], we definesuch
a transformation. So the denotationtypesin the typesof the se-
manticfunctionshave to be wrappedby a monad.In the semantic
equationsall compounddenotationsare sequentialisedand they
arerecomposedy “>=". Withoutlossof generalitywe assume
call-by-valueorder Theresultof this stepis shavn in Fig. 2. No-
tice the elaboratedypesof the semantidunctions,whichinvolve a
monadm. Also noticethe monadicdo-sequencéor the compound
meaningof a binary expressionandseveral occurrencesf return
Instantiatingthe monadm by the identity monad,and 3-reducing
away sequentialitywe would obtainthe original interpreter

Gary T. Leavens
66

Expressiorevaluation;adapted

expr, expr :: (Superimposable Expr Dexpr,
Superimposable BinOpDbinop)
Expr — m Dexpr

return(Ap — Justint)
return(Ap — pid)

expr (Constint)
expr (Var id)

expr (Binoele2) = dodel— &xprel

de2«— expre2

dop«+ binopo

return(Ap — dop(delp) (de2p))
epre = e:-expre

Interpretatiorof binary operatorsadapted

binop binop Superimposable BinOpDbinop
= BinOp— mDbinop
binopDiv. = return(Avlv2—
case(vl,v2) of

(Justx, Justy) — Just(x'div' y)

_— Nothing
binop... =
binopo = 0:- binopo

Figure 3. The inter preter with reflective denotations

The secondstepin our procedurefor addingsuperimpositiorto a
semanticss to turn the semanticequationsnto reflectve style by

invoking the“ :- " operatorprior to casediscrimination. For each
semantidunction, we defineanoverlinedversionthataddsthe ap-
plicationof “ :- ”, e.g.,expr complementgxpr. (Alternatively, we

could adaptall existing equationgo invoke “ :- " asdescribedn

Sec.2.) In thesemantieequationsall referenceso theoriginal se-
manticfunctionsarereplacedby referencedo the overlinedones.
Theresultof this stepis shavn in Fig. 3. Noticethenew definitions
of expr andbinop. Also noticethereferenceso expr andbinopin

thesemanticequationgor expr.

Recallthatthe operator* :- ” modelstransformatiorof reflectve

denotations Sincea languagenormally comprehendseveral syn-
tacticaldomainsand correspondinglenotationtypes, the operator
“ :- " needdo beoverloadedor all couplesof syntacticadomains
and associatedienotationtypes. So a registry is actually a tuple
of denotationtransformers— one for eachdenotationtype. For

a given denotationtype, the operatoris meantto look up the cor

respondingdenotationtransformerfrom the registry tuple andto

apply it to the term andthe denotationat hand. This canbe con-
venientlyrepresentedh Haslell usinga classfor overloading. So
we placethe operator* :- " in aclassSuperimposablevhich sub-
classeghe standaratlassMonadasfollows:

classMonadm = Superimposablmsd
where
(:-)::s—md—md

Therearethreeparametersmis the type constructoiof the monad
for theregistry, sis asyntacticatlomain,d is thetypeof denotations
for s. Wewill seein asecondhattheinstance®f the Superimpos-
ableclassfollow a simplescheme.

Thethird stepin our procedurgor addingsuperimpositiorto a se-
manticsis to integratea construcfor bindingadvice.Thisincludes
the obligation to opt for a specificinstanceof a Superimposable
monad.We will now provide a generalrealisationof the third step
including its illustration for the simple expressionlanguage. As

67

Theregistry domainconstructor
type R = Reademook

Typesof hooksfor superimposition
data Hook= Hook (Hexpr, Hbinop)
type Hexpr = Expr — R Dexpr — R Dexpr
type Hbinop= BinOp— R Dbinop— R Dbinop

Theidentity Hook
idHook= Hook (Ae ce— ce Ao co— co)

Runareflective denotation
run::Rd—d
rund = runReaded idHook

Instance®f Superimposablelass

instanceSuperimposabléReadeHook) Expr Dexpr where
t:- d = ask==A(Hook(h,_)) — htd

instanceSuperimposabléReadeHook) BinOpDbinopwhere
t:- d=ask>==A(Hook(_,h)) — htd

Figure 4. Uniform definition of registry

Syntaxof the superimpositiorconstruct
dataExpr=... | AdaptsHook Expr

Semantic®f the superimpositiortonstruct
expr (Adaptsh e) = local (consth) (expr e)

Figure 5. Uniform integration of a superimposition construct

alwayswith our method,the languagedesignemight bypassthe
language-parametr@pproachif a morelanguage-specifiorm of
superimpositions favoured.

