
COP 4020 — Programming Languages I October 9, 2019

Homework 3: Advanced Functional Programming
See Webcourses and the syllabus for due dates.

Purpose
In this homework you will learn more advanced techniques of functional programming such as: recursion
over more interesting grammars, using higher-order functions to abstract from programming patterns, and
using higher-order functions to model infinite data [UseModels] [Concepts]. Many of the problems exhibit
polymorphism [UseModels] [Concepts]. The problems as a whole illustrate how functional languages work
without hidden effects [EvaluateModels].

Directions
Answers to English questions should be in your own words; don’t just quote text from a book or other
source.
Note that in all problems we will take some points off for: code with the wrong type or wrong name,
duplicated code, code with extra unnecessary cases, or code that is excessively hard to follow. It is a
good idea to check your code for these problems before submitting. You can avoid duplicating code by
using: helping functions, library functions (when not prohibited in the problems), and syntactic sugars and
local definitions (using let and where).
You should always assume that the inputs given to each function will be well-typed, thus your code should
not have extra cases for inputs that are not of the proper type. (That is, assume that any human-supplied
inputs are error checked before they reach your code.) You can avoid duplicating code by using: helping
functions, library functions (when not prohibited in the problems), and syntactic sugars and local definitions
(using let and where). It is a good idea to check your code for duplicated code before submitting.
Make sure your code has the specified type by including the given type declaration with your code.
Since the purpose of this homework is to ensure skills in functional programming, we suggest that you work
individually. (However, per the course’s grading policy you can work in a group if you wish, provided that
carefully follow the policy on cooperation described in the course’s grading policy.)
Don’t hesitate to contact the staff if you are stuck at some point.

What to Turn In
For each problem that requires code, turn in (on Webcourses):

1. Your code, uploaded as a plain (text) file with the name given in the problem and with the suffix .hs
or .lhs (that is, do not turn in a Word document or a PDF file for the code).

2. The output of running our tests on your code, which should also be uploaded as a plain text file. To do
that, run the main function of the test module for the assignment and then copy the output and paste it
into a plain text file (with a .txt suffix), then upload that file along with your code.

The following is a more detailed explanation of how to run our tests. Suppose you are to write a function
named f in a module F, which would be placed in a file named F.hs (or F.lhs). In this example we would
supply tests for f in a module FTests (in a file FTests.hs). To run our tests, you would open the test
module, e.g., by double-clicking on FTests.hs in this example, with ghci (on Linux or MacOS or in the

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutEvaluateModels
http://www.cs.ucf.edu/~leavens/COP4020/grading_policy.shtml
http://www.cs.ucf.edu/~leavens/COP4020/grading_policy.shtml#coop
http://www.cs.ucf.edu/~leavens/COP4020/contact.shtml
https://webcourses.ucf.edu/

2

Windows command prompt, which is the default on Windows).12 When the test module (FTests.hs is
loaded, it will load our testing harness module (Testing.lhs and other necessary modules, such as
FloatTesting.lhs, as needed) and your code (in F.hs), and by default these are all assumed to be in the
same directory as our testing module (so you should be sure they are all in that directory); if you get an error
that one of these cannot be found, make sure they are all in the same directory (and readable). After you
load these modules enter (at the prompt):

main

and that will run our tests. Then you can copy the output from our tests and paste it into an appropriate file.
Another way to do this (on Linux, MacOS, and cygwin) is to use file redirection, by executing a shell
command such as (in our example):

ghci FTests.hs > FTests.txt

and then typing main and :quit at the prompts. This will make FTests.txt contain the testing output.
For all Haskell programs, you must run your code with GHC. See the course’s Running Haskell page for
some help and pointers on getting GHC installed and running.
Your code should compile properly (and thus type check); if it doesn’t, then you probably should keep
working on it. Email the staff with your code (preferably pasted into the text of the message) if you need
help getting it to compile or have trouble understanding error messages.
We will take a penalty in points if you do not turn in the output of running our tests on a problem that
requires writing code. If you don’t have time to get your code to type check and run, at least tell us about
the problem in your submission.
You are encouraged to use any helping functions you wish, and to use Haskell library functions, unless the
problem specifically prohibits that.

What to Read
Besides reading chapters 11-17 of the recommended textbook on Haskell [Tho11], you may want to read
some of the Haskell tutorials. Use the Haskell 2010 Report as a guide to the details of Haskell. Read the
“Following the Grammar with Haskell” [Lea13] document for recursion over interesting grammars. See also
the course code examples page (and the course resources page).

Problems

Recursion over Grammars
See the “Following the Grammar with Haskell” [Lea13] document for examples and hints related to the
problems in this section.

1. (20 points) [UseModels] This problem is about the type WindowPlan, which is defined in the file
WindowPlan.hs.

module WindowPlan where
data WindowPlan = Win String Int Int -- name, width, and height

| Horiz [WindowPlan]

| Vert [WindowPlan]

deriving (Show, Eq)

1If you use WinGHCi, don’t open WinGHCi first and then use that to open the files, as the process for WinGHCi will have the wrong
working directory; instead it is best to open the test module with WinGHCi instead, by right-clicking on the FTests.hs file and selecting
WinGHCi as the program to open it with.

