

On Composition and Reuse of Aspects

Jörg Kienzle, Yang Yu, Jie Xiong

School of Computer Science
McGill University

Montreal, QC H3A 2A7
Canada

contact: Joerg.Kienzle@mcgill.ca

Abstract

This position paper investigates the possibilities of sepa-
ration, modularization and reuse offered by aspect-orienta-
tion, concentrating not on the technical or syntactic
problems, but on the inherent issues resulting from inter-
aspect dependencies. An aspect is defined based on the ser-
vices it provides, on the services it requires and on the ser-
vices it removes from other aspects. A classification of
aspects is established based on the way they interact with
each other and on the way their functionality is triggered.
Composition rules and the weavability criteria are defined
based on this classification. Moreover, the impact of the
dependencies of aspects on the level of achievable reuse is
analyzed. Finally, the paper shows how the general ideas
apply to the aspect-oriented programming environment
AspectJ.

1 Introduction

Separation of concerns is a fundamental principle of
software engineering that in its most general form refers to
the ability to identify, encapsulate, and manipulate those
parts of software that are relevant to a particular concept,
goal, task, or purpose. The benefits of a successful modu-
larization of concerns during the implementation phase are
obvious: simpler code structure resulting in improved read-
ability of program code, program code that is easier to cus-
tomize and adapt to new situations, increased possibilities
for reuse.

In order to help developers, software development
methods, e.g. the Unified Process [1], define a step-by-step
process that leads the development team from an initial
requirements document through to the final implementa-
tion [2]. Most approaches start by analyzing the system
requirements based on use cases, which capture the expec-
tations that the final users of the software may have. In a
sense they focus on the different concerns of the end-users.
During the design phase however, most approaches con-
centrate on elaborating an object-oriented design, i.e.
decomposing the system into objects, each of them provid-

ing a well-defined part of the main functionality of the sys-
tem. As a result, secondary functionality, e.g. distribution
support, is often poorly encapsulated. This phenomenon is
known as the “tyranny of the dominant decomposition” [3],
and aspect-orientation [4] might be a possible way to
counter it.

Of course, the notion of main functionality is relative. It
has never been precisely defined, but is usually used to
denote what is particular to a certain piece of software.
These days, general mechanisms, for instance mechanisms
that deal with concurrency and failures, distribution, or
security, are considered secondary functionality.

This classification into main and secondary functional-
ity, often also referred to as

functional

 and

non-functional
aspects

, is very unfortunate. It somehow conveys the feel-
ing that there are important concerns and less important
concerns during the development of a piece of software,
which often leads to the mistake that only the functional
part of an application is developed following software
engineering principles, and the non-functional part, e.g.
fault tolerance, is added later on.

It is our firm belief that there are no such things like
non-functional aspects. Every concern of a certain piece of
software is important, is part of its functionality. During
design all concerns must be considered and integrated in
order to obtain an elegant solution.

What are called non-functional aspects are actually con-
cerns that are more general, i.e. they are likely to be present
in other applications as well. Of course, it is tempting to
separate these aspects from the other functionalities of the
application and make then “generic”, meaning that modu-
larize them in such a way that they can be easily reused in
other contexts and applications. The idea is very legitimate
and it does not take long to convince any sensible program-
mer that such a separation would be great. Aspect-orienta-
tion might just be the right way to achieve this kind of
separation.

This paper investigates the possibilities of separation
and reuse offered by aspect-orientation, concentrating not
on the technical or syntactic problems, but on the inherent
issues resulting from inter-aspect dependencies. Section 2
defines the essence of an aspect based on the services it

provides and on the services it requires from other aspects.
Section 3 classifies aspects according to the way they inter-
act with each other. Based on this classification, Section 4
provides composition rules for aspects and Section 5 exam-
ines reusability issues. Section 6 illustrates how the pre-
sented ideas apply to one of the main-stream aspect-
oriented development environments, AspectJ. Section 7
takes a closer look at circular dependencies. Section 8 pre-
sents recommendations for aspect developers, and the last
section summarizes the results of this work.

2 Aspects

For the subsequent discussion, it is important to specify
clearly what we mean when we talk about an aspect.