In Fig. 4, we definea specificmonadR thatmodelsaregistry for su-
perimpositionin our example. In fact, we choosethe environment
monad(akaReaderin Haslell).! ThetypeHookis a productwith
two componentspne for eachdenotationtype. Eachsuchhook
components a denotatiortransformer The receved denotationis
the normaldenotationwhereaghe computeddenotationis there-
vised, ultimate denotation.The typesmalke clearthata denotation
transformemalsorecevesa syntacticalentity, which cancontribute
to the decisionwhetherto replaceor to presere the normaldeno-
tation. In thefigure, we alsodefineanidentity hook (i.e.,idHooK),
which modelsthatthe normaldenotatioris preseredregardlessof
the ‘join point’ (i.e., the syntacticalform at hand). Runninga re-
flective denotatioris lik e ‘running’ the Readermonadwith idHook
asinitial registry; seerun. Thelastfew linesin Fig. 4 instantiate
the Superimposablelassfor our examplesemanticsThatis, “ :- ”
is definedby looking up the denotatiortransformergrom the ervi-
ronmentandby applyingtherelevanttransformeto theingredients
of thegivenreflective denotation.

In Fig. 5, we completethe extensionof the samplesemanticdy
addingaspecificcaseto thesemantidunctionfor expressionsThis
new equationprovidesthe mostsimple anduniform kind of a su-
perimpositiorconstruct.Themeaningof Adaptsh eis thatthehook
h adaptghe denotatiorfor the expressiore andall denotationgor

I\We recallthe operation®f the Reademmonad:
ask mr -- readervironment
local (r—r)—=mx—mx --locally adaptervironment

Gary T. Leavens
67

noDivByZeo = Hook (Aed — d,noDivByZeo')
where
noDivByZeo' :: BinOp— R Dbinop— R Dbinop
noDivByZed' Divd =
dod —d
return(Avlv2 — case(vl, v2) of

(—,Just0) — Nothing
_—dviv2

Figure 6. A hook for superimpositionto catch division-by-zero

subconstructef e. Theuseof thelocal operatomalesit asclearas
crystalthatthe hookh is only usedfor theinterpretatiorof e. The
useof constmakesclearthatpreviousbindingswill bereplacedy
thenew hook. We will investigatealternatvesin the next section.

In Fig. 6, we definea hook for catchingdivision-by-zerofor ary
interpretationof Div. To this end,the secondargumentof the de-
notationis checledto be“0”, andif thisis the casethentheerror
valueNothingis returned.Otherwise the original denotatioris re-
tained. Sofinally, we candemonstratesuperimpositiorin action.
To thisend, let us considerthe following programtogethetwith an
ervironmentfor the usedvariables:

myep = Bin Div (Const42) (Var "nyvar")
myew = Aid — if id = "nyvar" then Just0 elseNothing

Usingthe original denotationakemanticasan interpreterfor this
program,we will obviously encountem division-by-zerorun-time
error. Using the aspect-orientethterpretey we cancatchdivision
by zero.Thefollowing programexecutionreturnsNothing

run (expr (AdaptsnoDivByZeo my&p)) myew

4 Designspaceexploration

We will now walk througha few locationsin the designspacefor
alanguagesemanticsvith superimposition.This will further sub-
stantiatethe generalityof our method,andit will clarify how it can
be customisedor a specificlanguageat hand.