2If upon opening the file, you receive a message about a type error, know that the type error is in your own code, not the code of the
testing modules; if this happens, make sure that your function(s) have the type declarations they should and try running your code by
itself on some test data that you create yourself.

http://www.cs.ucf.edu/~leavens/COP4020/running_haskell.shtml
http://www.cs.ucf.edu/~leavens/COP4020/contact.shtml
http://www.haskellcraft.com/craft3e/Home.html
http://www.haskell.org/haskellwiki/Tutorials
http://www.haskell.org/haskellwiki/Language_and_library_specification#The_Haskell_2010_report
http://www.cs.ucf.edu/~leavens/COP4020/docs/follow-grammar-haskell.pdf
http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml
http://www.cs.ucf.edu/~leavens/COP4020/docs/follow-grammar-haskell.pdf

3

In the Win constructor, which makes a single window, the three arguments stand for the name of the
window (a String), the width of the window (an Int, in pixels), and the height of the window (another
Int, also in pixels). Thus a window such as (Win "Movie" 500 300) is a window named “Movie” that
has width of 500 pixels and a height of 300 pixels. (Assume that the width and height are always
non-negative.) A WindowPlan of the form (Horiz wps), where wps is a list of WindowPlans represents
the window plans in wps arranged horizontally. Similarly, a WindowPlan of the form (Vert wps), where
wps is a list of WindowPlans represents the window plans in wps arranged vertically.

In Haskell, write a function

height :: WindowPlan -> Int

that takes a WindowPlan, wp, and returns the total height of the window plan (in pixels). The height is
defined by cases as follows. The height of a WindowPlan of form (Win nm w h) is h. The height of a
WindowPlan of the form (Horiz [wp1, . . ., wpm]) is 0 if the list is empty, and otherwise is the
maximum of the heights of wp1 through wpm (inclusive). The height of a WindowPlan of the form
(Vert [wp1, . . ., wpm]) is the sum of the heights of wp1 through wpm (inclusive), which is 0 if the
list is empty. (You may assume that this sum is never greater than the largest Int.)

The file HeightTests.hs contains tests that show how the function should work, see Figure 1.

module HeightTests where
import Testing

import WindowPlan

import Height

main = dotests "HeightTests Revision : 1.2" tests

tests :: [TestCase Int]
tests =

[(eqTest (height (Win "olympics" 50 33)) "==" 33)

,(eqTest (height (Horiz [])) "==" 0)

,(eqTest (height (Vert [])) "==" 0)

,(eqTest (height (Horiz [(Win "olympics" 80 33), (Win "News" 20 10)])) "==" 33)

,(eqTest (height (Vert [(Win "olympics" 80 33), (Win "News" 20 10)])) "==" 43)

,(eqTest (height (Vert [(Win "Star Wars" 40 100), (Win "olympics" 80 33),

(Win "News" 20 10)]))

"==" 143)

,(eqTest (height (Horiz [(Vert [(Win "Tempest" 200 100), (Win "Othello" 200 77)

,(Win "Hamlet" 1000 600)])

,(Horiz [(Win "baseball" 50 40), (Win "track" 100 60)

,(Win "baking" 70 30)])

,(Vert [(Win "Dancing with the Stars" 40 100)

,(Win "olympics" 80 33), (Win "News" 20 10)])])) "==" 777)]

Figure 1: Tests for problem 1.

Be sure to follow the grammar! In particular, you need to use some helping function to work on the lists
that are part of the 〈WindowPlan〉 grammar. We will take off points if you do not follow the grammar
(and you will spend more time trying to get your code to work).

4

2. (20 points) [UseModels]

This is another problem about the type WindowPlan. Write a function

split :: String -> WindowPlan -> WindowPlan

that takes a string, name, and a WindowPlan, wp, and returns a WindowPlan that is just like wp, except
that for each window in wp whose name is (== to) name is changed to a Horiz window plan with both
windows having the same name and half the width of the previous window plan. (Hint, use Haskell’s
div operator to do the division.) Figure 2 shows examples.

module SplitTests where
import WindowPlan; import Split; import Testing

main = dotests "SplitTests Revision : 1.2" tests

tests :: [TestCase WindowPlan]

tests =

[(eqTest (split "olympics" (Win "olympics" 50 33))

"==" (Horiz [(Win "olympics" 25 33), (Win "olympics" 25 33)]))

,(eqTest (split "masterpiece" (Horiz [])) "==" (Horiz []))

,(eqTest (split "nova" (Vert [])) "==" (Vert []))

,(eqTest (split "olympics" (Horiz [(Win "olympics" 79 33), (Win "local news" 21 10)]))

"==" (Horiz [(Horiz (let w = (Win "olympics" 39 33) in [w, w])), (Win "local news" 21 10)]))

,(eqTest (split "local news" (Vert [(Win "olympics" 79 33)

,(Win "local news" 21 10)]))

"==" (Vert [(Win "olympics" 79 33)

,(Horiz (let w = (Win "local news" 10 10) in [w, w]))]))

,(eqTest (split "Sienfeld"

(Vert [(Win "Star Trek" 40 100), (Win "Sienfeld" 80 33)

,(Win "Sienfeld" 30 10)]))

"==" (Vert [(Win "Star Trek" 40 100)

,(Horiz (let w = (Win "Sienfeld" 40 33) in [w,w]))