From our understanding, an aspect at the design and
implementation level is a main abstraction that encapsu-
lates that part of the design solution that addresses a certain
concern expressed at the analysis level. On on hand, the
aspect provides a certain functionality: it implements the
concern. We’ll designate the set of the services it provides

P

. Services can be seen as the entry points or interface
offered to the rest of the system. On the other hand, the
aspect may depend on functionality offered by other
aspects. The set of services it depends on is named

D.

Optionally, an aspect might remove functionality of other
aspects. The set of services it removes is named

R

. Obvi-
ously,

R

 is a subset of

D

. An aspect is therefore categorized
by the three sets

P

,

D

, and

R

.
What is needed to accurately describe a

service

 is inten-
tionally left open. On one end, specifying the complete
semantics of an aspect is a challenging task, and out of the
scope of this paper. One the other end, object-oriented pro-
gramming languages often just use method signatures to
specify their interface to the outside world. Applying this
idea to aspects would mean specifying the signatures of

P

,

D

, and

R

.
If we want to use UML to depict an aspect, we might be

tempted to use the representation of a class or interface.
Unfortunately, these constructs only show what a compo-
nent provides to the environment, and not what it requires
from others. UML stereotypes make it possible to extend
the base UML concepts and add additional meaning to
them. Fig. 1 shows an

<<aspect>>

 stereotype with three
new compartments:

Provides

,

Depends On

 and

Removes

. It
is not clear if an aspect should be seen as an extension of
the UML class, of the UML package or rather an extension
of the UML collaboration. Discussions are still in progress
[5, 6].

3 Aspect Interaction

In this section we attempt to classify aspects according
to the way they interact with each other. We have estab-
lished two classification criteria: the

activation mechanism

and the

dependencies

.

3.1 Activation Mechanism

The activation mechanism of an aspect is determined by
analyzing

when

 the aspect delivers its functionality. There
are two different kinds:

autonomous

 and

triggered

.

Autonomous

: An aspect is autonomous if it can act on its
own, i.e. it does not need to be stimulated to deliver its
functionality. It typically performs its duties continuously
or periodically.

Triggered

: Initially, a triggered aspect is passive. It waits
for some other part of the application to activate it, and
only then it delivers its service.

This classification is similar to the one found in object-
orientation, where one distinguishes active and passive
objects [7]. Active objects act autonomously, whereas pas-
sive object must be triggered, i.e. only execute methods
when they are called from the outside.

Of course this classification is not absolute. An aspect
may provide autonomous services and triggered ones, sim-
ilar to the Time-Triggered Message-Triggered Objects pre-
sented in [8], which provide periodically executing
services as well as services triggered by messages. For the
sake of clarity, however, such mixing of activation mecha-
nisms is discouraged.

3.2 Dependencies

We essentially distinguish three different kinds of
dependencies:

orthogonal

,

uni-directional

 and

circular

.
The functionality that an

orthogonal

 aspect provides to
an application is completely independent from the other
functionalities of the application. The only thing it might
depend on is activation time (see Section 3.1 above), or
general application-independent information provided by
the run-time environment, e.g. information on the virtual
machine, current method name, etc.

Fig. 1: UML Representation of an Aspect

<<aspect>>
Aspect_Name

Provides
Set of Services P

Depends On
Set of Services D

Removes
Set of Services R

Unfortunately, such aspects are not very common. An
example of an autonomous orthogonal aspect is a clock
counter. Every second, the counter is increased by one. No
explicit triggering is needed (probably the counter is imple-
mented using an independent thread or interrupts), and
there are no shared data structures between the clock aspect
and others. Measuring the time elapsed between two events
can be seen as a triggered orthogonal aspect. One might
think that there is a semantic dependency of such a timing
aspect on the part of the application it actually performs
timing on. This is, however, not true. The dependency is
only on the fact that the aspect has to be triggered twice:
once to start the timing, and a second time to stop it.

One of the most popular orthogonal triggered aspects is
logging. For debugging purposes, a logging aspect can be
applied to various places in an application to print out stack
traces, etc.

A

uni-directional

 aspect depends on some functionality
(service or data) offered by other aspects in the application.
Without this functionality, it can not deliver its services.
Among uni-directional aspects, we can further distinguish
between

uni-directional preserving

 and

uni-directional
modifying

 ones.