Binding policies We will first discussdifferentbinding policies
for advice. The policy that we have seenabove employs an en-
vironmentto carry advice. Herethe affectedprogramfragmentis
explicitly partof the binding construct. Also, we favouredthe re-
placemenbf previous bindingsby the new binding. Both design
decisionscanbe altered. We will first discusscumulatize advice
bindingasopposedo replacemensemanticdefore. We will then
discusghe useof a statefor theregistry asopposedo anenviron-
mentbefore.

In Fig. 7, we provide a new definition of the Adaptsconstruct;see
Fig. 5 for the original definition. We chain the previous binding
andthe new binding (cf. “0"). The new binding getsinto control

but if it wantedto resortto the standarddenotationjt actuallyac-
cesseshe denotationas processedy the previous binding. It is

now not too difficult to think of further binding policies. For ex-

ample,we could favour denotationtransformerswith yet another
denotatiorargumentfor the standarddenotatiorprior to ary adap-
tationby previousbindings.This way, newly installedhookscould
abandorpreviously installedhooks.

68

Syntaxof the superimpositiorconstruct
dataExpr=... | AdaptsHook Expr

Semantic®f the superimpositiorconstruct
expr (Adapts(Hook (he ho)) e) = local chain (expr e)
where
chain (Hook (he,hd’)) = Hook (Ae — heeoh€e g,
Ao — hooohd 0)

Figure 7. Superimpositionwith cumulative advice binding

Registry-avarecomputations
type R = StateHook

Valuesincl. Void for puresideeffects
dataVal =... | \oid

Syntaxof the superimpositiorconstruct
data Expr=... | HookUpHook

Semantic®f the superimpositiortonstruct
&xpr (HookUph) = puth>=A() — return(return\oid)

Figure 8. Superimpositionwith a statefor advicebinding

In Fig. 8, we usethe Statemonadasopposedo the Readermonad
for theregistry; seeFig. 4 for the original definition2 Herewe as-
sumethat the languagesemanticsat hand provides a notion of a
purely side-efective computation.Hence thereis a designatede-
sultvalue\oid. Theconstructfor superimpositiomow alsotakesa
differentform becauseve donotlist theaffectedprogranfragment,
but we simply registeradvicealongthe executionof the program.
Sothe constructfor binding adviceis of the form HookUph with

theintendedsemanticshatthe hookh asinstalledasregistry atthe
time whenthe HookUpexpressions executed As onecansee the
expressiorevaluatego Void. A problemwith this approacthis that
thebasesemanticandthedo-sequencefor theintroducedregistry
monadmightaccidentallydisagreentheorderof computation We
will comebackto this problemin aminute.

Effect composition Sowe have seernthatbothanenvironmentand
a statemalke sensefor carrying advice. Capturingthis variation
point in a monadparameteiis a good idea becausehe superim-
position level might even deal with further effects than just car
ried advice.For example,we might wantto maintaindynamicjoin
pointinformation[13], or we might wantto reflecton the success
andfailure of denotationtransformation.Regardlessof the choice
monadic-stylesemanticys. hard-wiredeffects,a discussiorof the
relationshipbetweerthesuperimpositiorievel andthe baseseman-
ticsisin place.

By default, we assumehat the semanticds madefit for carrying
advicewithout looking at the denotatiortypes. For example,even
if the original semanticds alreadyin monadicstyle, we canper
form monadintroduction. This will resultin nestedmonadicstyle.
In Fig. 9, this is illustratedfor a variationon our expressionlan-
guage.ThevariationprovidesanAssignstatementhe semanticof
whichreliesonthe Statemonadfor thevariablesn aprogram.The
reflective denotatiorfor an Assignexpressionis a nestedmonadic
computation At thetop level, thecomputationgor enablingsupef

2\We recallthe operationf the Statemonad:
get ms -- readstate
set s—m() --write state

Gary T. Leavens
68

Syntaxextensionfor assignments
dataExpr = ...|AssignStringExpr

Revision of expressiordenotations
type Dexpr = StateEnv \al

Semanticef assignments
expr (Assignid ¢) = do de «— &xpr €
return(do p < get

v déd

put (Aid’ — if id = id’
thenv
elsepid’)

returnv)

Figure 9. The Superimposable monad on top of a basemonad

impositionarearrangedn a do-sequenceTheinnerdo-sequence
directly modelsthe semanticf assignment.Thatis, the stateis
looked up with get, the right-handside of the assignments eval-
uatedto v, the stateis updatedn the point for the variableid, the
updatedstateis ‘put back’, and the right-handside valuev is re-
turnedasthevalueof theassignment.