,(Horiz (let w = (Win "Sienfeld" 15 10) in [w, w]))]))

,(eqTest (split "local news"

(Horiz

[(Vert [(Win "Tempest" 200 100), (Win "Othello" 200 77), (Win "Hamlet" 1000 600)])

,(Horiz [(Win "baseball" 50 40)

,(Vert [(Win "local news" 100 60), (Win "ski jump" 70 30)])])

,(Vert [(Win "Star Trek" 40 100), (Horiz [(Win "olympics" 80 33)

,(Win "local news" 20 10)])])]))

"==" (Horiz

[(Vert [(Win "Tempest" 200 100), (Win "Othello" 200 77), (Win "Hamlet" 1000 600)])

,(Horiz [(Win "baseball" 50 40)

,(Vert [(Horiz (let w = (Win "local news" 50 60) in [w,w]))

,(Win "ski jump" 70 30)])])

,(Vert [(Win "Star Trek" 40 100), (Horiz [(Win "olympics" 80 33)

,(Horiz (let w = (Win "local news" 10 10) in [w,w]))])])

]))]

Figure 2: Tests for problem 2.

As always, after writing your code, run our tests, and turn in your solution and the output of our tests.
Be sure to follow the grammar, as we will take off points for not following the grammar (and you
will have a harder time solving the problem if you don’t follow the grammar).

5

3. (20 points) [UseModels] The problem uses the types Statement and Expression, which are found in
the file StatementsExpressions.hs:

module StatementsExpressions where
data Statement = ExpStmt Expression

| AssignStmt String Expression

| IfStmt Expression Statement deriving (Eq, Show)
data Expression = VarExp String

| NumExp Integer
| EqualsExp Expression Expression

| BeginExp [Statement] Expression deriving (Eq, Show)

Write a function simplify :: Statement -> Statement that takes a Statement, stmt, and returns a
Statement just like stmt, except that the following simplifications are made:

1. Each Statement of the form (IfStmt (VarExp "true") s) is replaced by a simplified version of s.

2. Each Expression of the form (BeginExp [] e) is replaced by a simplified version of e.

There are test cases contained in SimplifyTests.hs, which is shown in Figure 3.

module SimplifyTests where
import StatementsExpressions; import Simplify; import Testing

main = dotests "SimplifyTests Revision : 1.2" tests

tests :: [TestCase Statement]

tests =

[(eqTest (simplify (IfStmt (VarExp "true") (ExpStmt (NumExp 7)))) "==" (ExpStmt (NumExp 7)))

,(eqTest (simplify (ExpStmt (BeginExp [] (NumExp 6)))) "==" (ExpStmt (NumExp 6)))

,(eqTest (simplify (ExpStmt (NumExp 7))) "==" (ExpStmt (NumExp 7)))

,(eqTest (simplify (ExpStmt (VarExp "q"))) "==" (ExpStmt (VarExp "q")))

,(eqTest (simplify (ExpStmt (VarExp "true"))) "==" (ExpStmt (VarExp "true")))

,(eqTest (simplify (ExpStmt (BeginExp [] (EqualsExp (VarExp "x") (VarExp "x")))))

"==" (ExpStmt (EqualsExp (VarExp "x") (VarExp "x"))))

,(eqTest (simplify (AssignStmt "y" (EqualsExp (VarExp "jz") (VarExp "jz"))))

"==" (AssignStmt "y" (EqualsExp (VarExp "jz") (VarExp "jz"))))

,(eqTest (simplify (IfStmt (VarExp "true") (AssignStmt "d" (VarExp "true"))))

"==" (AssignStmt "d" (VarExp "true")))

,(eqTest (simplify

(AssignStmt "g"

(BeginExp [(IfStmt (VarExp "true")

(AssignStmt "d" (BeginExp [] (VarExp "true"))))

,(AssignStmt "z" (EqualsExp (VarExp "m") (BeginExp [] (VarExp "m"))))]

(BeginExp [AssignStmt "e" (EqualsExp (VarExp "y") (NumExp 2))

,(IfStmt (VarExp "true") (ExpStmt (NumExp 3)))]

(BeginExp [(IfStmt (VarExp "true")) (ExpStmt (NumExp 1))]

(VarExp "true"))))))

"==" (AssignStmt "g"

(BeginExp [(AssignStmt "d" (VarExp "true"))

,(AssignStmt "z" (EqualsExp (VarExp "m") (VarExp "m")))]

(BeginExp [AssignStmt "e" (EqualsExp (VarExp "y") (NumExp 2)), (ExpStmt (NumExp 3))]

(BeginExp [(ExpStmt (NumExp 1))] (VarExp "true"))))))]

Figure 3: Tests for Simplify.

As always, after writing your code, run our tests, and turn in your solution and the output of our tests as
specified on the first page of this homework. Be sure to follow the grammar!

6

4. (25 points) [UseModels] Consider the data type of quantified Boolean expressions defined as follows,
in the file QBExp.hs. This module also defines (Set a) to mean the type [a] without duplicates.