Uni-directional preserving

 aspects provide new services
based on services of other aspects, but do not alter or hide
the other services in any way. The properties and function-
alities of the other aspects are preserved.

[9] presents an example of two triggered uni-directional
preserving aspects. It describes an aspect-oriented imple-
mentation of a telecom application that handles phone
calls. In order to set up correct billing, the elapsed time of
long distance phone calls must be measured. The long dis-
tance timing aspect uni-directionally depends on the call
aspect, adding timing information to the calls. It is not
orthogonal, because it has to associate timing with calls,
and therefore depends on the existence of the call aspect.
The billing aspect in turn depends on the call and the tim-
ing aspect, for it has to know the calls source and destina-
tion city, and the elapsed time in order to calculate the total
cost. In the same context one can imagine an aspect that
periodically collects statistical information on long dis-
tance calls, e.g. the average length of calls. This is an
example of an autonomous uni-directional preserving
aspect that depends on the call and the timing aspect.

A

uni-directional modifying

 aspect replaces or modifies
functionality of some other part of an application, but it
does this transparently; the other aspect is not aware of
this, and therefore does not have to behave differently. In a
sense, a uni-directional modifying aspect wraps around or
encapsulates some services provided by other aspects. As a
result, some of the original services might not be provided
anymore.

As an example of a uni-directional modifying aspect,
imagine a typical banking application. Some banks (at least
Swiss banks) allow good clients to overdraw their account.
Clients with a bad credit history on the other hand are not
be allowed to do this. The desired effect can be achieved by
encapsulating in one aspect the account behavior, and
design an additional aspect that denies withdraw requests
in case of insufficient funds. The additional aspect removes
the withdraw service from the account aspect.

Circular

 dependency is the strongest form of depen-
dency. It occurs when several aspects are mutually depen-
dent. The simplest form is encountered when two aspects
depend on each other, i.e. the first aspect requires some ser-
vice provided by a second aspect, which, in turn, can only
deliver its service with the help of the first one. Another
way of looking at this from the perspective of an aspect
that you are adding to an application is the following: if in
order to make the overall application work with the new
aspect it is necessary to modify other aspects, then there is
circular dependency.

An example of a circular aspect has been presented in
[10]. In this example, a transaction aspect is added to a pre-
viously non-transactional application, allowing the applica-
tion to deal with concurrency and failures. The aspect itself
provides the run-time support for transactions, making it
possible to execute methods transactionally. However, the
application must state which method calls it wants to make
transactional, and what actions should be taken in case a
transaction aborts due to a failure.

Circular-dependent aspects are so tightly coupled that
one might argue that it makes no sense to consider each
aspect separately. This first impression will be confirmed
when considering composition and reuse later on. It is
often simpler to treat them as a single aspect. The set of
services the single aspect provides is the union of the ser-
vices the individual aspects provide, and likewise for the
set of services it depends on and the set of services it
removes. In the following sections we do not consider cir-
cular-dependent aspects, they will be revisited in section 7.

The following table summarizes the classification estab-
lished in this section:

4 Composition Rules

In AOP, the so-called

aspect weaver

 composes the dif-
ferent aspects to form the final application. This composi-

Class of Aspect Restriction

Orthogonal D = ø

Uni-directional preserving R = ø

Uni-directional modifying no restriction

Table 1:

Classification of Aspects

tion can be done statically, i.e. at compile-time, or even
dynamically during the execution of the application. Imple-
menting such an aspect weaver is far from trivial, and there
are lots of technical issues that need to be addressed when
composing aspects. In this section, however, we will con-
centrate on the more fundamental problems of aspect com-
position. Even though a set of aspects might be technically
composable, it might be conceptually impossible.

In order to simplify the discussion, we introduce the
notion of an

aspect group

. Aspects in an aspect group all
have some dependency relationship. An executable appli-
cation consists of at least one non-empty aspect group,
containing at least one autonomous aspect. Initially, the set
of aspect groups that forms the final application is empty.
Step by step, additional aspects are added. The set of aspect
groups that form the final application is called a

configura-
tion

.
If we represent aspects as nodes, and dependencies as

directed edges, the representation of a configuration takes
the form of a directed acyclic graph (short DAG) as shown
in Fig. 2. We’ll call it the

configuration dependency graph

.
Each

component

 of the dependency graph forms an aspect
group.