Thesenesteddo-sequencepinpointa problem. Supposewe usea
statefor theregistry; recallFig. 8. A subexpressione; might hook
up anothersubepressione, while e, would be normally executed
beforee;. Thatis, the nesteddo-sequencesould disagreeon the
orderof computation.Note thatthe inner sequenceepresentshe
basesemanticsvhereaghe outersequencevasestablishedby sys-
tematicmonadntroduction.To enforceacommonorder, we should
transformthe monadin the basesemanticgo integratethe registry
or ary othersuperimpositioreffect aswell. We could even elabo-
ratean existing effect in the basesemanticse.g.,an ervironment
or a state,sothatit accomplisheshe registry aswell. If the base
semanticss notin monadicstyle, thenit is not really preparedor
suchanamalgmationof effect spaces.n the view of theseprob-
lems,our earlierchoiceof anervironmentmonadfor theregistry is
morefavourable. Theorderingproblemis hereanon-issuéecause
advicebindingis local with respecto agiventerm.

Inter cepting invocations Our approachallows usto interceptany
point of the programexecutionin the senseof syntacticalfrag-
ments. It is at the heartof AOP to interceptinvocationsof meth-
odsor otherprocedurabbstractionsSowe wantto briefly examine
how thislookslik e in our setting.In Fig. 10, we furtherextendour
expressionlanguageto accomplisha form of namedfunction ap-
plication. Thesemantiequatiorfor functionapplicationis already
preparedo carryadvice.(We again usenestednonadicstyle.) We
usea helperfunction apply to apply a function-typevalue to an
argument. For brevity, we do not defineary expressionform for
functionabstractior(i.e., A-abstraction)but we assumehattheen-
vironmentcanhold functions,e.g.,afunction” div' . At thebottom
of Fig. 10, we definea hook noDivByZeo, which interceptsappli-
cationsof the" div' functionto catchdivision by zero. Notice the
plain useof patternmatchingfor filtering out the relevant (nested)
function application. The constructeddenotationreturnsError if
the secondargumentof " div" is “0”, andotherwiseit appliesthe
original bindingof " div' . This hooklooksa bit verbosebecausét
reconstructshe normaldenotatiorto alarge extent. This could be
capturedby a reusableoperatorfor ‘function-applicationintercep-
tion’.

69

Syntaxextensionfor functionapplications
dataExpr = ... | ApplyExprExpr

Functionsevaluateto functions
dataVal = ...|Fun(Val — Val)

Adaptedsemantic®f functionapplication
expr (Applyele2) = dodel— exprel
de2« &xpre2
return(dovl— del
V2« de2
return(applyvlv2)

Helperfor functionapplication
apply:: Val — Val — \al
apply (Funf) val=f val
apply_ _= Error

Anotherdivision-by-zerocatcher
noDivByZeo :: Expr — R Dexpr — RDexpr
noDivByZeo (Apply (Apply (Var"di v") el) e2) d =
dodel«— &xprel
de2«— expre2
return(do p < get
vl del
v2+ de2
casev2 of
Int 0 — returnError
_—return(apply(apply(p " di v") vl) v2)

)
noDivByZeo _d =d

Figure 10. Inter cepting a function application

5 Relatedwork

For distributedsystemgof communicatingorocesses}hereexists
anotionof superimpositioi3, 6, 10] whichis (like aspectin AOP)
orthogonalto the usualbreakdevn of modules.This sortof super
impositioncontrikutesto the theoreticabasisof AOP Anotherab-
stract formalmodelof AOPis providedin [4]. It is basednexecu-
tion monitorsfor the eventsthatcorrespondo the pointsof interest
alongthe programexecution. Anotherformal semanticof AOPis
basedn CSPwith CSPsynchronisatiorsetsasjoin points[1]. All
thiswork differsfrom oursin thatwe startfrom anordinarydenota-
tionalsemanticsandmaleit fit for superimpositionn asystematic
manner Thatis, we do not resortto ary designatedormal model,
but we just stayin the denotationaketting.