-- Id : QBExp.hs, v1.32019/10/0813 : 21 : 02leavensExpleavens
module QBExp where
data QBExp = Varref String | QBExp `And` QBExp

| Not QBExp | Forall String QBExp deriving (Eq, Show)
type Set a = [a] -- without any duplicates

Your task is to write a function

freeQBExp :: QBExp -> (Set String)

that takes a QBExp, qbe, and returns a set containing just the strings that occur as a free variable
reference in qbe. The following defines what “occurs as a free variable reference” means. A string s
occurs as a variable reference in a QBExp if s appears in a subexpression of the form (Varref s). Such
a string s occurs as a free variable reference if and only if it occurs as a variable reference in a
subexpression that is outside of any expression of the form (Forall s e), which declares (i.e., binds) s.

In the examples given in Figure 4, note that the lists returned by freeQBExp should have no duplicates.
In the tests, the setEq function constructs a test case that considers lists of strings to be equal if they
have the same elements (so that the order is not important).

Don’t use tail recursion for the main function in this problem (as it will horribly complicate your code)!
Instead, use separate helping functions to prevent duplicates. And be sure to follow the grammar!

module FreeQBExpTests where
import QBExp; import FreeQBExp; import Testing

main = dotests "FreeQBExpTests Revision : 1.3" tests

tests :: [TestCase [String]]
tests = [setEq (freeQBExp (Varref "x")) "==" ["x"]

,setEq (freeQBExp (Not (Varref "y"))) "==" ["y"]

,setEq (freeQBExp (Not (Not (Varref "y")))) "==" ["y"]

,setEq (freeQBExp ((Varref "x") `And` (Not (Varref "y")))) "==" ["x","y"]

,setEq (freeQBExp ((Not (Varref "y")) `And` (Varref "x"))) "==" ["y","x"]

,setEq (freeQBExp (((Varref "y") `And` (Varref "x"))

`And` ((Varref "x") `And` (Varref "y")))) "==" ["y","x"]

,setEq (freeQBExp (Forall "y" (Not (Varref "y")))) "==" []

,setEq (freeQBExp (Forall "y" ((Not (Varref "y")) `And` (Varref "z")))) "==" ["z"]

,setEq (freeQBExp (Forall "z" (Forall "y" ((Not (Varref "y")) `And` (Varref "z"))))) "==" []

,setEq (freeQBExp (Not

((Varref "z")

`And` (Forall "z" (Forall "y" ((Varref "y") `And` (Varref "z")))))))

"==" ["z"]

,setEq (freeQBExp (((Varref "z") `And` (Varref "q"))

`And` (Not (Forall "z" (Forall "y" ((Varref "y") `And` (Varref "z")))))))

"==" ["z","q"]]

where setEq = gTest setEqual

setEqual los1 los2 = (length los1) == (length los2)

&& subseteq los1 los2

subseteq los1 los2 = all (\e -> e `elem` los2) los1

Figure 4: Tests for problem 4.

7

Combinations of Previous Techniques

5. (20 points) [UseModels] In various contests the contestants are awarded places based on some score,
and a list of winners is produced. For example, ebird.org maintains lists of the “Top 100” birders in
Florida this year (rated by number of bird species seen in the year). Also lower numbers are better;
everyone wants to be “first rated.” In such rated lists, contestants that have the same score are
considered tied; for example, if Audrey and Carlos have both seen 187 bird species this year, then they
are considered tied, and both are listed as being in (say) 12th place. In this scenario, the next birder,
with (say) 186 species, is listed as being in 14th place, as Audrey and Carlos take places 12 and 13
together, even though they are listed as tied for 12th place.

In this problem you will write a general rating function

rate :: (Ord a) => [a] -> [(Int, a)]

which for any type a that is an instance of the Ord class, takes a list of elements of type a, things, and
returns a list of pairs of Ints and a elements. The result is sorted (in non-decreasing order) on the a
elements of things, and the Int in each pair is the rating of the element in the pair. There are test cases
contained in the file RateTests.hs, which is shown in Figure 5 on the following page. To run our tests,
use the RateTests.hs file. To make that work, you have to put your code in a module Rate.

Hint: you can use sort from the module Data.List. You may also find it helpful to use a helping
function so that you can have some additional variables, even if you are not using tail recursion.

http://ebird.org

8

module RateTests where
import Rate; import Testing

main :: IO ()

main = dotests2 "Revision : 1.2" testsString testsBirders

testsString :: [TestCase [(Int, String)]]
testsString = -- alphabetic ordering

[(eqTest (rate []) "==" [])

,(eqTest (rate ["one"]) "==" [(1,"one")])

,(eqTest (rate ["one","one"]) "==" [(1,"one"),(1,"one")])

,(eqTest (rate ["two","one","one"]) "==" [(1,"one"),(1,"one"),(3,"two")])

,(eqTest (rate ["abel", "charlie", "baker", "abel", "charlie", "delta", "echo"])

"==" [(1,"abel"), (1,"abel"), (3,"baker"),

(4,"charlie"), (4,"charlie"), (6,"delta"), (7,"echo")])

,(eqTest (rate ["baker", "baker", "abel", "baker", "baker"])

"==" [(1,"abel"),(2,"baker"),(2,"baker"),(2,"baker"),(2,"baker")])

]

data Birder = Person String Int deriving (Show)
instance Eq Birder where { (Person _ c1) == (Person _ c2) = c1 == c2 }