The composition rules for aspects in this section is
based on the classification presented in the previous sec-
tion.

Orthogonal aspects are very flexible — due to their
orthogonality there are no restrictions on composing such
aspects with others. When adding an orthogonal aspect to
the final application, a new aspect group is created, i.e. a
new component is added to the graph.

Uni-directional aspects must be added to an already
existing aspect group. The set of services that the aspect
requires must be provided by the aspects that are already in
the group. It is also possible to combine aspect groups, i.e.
join previously separated components of the graph, in
order to obtain the required set of services.

4.1 Weavability

An interesting problem is the

weavability problem

, i.e.
determining if a given set of aspects can be composed in
such a way that all service requirements are fulfilled.

In graph theory, this is equivalent to solving a multi-
commodity flow feasibility problem [11] with additional
node constraints. The graph to be analyzed contains one
node for each aspect and is fully connected. Every type of
service will be considered a separate flow. An aspect that
provides a certain service is a source for the flow (provides
one flow unit). An aspect that removes the service is a sink
(consumes one flow unit). Aspects that depend on the ser-
vice are mandatory transshipment nodes for the corre-
sponding flow. They can be modeled by an additional
constraint that states that the sum of incoming flows for
this node must be equal to one.

If and only if there exists a feasible flow, then the appli-
cation is weavable. By calculating the flow distribution that
uses the lowest number of arcs, and then inversing all arcs,
we obtain the dependency graph of the final application.

5 Making Aspects Reusable

One of the major encouragements for using AOP is
reuse. After having identified a certain concern, the idea is
that AOP should allow one to modularize and implement
this concern in an aspect. Later on, this aspect should be
usable in every application that exhibits the need for the
concern. Again, there are technical issues that must be
solved in order to make aspects reusable, e.g. how to spec-
ify the required, provided and removed services in a con-
cise way. In this section, however, we will concentrate on
the obstacles introduced by aspect dependencies.

An even stronger form of reusability is

genericity

. What
we want to achieve in this case is to write an aspect in such
a way that it can be added to an application without dis-
turbing the already existing structure. In other words we
want to add support for a certain concern to an application
just by adding the aspect that implements the concern to
the configuration.

The difficulty of providing such a form of reusability
increases depending on the class of aspect.

Orthogonal aspects can be reused in any context. They
are generic per se. They do not depend on any other
aspects, and therefore do not remove any existing services.
They do not disturb any existing aspect group configura-
tion, since they always start a new group. In the depen-
dency graph, orthogonal aspects will show up as sinks. In
Fig. 2,

Aspect A

 and

Aspect B

 are orthogonal aspects.
Uni-directional preserving aspects also make good can-

didates. Since they do not remove any services, they can be
added to any aspect group that provides the required ser-

Fig. 2: A Configuration Dependency Graph

Aspect A

Aspect D

Aspect B

Aspect C Aspect E

Aspect F Aspect G

vices. Of course, when moving a uni-directional preserving
aspect from one configuration into a new one, any aspects
it depends on must be either moved as well, or equivalent
services must already be available in the new configura-
tion. In the dependency graph, new uni-directional aspects
shows up as a source nodes. For instance, in Fig. 2, the uni-
directional aspects

Aspect E

,

Aspect F

 or

Aspect G

might just have been added to the configuration.
Uni-directional modifying aspects are hard to reuse,

since they modify the services of aspects they depend on.
They can only be added to an aspect group if it remains
weavable, i.e. the new aspect does not remove services that
are needed by other aspects.

6 AOP Mechanisms

This section analyses the support of the concepts pre-
sented above provided by AspectJ [12], one of the main-
stream aspect-oriented programming environments.

6.1 Interface Specification

Somehow, aspect-oriented programming environments
must provide a means for specifying what services an
aspect provides, what services it depends on, and what ser-
vices it removes. This has been an area of research for a
long time, and elegant solutions to this problem still have
to be found.

AspectJ takes the Java approach. The services provided
by a class or aspect are determined based on Java visibility
rules. Inside visible code, all potential joinpoints are advis-
able, meaning that they can be used as triggers or points of
extension for adding additional behavior.