Our approachto reflecton the syntacticalpatternsalong program
interpretationis inspiredby the eventgrammarsn [2]. Auguston
suggestgo formalisethe executionof a programin alanguagen
termsof aneventgrammar Sucha behaioural modelcanthenbe
usedto superimposéunctionalityonthe eventtracesof a program,
e.g.,to checkassertionsor to performdelugging. This approach
hasbeenusedin the developmentof several dehuggingtools. Our
notion of ‘reflective denotationsis a semantidranspositioranda
stronggeneralisationf a twealedmonadic-styleof functionalpro-
grammingproposedy Meuterin [9]. In this style,theprogrammer
informs a non-standaranonadicbhind combinatoraboutthe names
of functionsthat areappliedto intermediateresults. Thesenames
canbe viewed as (explicit) join points. By contrastwe preparea

Gary T. Leavens
69

semanticsn away thata ‘superimposablemonadcanrevisedeno-
tationsfor syntacticapatterns Ourmethods basednasystematic
transformatiorasopposedo anencodingstyle.

Thereis anenormousamountof relatedwork onreflection[11, 12,

5]; its relevancefor AOPis generallyacknavledged. We have not

seeragenericmethodto systematicallyelaborateadenotationate-
manticsfor AOP-like reflectionin the availableliterature. There-

flection literatureis normally concernedvith somekind of staged
interpretatiorasopposedo theprovision of a superimpositiorton-

struct.However, it seemghatour approactcouldtake greatadvan-

tageof thereflective theoryfor the purposeof formal reasoningn

aspect-orientegprograms. Also, ideason ‘full computationare-

flection’ areof useto furthergeneraliseur approach.

6 Concluding remarks

The describednethoddefineshow to extendanordinarylanguage
semanticsso that one obtainsan aspect-orientethnguageseman-
tics. We call this achiezement' superimpositiorfor fre€. Techni-

cally, it is basedna‘reflective denotatiorstyle’. Accidentally the

approachalso suggests normatie style of aspect-orientedunc-

tional programming but this hasto be discussectlsavhere. The

aspect-orienteggrogrammingtermsare instantiatedfor ‘superim-

positionfor free’ languagessfollows:

Staticjoin point
Dynamicjoin point

Syntacticabattern
Computatioron syntacticalpattern

Pointcut Patternmatchingpredicate
Advice Denotationtransformer
Programexecution Monadicdo-sequence
Aspect Hook for superimposition

Dynamicweaving
Staticweaving

Registry update
Partial evaluation

We contendthatthisis arathersimple,uniform,andgeneralwayto
defineaspect-orientethnguagesemantics.We are alsowilling to
saythatourapproacttanbeseerasanothedefinitionof reflection.

Theto-dolist for anexhaustve treatmenbf the subjectis long:

e Transpose¢he methodto staticsemantics.

e Coverthestandardormsof dynamicjoin points.
e Make eventhedenotatiortransformerseflective.
e Reco/er compositionalityin someway.

e Cover SOSin additionto denotationasemantics.

Acknowledgement

I am very gratefulto the threeanorymousFOAL 2003 workshop
refereedor their encouragingandconstructve remarks.l amalso
gratefulto the participantsof the Belgian-Dutchposterworkshop
on AOSD,on 21 January2003in Twente,with whom| hadstimu-
lating discussion®n the subjectof the paper

70

7 References

[1] J. H. Andrews. Process-algebraifoundationsof aspect-
orientedprogramming.In Proceedingf the Third Interna-
tional Confeenceon Metalevel Architectuiesand Sepaation
of CrosscuttingConcerng(Reflection2001) volume 2192 of
Lectue Notesin ComputerScience pages187-209,Berlin,
Heidelbeg, andNew York, Sept.2001.SpringerVerlag.