-- The following Ord instance makes the person with the highest count least

instance Ord Birder where
(Person _ count1) < (Person _ count2) = (count1 > count2) -- yes, backwards!

compare (Person _ count1) (Person _ count2) = compare count2 count1

flBirders :: [Birder]

flBirders = -- data from ebird.org

[(Person "Audrey" 305),(Person "Graham" 319),(Person "John" 293)

,(Person "Scott" 269),(Person "Ron" 269),(Person "Tom" 267),(Person "Thomas" 225)

,(Person "Steven & Darcy" 295),(Person "David" 294),(Person "Chris" 312)

,(Person "Rangel" 281),(Person "Charles" 280),(Person "Andy" 276)

,(Person "Angel & Mariel" 274),(Person "Mark" 273),(Person "Kevin" 270)

,(Person "josh" 295),(Person "Jonathan" 290),(Person "adam" 286)

,(Person "Gary" 223),(Person "Brian" 257),(Person "Janet" 256)

,(Person "Michael" 266),(Person "Steven" 263),(Person "Eric" 261)

,(Person "Nancy" 223),(Person "Carlos" 224),(Person "Peter" 225)

]

testsBirders :: [TestCase [(Int, Birder)]]

testsBirders =

[(eqTest (rate []) "==" [])

,(eqTest (rate [(Person "Tom" 532),(Person "Pat" 532)]) "=="

[(1,(Person "Tom" 532)),(1, (Person "Pat" 532))])

,(eqTest (rate [(Person "Pat" 532),(Person "Tom" 532)]) "=="

[(1,(Person "Pat" 532)),(1, (Person "Tom" 532))])

,(eqTest (rate [(Person "Pat" 532),(Person "Tom" 532),(Person "Neil" 703)])

"==" [(1,(Person "Neil" 703)),(2,(Person "Pat" 532)),(2, (Person "Tom" 532))])

,(eqTest (rate flBirders)

"==" [(1,Person "Graham" 319),(2,Person "Chris" 312),(3,Person "Audrey" 305)

,(4,Person "Steven & Darcy" 295),(4,Person "josh" 295),(6,Person "David" 294)

,(7,Person "John" 293),(8,Person "Jonathan" 290),(9,Person "adam" 286)

,(10,Person "Rangel" 281),(11,Person "Charles" 280),(12,Person "Andy" 276)

,(13,Person "Angel & Mariel" 274),(14,Person "Mark" 273),(15,Person "Kevin" 270)

,(16,Person "Scott" 269),(16,Person "Ron" 269),(18,Person "Tom" 267)

,(19,Person "Michael" 266),(20,Person "Steven" 263),(21,Person "Eric" 261)

,(22,Person "Brian" 257),(23,Person "Janet" 256),(24,Person "Thomas" 225)

,(24,Person "Peter" 225),(26,Person "Carlos" 224)

,(27,Person "Gary" 223),(27,Person "Nancy" 223)])]

Figure 5: Tests for problem 5.

9

Higher-Order Functions

These problems are intended to give you an idea of how to use and write higher-order functions.

6. (10 points) [UseModels] [Concepts] In cryptography, one would like to apply functions defined over
the type Int to data of type Char and vice versa. However, in Haskell, these two types are distinct. In
Haskell, write two functions

toCharFun :: (Int -> Int) -> (Char -> Char)
fromCharFun :: (Char -> Char) -> (Int -> Int)

The first function, toCharFun takes a function of type Int -> Int, and returns a function that operates
on Chars. The second function, fromCharFun takes a function of type Char -> Char, and returns a
function that operates on Ints.

In your implementation you can use the fromEnum and toEnum functions that Haskell provides (found in
the Enum instance that is built-in for the types Char and Int). Hint: note that (fromEnum 'a') is 97 and
(toEnum 100) :: Char is 'd'.

There are test cases contained in the file ToFromCharFunTests.hs, which is shown in Figure 6.

module ToFromCharFunTests where
import ToCharFun -- your solution goes in module ToFromCharFun

import Testing; import Data.Char -- defines toUpper

main = do startTesting "ToFromCharFunTests Revision : 1.1"
startTesting "toCharFun"

errs <- run_test_list 0 toTests

startTesting "fromCharFun"

errs <- run_test_list errs fromTests

doneTesting errs

toTests :: [TestCase Char]
toTests = [eqTest (toCharFun (+3) 'a') "==" 'd'

,eqTest (toCharFun (+1) 'b') "==" 'c'

,eqTest (toCharFun (+7) 'a') "==" 'h'

,eqTest (toCharFun (+13) 'c') "==" 'p'

,eqTest (toCharFun (\c -> 10*c `div` 12) 'h') "==" 'V']

fromTests :: [TestCase Int]
fromTests = [eqTest (fromCharFun (\c -> c) 7) "==" 7

,eqTest (fromCharFun (\c -> if c == 'b' then 'x' else c) 98) "==" 120

,eqTest (fromCharFun toUpper 97) "==" 65

,eqTest (fromCharFun vf 97) "==" 101

,eqTest (fromCharFun vf 117) "==" 97]

where vf 'a' = 'e'

vf 'e' = 'i'

vf 'i' = 'o'

vf 'o' = 'u'

vf 'u' = 'a'

vf c = c

Figure 6: Tests for problem 6.