There is no special part where dependencies are speci-
fied. An aspect potentially depends on all other modules
that are visible or that it imports. By looking closely at the
code, the services it actually uses can be determined.

The services that an aspect modifies or removes are very
hard to determine. Potential candidates are the destinations
of

around

 advice, but also

before

 and

after

 advice that
modify the behavior of the class or aspect they are advis-
ing.

6.2 Activation Mechanism

Just as conventional object-oriented environments,
aspect-oriented development environments support autono-
mous aspects. The autonomy of aspects is typically imple-
mented by the underlying operating system. Autonomous
aspects are either separate processes, or implemented
based on threads.

AOP is however particularly well suited for implement-
ing triggered aspects. They are usually activated by the

aspect-oriented run-time, which in turn is stimulated by
intercepting some specific event.

In AspectJ, for example, pointcut designators allow a
developer to specify when an aspect is to be activated. For
instance, it is possible to intercept calls to / and execution
of methods, throwing and handling of exceptions, and
reading and writing of fields. It is also possible to activate
aspects based on control flow information.

6.3 Aspect Semantics

There are several mechanisms that allow an AspectJ
programmer to write uni-directional aspects.

First of all, aspects are subject to the same visibility
rules as normal Java classes. They can call methods, or
read from / write to fields depending on their respective
mode (public, protected, private) and the package they
belong to. As soon as an aspect makes an explicit reference
to some other class or aspect, a dependency is created.

Next, aspects can use static

introduction

 to add new
fields or methods to classes or aspects at compile-time. If
explicit names are used, then again a dependency is cre-
ated. However, the introduction mechanism allows a pro-
grammer to use pattern matching rules to defer the
destination of the introduction to weave-time.

Finally, aspects can add code

before

 or

after

 any join-
point defined in the code they are advising. It is even possi-
ble to wrap code

around

 a joinpoint, optionally replacing
the code that would have been executed at this point.

6.4 Composition

At some point, AOP environments must perform the
weaving, i.e. composing all aspects of an application to
yield the final application. Logically, the composition
ordering is determined by the configuration dependency
graph. In order to obtain a possible sequential composition
order, topographical sort [13], also known as linear exten-
sion, can be applied to the configuration dependency graph.

In current aspect-oriented environments, the depen-
dency graph information is in general encoded by the
developer in a separate configuration language, or in the
aspect language itself.

The latter is true for AspectJ. The pointcut designators
in an aspect specify the set of joinpoints to which the
advice must be applied. If several advice apply to the same
joinpoint, then the developer can specify an ordering
among them by using the

dominates

 primitive. If some
aspect A is specified to dominate some aspect B, then
advice in A take precedence over advice in B. In a sense, A
wraps around B (or B is nested in A). In this case, the exe-
cution order of the advice is:

• before advice in A

• before advice in B
• original code at joinpoint
• after advice in B
• after advice in A

 If around advice are used, the ordering takes the follow-
ing form:

• around advice in A
(optional around advice in B

(optional original code at joinpoint))

6.5 Drawing the Line for Dependencies

As we have seen in the previous section, in order to
achieve high reusability or even genericity, a developer of
an aspect should strive for low dependencies. As strange as
it might seem, dependency does not only depend on the
nature of the problem, but also on the power of the weaving
mechanism. Surprisingly, some dependencies can be
replaced by exploiting the activation mechanism in a clever
way.

To illustrate this idea, consider a typical bank account,
implemented as an aspect. In addition, there is a security
policy that states that the account balance should not drop
below zero. This policy is implemented in a separate secu-
rity aspect. At first one might think that the security aspect
is uni-directionally dependent on the account aspect, for it
must monitor all changes to the state of the balance of the
account.

It turns out that this is not necessarily true. The security
aspect can be turned into a orthogonal one that prevents
any numerical value to drop below zero. It is the weaving
mechanism that links it to the account, i.e. activates the
security aspect on every change of state of the account bal-
ance.

In AspectJ, for instance, the account would be imple-
mented as a normal Java class with a balance field. The
security aspect would be implemented as an aspect con-
taining a before advice that verifies that the field value is
higher than the amount passed to the withdraw method.
The dependencies on class fields can be removed by using
AspectJ run-time information. The triggering of the aspect,
i.e. intercepting every write access to the balance attribute
of the account, is done in the pointcut definition.