[2] M. Auguston. Programbehaior model basedon event
grammarand its applicationfor delugging automation. In
M. Ducas§, editor, AADEBJG, 2nd International\Workshop
on Automatedand Algorithmic Delugging, pages277-291,

SaintMalo, France22—-24May 1995.IRISA-CNRS.

L. Bouge andN. Francez. A compositionalapproachto su-
perimposition.In ACM, editor, Proc. of the 1988confeence
onPrinciplesof programminganguages(POPL88), January
13-15,1988,SanDiego, CA, page240—-249New York, NY,
USA, 1988.ACM Press.

R. Douence©O. Motelet,andM. Siidholt. A formal definition
of crosscutsln Proc.of the Third InternationalConfeenceon
Metalevel Architecturesand Sepaation of CrosscuttingCon-
cerns(Reflection2001) volume 2192 of LNCS pagesl170—
186.SpringefVerlag,Sept.2001.

S. Jefersonand D. P. Friedman. A simple reflective in-
terpreter Lisp and SymbolicComputation 9(2/3):181-202,
May/Junel996.

S.Katz. A superimpositiorcontrol constructfor distributed
systems ACM Transaction®n ProgrammingLanguaesand
Systemsl5(2):337-356Apr. 1993.

R. Lammel. Reuseby Program Transformation. In
G. Michaelsonand P. Trinder, editors, Functional Program-
ming Trends1999 Intellect, 2000. Selectecbapersirom the
1stScottishFunctionalProgramming/Norkshop.

(3]

(4]

(5]

(6]

[7]

[8] R.Lammel. A SemanticaRpproachto Method-Callintercep-
tion. In Proc. of the 1stInternationalConfeenceon Aspect-
OrientedSoftwae Developmen{AOSD2002) pagesA1-55,

Twente, The NetherlandsApr. 2002.ACM Press.

W. D. Meutet Monads as a theoretical foundation for
AOP. In S. Mitchell andJ. Bosch,editors,WorkshopReader
ECOOP’97 volume13570f LNCS SpringerVerlag,1998.

M. SihmanandS. Katz. A calculusof superimpositiongor

distributed systems. In Proceedingsof the 1stinternational
confeenceon Aspect-orientegoftwae development pages
28-40.ACM Press2002.

B. C. Smith. Reflectionandsemanticsn lisp. In Confeence
Recod of theEleventhAnnualACM Symposiuron Principles
of ProgrammingLanguajes page23-35.ACM, ACM, Jan.
1984.

M. WandandD. P. Friedman. The mysteryof the tower re-
vealed: A non-reflectve descriptionof the reflectve tower.
In R. P. Gabriel,editor, Proceedingof the ACM Confeence
onLISPandFunctionalProgramming page298-307 Cam-
bridge,MA, Aug. 1986.ACM Press.

M. Wand,G. Kiczales,andC. Dutchyn. A semanticdor ad-
vice anddynamicjoin pointsin aspect-orientedrogramming.
In G. T. Leavensand R. Cytron, editors, FOAL 2002 Pro-
ceedings:Foundationsof Aspect-Oriented.anguagesWork-
shopat AOSD2002 number02-06in TechnicaReport02-06,
Dept.of Comp.Sc.,lowa StateUniv., pagesl—8,Apr. 2002.

9]

(10]

(11]

(12]

(13]

Gary T. Leavens
70

	Table of Contents
	Preface
	Composition Graphs: a Foundation for Reasoning about Aspect-Oriented Composition -- Nagy, Aksit, Bergmans
	A Formal Model for Cross-Cutting Modular Transitions Systems -- Sipma
	On Composition and Reuse of Aspects -- Kienzle, Yu, Xiong
	TinyC^2: Toward building a dynamic weaving aspect language for C -- Zhang and Jacobsen
	Interference Analysis for AspectJ -- Stoerzer, Krinke
	Compositional Reasoning about Aspects Using Alternating-Time Logic -- Devereux
	Model Checking Applications of Aspects and Superimpositions -- Sihman, Katz
	Understanding AOP through the Study of Interpreters -- Filman
	Adding Superimposition to a Language Semantics -- Laemmel