As specified on the first page of this homework, turn in both your code file and the output of your
testing. (The code file should be uploaded to Webcourses, and the test output should be pasted in to the
comments box for that assignment.)

10

7. (10 points) [UseModels] [Concepts] Using Haskell’s built-in filter function, write the function

filterInside :: (a -> Bool) -> [[a]] -> [[a]]

that for some type a takes a predicate pred of type a -> Bool, and a list of lists of type a, lls, and
returns a list of type [[a]] that consists of the elements of each element inside each list in lls, that
satisfies pred (i.e., for which pred applied to that element returns True).

There are test cases contained in the file FilterInsideTests.hs, which is shown in Figure 7.

module FilterInsideTests where
import Testing; import Data.Char (isLower, isUpper, isLetter)

import FilterInside -- you have to put your solutions in module FilterInside

-- do main to run our tests

main = do startTesting "FilterInsideTests Revision : 1.1"
startTesting "filterInside on [[Int]] lists"

errs_ints <- run_test_list 0 int_tests

startTesting "filterInside on [[Char]] lists"

total_errs <- run_test_list errs_ints string_tests

doneTesting total_errs

int_tests :: [TestCase [[Int]]]
int_tests =

[eqTest (filterInside (==1) []) "==" []

,eqTest (filterInside (==1) [[]]) "==" [[]]

,eqTest (filterInside (>=2) [[3,4,5],[4,0,2,0],[],[8,7,6]])

"==" [[3,4,5],[4,2],[],[8,7,6]]

,eqTest (filterInside odd [[1 .. 10], [2,4 .. 20], [7]])

"==" [[1, 3 .. 9], [], [7]]

,eqTest (filterInside even [[0 .. 10], [0,2 .. 10], [7]])

"==" [[0, 2 .. 10], [0, 2 .. 10], []]

,eqTest (filterInside (<= 7) [[0,7,17,27], [94,5]]) "==" [[0,7],[5]]]

string_tests :: [TestCase [[Char]]]
string_tests =

[eqTest (filterInside isLower ["A string", "is a list!"])

"==" ["string","isalist"]

,eqTest (filterInside isUpper ["UCF","CS","is","great"])

"==" ["UCF","CS","",""]

,eqTest (filterInside isLetter ["Haskell is","Wonderful","gr8 OK?"])

"==" ["Haskellis","Wonderful","grOK"]]

Figure 7: Tests for problem 7.

Note that your code must use filter in an essential way. For full credit, write a solution that does not
use any pattern matching, and which does not have repeated or unnecessary code. Hint: you might also
want to use other higher-order functions.

As always, turn in both your code file and the output of your testing.

11

Functions as Data and Abstract Data Types

8. (15 points) [UseModels] In Haskell the built-in generic type Maybe a is defined as follows.

data Maybe a = Nothing | Just a

In this problem we will work with (what in this problem we call) “filters,” which are functions of type
(Maybe a -> Maybe a). When passed Nothing, which is used to represent the lack of a value, a filter
will return Nothing. When passed a value, such as (Just x), which is used to represent the value x, a
filter can either pass along the value by returning (Just x) or it can reject (filter out) the value by
returning Nothing. An example is the function between shown in Figure 8, such that between 0.0
10.0, which has type (Maybe Double) -> (Maybe Double), filters out all numbers (strictly) less than
0.0 or greater than 10.0.

This problem is to write a function

composeFilters :: [(Maybe a -> Maybe a)] -> (Maybe a -> Maybe a)

that takes a list of filters, [f1,f2,. . .,fn] (for n ≥ 0) and returns the filter f1 ◦ f2 ◦ · · · ◦ fn, which is
their composition. Note that f1 ◦ f2 ◦ · · · ◦ fn groups to the right, so as usual for mathematical function
composition: ((f1 ◦ f2 ◦ · · · ◦ fn) x) = (f1(f2 · · · (fn x) · · ·)). Note that (composeFilters []) is the
identity function.

Don’t use last or init in your solution, as that will make your solution O(n2). We will take points
off for solutions that are not clear or that have duplicated code.
Tests are in the file ComposeFiltersTests.hs, shown in Figure 8.

module ComposeFiltersTests where
import ComposeFilters; import Testing

main = dotests "ComposeFiltersTests Revision : 1.3" tests

-- between (below) is a filter for testing; Note: not for you to implement!

between :: Double -> Double -> (Maybe Double) -> (Maybe Double)
between _ _ Nothing = Nothing
between lb ub (Just x) = if lb <= x && x <= ub then (Just x) else Nothing
-- the following makes a filter, like the above, from an aribtrary predicate

toFilter :: (a -> Bool) -> (Maybe a -> Maybe a) -- This is also not for you to implement!

toFilter _ Nothing = Nothing
toFilter pred (Just x) = if pred x then (Just x) else Nothing
tests :: [TestCase Bool]
tests =

[assertTrue ((composeFilters [] (Just 3.14159)) == (Just 3.14159))

,assertTrue ((composeFilters [between 0.0 50.1] Nothing) == Nothing)
,assertTrue ((composeFilters [between 0.0 50.1] (Just 3.14)) == (Just 3.14))

,assertTrue ((composeFilters [between 0.0 50.1, between 1.0 5.0] (Just 3.14)) == (Just 3.14))