7 Circular Aspects Revisited

After having examined composition, reuse and support
mechanisms we can now reexamine circular-dependent
aspects. Several reasons push to believe that they should be
considered a single aspect:

• Composition: When composing an application, a set
of circular-dependent aspects must be added to an

configuration as a whole. Moreover, it is only possi-
ble if the configuration provides the union of the ser-
vices needed by each circular-dependent aspect.

• A set of circular-dependent aspects can only be
reused as a group. The added services are the union
of all services provided by the circular-dependent
aspects.

• During the weaving process, a set of circular-depen-
dent aspects must conceptually be woven at the same
time. This may actually lead to implementation prob-
lems, similar to the problems encountered when com-
piling mutually dependent source files.

However, in certain situations it might make sense to
consider them separately, e.g. if one aspect of the group is
fairly generic. This is the case in the previously mentioned
example [10], where transaction support has been imple-
mented as a separate aspect in AspectJ. Transactions are a
generic concept that can be applied to parts of an already
existing application. However, the application wants to be
aware of this, especially when a transaction aborts due to
some underlying failure. In this case, the application might
want to try the same transaction again, or decide to perform
some alternative computation, and / or inform the user of
the failure, etc. As a result, the application and the transac-
tion aspect are tightly coupled.

What we suggest in this case is to try and extract that
part of the application aspect that deals with transactions
and make it a separate aspect. As a result, the two circular
dependent aspects (application and transaction) can be
transformed into an orthogonal and two uni-directional
ones (the application without transaction handling, transac-
tions, and the application-specific transaction handling
part). This is illustrated in Fig. 3. The feasibility of such a
transformation again depends heavily on the expressive-
ness and power of the weaving support. If this can be
achieved for the transaction example using AspectJ
remains to be explored.

Of course, programmers must be aware that the new
application aspect and the application-specific transaction
handling aspect have very tight semantic dependencies,
although physically separated. Modifying the application
aspect most probably also requires modifying the transac-
tion handling one.

8 Discussion

As we have seen in the previous sections, the dependen-
cies of an aspect have a profound impact on the ways it can
be composed with others and on the possibilities of reuse.

Therefore, when developing an aspect that is to be made
reusable or even generic, a programmer should first deter-
mine the semantic nature of the concern that is to be modu-

larized. This will provide a hint on what degree of
decoupling might be achievable. Next, the developer
should try and classify the aspect according to the rules
mentioned above.

Orthogonal aspects are most flexible, followed by uni-
directional preserving ones. Uni-directional modifying
aspects are not easily reusable, since adding them to an
application may compromise weavability. Circular-depen-
dent aspects should, if possible, be transformed into several
uni-directional ones.

The weaving mechanism offered by the aspect-oriented
environment has also an important impact on the depen-
dencies. If it is not powerful enough, or the weaving lan-
guage is not expressive enough, then additional
dependencies might be artificially introduced into the sys-
tem. On the other hand, exploiting the power of the aspect
weaver and aspect run-time information might make it pos-
sible to remove dependencies. Imagine an aspect that mon-
itors some data, and triggers some action if the data
changes. Such an aspect would fall into the autonomous
uni-directional category, since it is dependent on the data it
monitors. However, if the aspect run-time allows activation
of aspects based on data changes

1

, then the dependency
can be removed from the aspect. In a sense, the depen-
dency is re-introduced later at weave-time, when the actual
configuration is assembled. As a result, the monitoring
aspect now is triggered and orthogonal, and hence can be
reused in a straightforward way.

Based on these observations, we encourage designers of
aspect-oriented programming environments to conduct fur-
ther research in this direction. For instance, the decision for
adding new features such as new pointcut designators to
AspectJ should be based on whether or not such a new fea-

ture would make it possible to remove a certain kind of
dependency.

9 Conclusion

In this position paper we have investigated the possibili-
ties of separation, modularization and reuse offered by
aspect-orientation in general.

We have defined an aspect based on the services it pro-
vides, on the services it requires from other aspects and on
the services it removes. Furthermore, a classification of
aspects has been established. Aspects can be

autonomous

or

triggered

, depending on the activation mechanism. The
dependencies lead to a categorization into

orthogonal

,

uni-
directional preserving

,

uni-directional modifying

, and

cir-
cular-dependent

 aspects. The influence of the power of the
weaving mechanism on dependency has been highlighted.