,assertTrue ((composeFilters [between 7.0 10.0] (Just 3.14)) == Nothing)
,assertTrue ((composeFilters [between 7.0 10.0, between 0.0 50.1, between 1.0 5.0] (Just 3.14)) == Nothing)
,assertTrue ((composeFilters [between 0.0 50.1, between 7.0 10.0, between 1.0 5.0] (Just 3.14)) == Nothing)
,assertTrue ((composeFilters [toFilter (>3), toFilter (<=5)] (Just 4)) == (Just 4))

,assertTrue ((composeFilters [toFilter (>'a'), toFilter (<'z')] (Just 'u')) == (Just 'u'))

,assertTrue ((composeFilters [toFilter (>'a'), toFilter (<'z'),toFilter (<'Z')] (Just 'u')) == Nothing)
,assertTrue ((composeFilters [toFilter (>7.0), toFilter (<0.0)] (Just 2.78)) == Nothing)]

Figure 8: Tests for problem 8.

https://www.haskell.org/onlinereport/haskell2010/haskellch21.html#x29-25500021

12

FVector Generic Type and Examples for Testing

The following generic type definition, which is in the module FVector (file FVector.hs), is used in the
next few problems.

module FVector where
data FVector t = FV (Int -> t) -- rule that determines the ith element

Int -- the size >= 0, indexes go from 0 to (size - 1)

-- Return the element at the index given by the second argument

at :: (FVector t) -> Int -> t

at fv@(FV rule siz) i = if (legalIndex fv i)

then (rule i)

else (error ("index " ++ (show i) ++ " out of bounds"))

-- Return the size of the FVector argument

size :: (FVector t) -> Int
size (FV _ siz) = siz

-- Is the second argument (the Int) a legal index into the given FVector?

legalIndex :: (FVector t) -> Int -> Bool
legalIndex (FV _ siz) i = 0 <= i && i < siz

-- Return a list of the legal indexes up to the given size

indexList :: Int -> [Int]
indexList siz = [0 .. (siz - 1)]

-- Return a list of the elements in the given FVector

elements :: (FVector t) -> [t]

elements (FV rule siz) = map rule (indexList siz)

-- Provide the ability to turn an FVector into a String (if the elements allow)

instance (Show t) => Show (FVector t) where
show (FV rule siz) = (show siz) ++ "<[" ++ (showElements rule siz) ++ "]>"

where showElements rule siz = concatMap (showElement rule) (indexList siz)

showElement rule i = if i < siz -1

then (show (rule i)) ++ ", "

else (show (rule i))

-- Provide the ability to compare FVectors for equality (if the elements allow)

instance (Eq t) => Eq (FVector t) where
fv1@(FV rule1 siz1) == fv2@(FV rule2 siz2) =

(siz1 == siz2)

&& (and (map (\(e1,e2) -> e1 == e2) -- i.e., (uncurry (==))

(zip (elements fv1) (elements fv2))))

Figure 9: The module defining the generic type FVector, for use in later problems. There are several helping
functions and two instances of standard classes also exported by this module.

The definitions given in the module FVectorExamples (see Figure 10 on the next page) are examples of
functions that produce FVectors of the given size. These examples are used in later tests.

For testing FVectors of Doubles we use the module FVectorTesting (see Figure 11).

13

module FVectorExamples (module FVector, module FVectorExamples) where
import FVector

-- Note: THESE ARE NOT FOR YOU TO IMPLEMENT; they are examples for later testing

empty :: FVector Double
empty = (FV (\i -> error "should not be called") 0)

zeros :: Int -> (FVector Double)
zeros siz = (FV (\i -> 0.0) siz)

nats :: Int -> (FVector Double)
nats siz = (FV (\i -> fromIntegral i) siz)

negs :: Int -> (FVector Double)
negs siz = (FV (\i -> (- (fromIntegral i))) siz)

hundredDown :: Int -> (FVector Double)
hundredDown siz = (FV (\i -> fromIntegral (100 - i)) siz)

halves :: Int -> (FVector Double)
halves siz = (FV (\i -> (fromIntegral i)/(fromIntegral (2^i))) siz)

powersOf :: (Num a) => a -> Int -> (FVector a)

powersOf n siz = (FV (\i -> n^i) siz)

powersOf2 :: Int -> (FVector Double)
powersOf2 = powersOf 2

powersOf01:: Int -> (FVector Double)
powersOf01 = powersOf 0.1

Figure 10: FVector examples, for use in later tests.

module FVectorTesting where
import Testing; import FloatTesting

import FVector

-- For testing purposes when the data is a RealFloat (Float or Double)

fvWithin :: (Show a, RealFloat a, Tolerance a) =>
(FVector a) -> String -> (FVector a) -> (TestCase (FVector a))

fvWithin = gTest (\fv1 fv2 -> size fv1 == size fv2

&& all (uncurry (~=~))

(zip (elements fv1) (elements fv2)))

fvRel :: (Show a, RealFloat a, Tolerance a) =>
(FVector a) -> String -> (FVector a) -> (TestCase (FVector a))

fvRel = gTest (\fv1 fv2 -> size fv1 == size fv2

&& all (uncurry (~~~))

(zip (elements fv1) (elements fv2)))

Figure 11: FVector testing module for use in later tests.