Composition rules have been established based on these
criteria, and the notion of weavability has been defined
based on flow feasibility analysis. Likewise, the impact of
the semantic nature of aspects on the level of achievable
reuse has been analyzed.

Finally, we have presented how the general ideas of this
paper apply to the aspect-oriented programming environ-
ment AspectJ, and made recommendations for determining
the usefulness of new features.

10 Acknowledgments

The authors would like to thank the anonymous review-
ers of the FOAL and SPLAT workshop committees for
their detailed comments.

11 References

[1] Jacobson, I.; Booch, G.; Rumbaugh, J.:

The Unified
Software Development Process

, Addison Wesley,
Reading, MA, USA, 1999.

[2] Hutt, Andrew T. F.:

Object Analysis and Design –
Description of Methods

. Object Management Group,
John Wiley & Sons, Inc., 1994.

[3] Tarr, P. L., et al.: “N Degrees of Separation: Multi-
Dimensional Separation of Concerns”. In

Proceedings
of the 21st International Conference on Software
Engineering (ICSE’1999)

, pp. 107-119, IEEE Com-
puter Society Press / ACM Press, 1999.

[4] Elrad, T.; Aksit, M.; Kiczales, G.; Lieberherr, K.;
Ossher, H.: “Discussing Aspects of AOP”. Communi-
cations of the ACM 44 (10), pp. 33 – 38, October
2001.

[5] First International Workshop on Aspect-Oriented
Modeling with UML. Held at the

First International

1.AspectJ, for instance, allows triggering aspects
when a field of a class is modified.

Transaction
Support
Aspect

Transaction
Aware Application

Aspect

Transaction
Support
Aspect

Application
Aspect

App-Specific
Transaction

Handling Aspect

Fig. 3: Transforming Circular-dependent Aspects into
Uni-directional Ones

⇔

Conference on Aspect-Oriented Software Develop-
ment

, April 22-26, 2002, Enschede, The Netherlands.

[6] Second International Workshop on Aspect-Oriented
Modeling with UML. Held at the

Fifth International
Conference on the Unified Modeling Language - the
Language and its Applications

, September 30 - Octo-
ber 4, 2002, Dresden, Germany.

[7] Briot, J.-P.; Guerraoui, R.; Lohr, K.-P.: “Concurrency
and Distribution in Object-Oriented Programming”,

ACM Computing Surveys

30

(3)

, September 1998,
pp. 291 – 329.

[8] Kim, K.H.; Masaki, Ishida; Liu, Juqiang: “An Efficient
Middleware Architecture Supporting Time-Triggered
Message-Triggered Objects and an NT-based Imple-
mentation”. In

Proceedings of the second IEEE CS
International Symposium on Object-Oriented Real-
time Distributed Computing (ISORC’99)

, pp. 54 - 63,
St. Malo, France, May 1999.

[9] The AspectJ Team:

The AspectJ Programming Guide

,
Xerox Corporation, February 2002.

[10] Kienzle, J.; Guerraoui, R.: “AOP — Does it make
sense? The case of concurrency and failures”. In

Pro-
ceedings of the 16th European Conference on Object-
Oriented Programming (ECOOP 2002)

, pp. 37 - 54,
Malaga, Spain, June 2002, Lecture Notes in Computer
Science

2374, Springer Verlag, 2002.

[11] Cook, W. J.; Cunningham, W. H.; Pulleyblank, W. R.;
Schrijver, A: Combinatorial Optimization. John Wiley
and Sons, Inc. 1998.

[12] Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersen, M.;
Palm, J.; Griswold, W. G.: “An Overview of AspectJ”.
In Proceedings of the 15th European Conference on
Object–Oriented Programming (ECOOP 2001), pp.
327 – 357, June 18–22, 2001, Budapest, Hungary,
2001, Lecture Notes in Computer Science 2072,
Springer Verlag, 2001.

[13] Aho, A. V.; Hopcroft, J. E.; Ullman, J. D.: Data Struc-
tures and Algorithms. Addison-Wesley, Reading, MA,
USA, 1987.