14

9. (10 points) [UseModels] This is a problem about the FVector type in Figure 9 on page 12. In Haskell,
write a function

scaleFVector :: (Num t) => t -> (FVector t) -> (FVector t)

that for any numeric type t takes a value of type t, x, and a (FVector t) value, fv, and returns an
FVector such that the ith element of the result is x times the ith element of fv. Thus the result is the
scalar multiplication of x and fv. Figure 12 shows examples, written using the Testing module from
the homework and using the definitions given in the FVectorExamples module (see Figure 10 on the
preceding page).

module ScaleFVectorTests where
import Testing; import FloatTesting; import FVectorTesting

import FVectorExamples

import ScaleFVector -- your code is in the ScaleFVector module

main = dotests "ScaleFVectorTests Revision : 1.1" tests

tests :: [TestCase (FVector Double)]
tests = [fvWithin (scaleFVector 1.0 (halves 6)) "~=~" (halves 6)

,(fvWithin (scaleFVector 2.0 (powersOf2 6))

"~=~" (FV (\i -> 2.0 * (2.0^i)) 6))

,(fvWithin (scaleFVector 3.0 (hundredDown 8))

"~=~" (FV (\i -> 3.0 * (fromIntegral (100 - i))) 8))

,(fvWithin (scaleFVector 5.0 (nats 20))

"~=~" (FV (\i -> 5.0 * (fromIntegral i)) 20))

,fvWithin (scaleFVector 3.14 empty) "~=~" empty]

Figure 12: Tests for problem 9.

15

10. (15 points) [UseModels] This is another problem about the FVector generic type in Figure 9 on
page 12. In Haskell, write the function

mapFVector :: (a -> b) -> (FVector a) -> (FVector b)

which for any types a and b takes a function, fun, of type (a -> b) and a (FVector a) value, fv, and
returns an (FVector b) value, whose value at index i is the result of applying fun to (at fv i).
Figure 13 shows examples, written using the definitions in FVectorExamples (see Figure 10 on
page 13).

module MapFVectorTests where
import Testing; import FloatTesting; import FVectorTesting

import FVectorExamples

import MapFVector -- your solution goes in this module

main = dotests "MapFVectorTests Revision : 1.1" tests

tests :: [TestCase (FVector Double)]
tests = [fvWithin (mapFVector id (powersOf01 5)) "~=~" (powersOf01 5)

,fvWithin (mapFVector (+2.0) (hundredDown 8))

"~=~" (FV (\i -> (fromIntegral (102 - i))) 8)

,fvWithin (mapFVector (\d -> 3.0*d+1.0) (nats 7))

"~=~" (FV (\i -> 3.0*(fromIntegral i)+1.0) 7)

,fvWithin (mapFVector (\d -> d*d+2.0) (nats 7))

"~=~" (FV (\i -> (fromIntegral (i*i))+2.0) 7)

,fvWithin (mapFVector (*2.0) (halves 8))

"~=~" (FV (\i -> (fromIntegral i)/(fromIntegral (2^i))*2.0) 8)

,fvWithin (mapFVector (\d -> error "shouldn't be") empty) "~=~" empty]

Figure 13: Tests for problem 10.

We will take points off for code that uses intermediate lists (or map); instead create an appropriate
rule for a new FVector.

16

11. (15 points) This is also a problem about the generic type FVector, see Figure 9 on page 12. In Haskell,
write the function

addFVector :: (Num t) => (FVector t) -> (FVector t) -> (FVector t)

that for any numeric type t, takes two (FVector t) values, fv1 and fv2 and if they have the same size,
then it returns a new vector where the ith element of the result is the sum of the ith element of fv1 and
the ith element of fv2. If fv1 and fv2 have different sizes, then an error should be signaled (by calling
Haskell’s error function with a string argument explaining the error). Figure 14 shows examples (of
non-error cases) written using the definitions in FVectorExamples (see Figure 10 on page 13).

module AddFVectorTests where
import Testing; import FloatTesting; import FVectorTesting

import FVector; import FVectorExamples

import AddFVector -- your code goes in this module

main = dotests "AddFVectorTests Revision : 1.2" tests

tests :: [TestCase (FVector Double)]
tests = [fvWithin (addFVector empty empty) "~=~" empty

,fvWithin (addFVector (nats 11) (nats 11))

"~=~" (FV (\i -> (fromIntegral (i+i))) 11)

,fvWithin (addFVector (nats 11) (negs 11)) "~=~" (zeros 11)

,fvWithin (addFVector (halves 9) (FV (\i -> 1.0) 9))

"~=~" (FV (\i -> (fromIntegral i)/(fromIntegral (2^i))+1.0) 9)

,fvWithin (addFVector (powersOf2 11) (powersOf2 11))

"~=~" (FV (\i -> (fromIntegral (2^i))*2.0) 11)

,fvWithin (addFVector (powersOf01 5) (zeros 5)) "~=~" (powersOf01 5)]

Figure 14: Tests for problem 11.

We will take points off for code that uses intermediate lists; instead create an appropriate rule for
a new FVector.

17

12. (15 points) This is also a problem about the generic type FVector, see Figure 9 on page 12. In Haskell,
write the function

sumFVector :: (Num t) => (FVector t) -> t

that for any numeric type t, takes an (FVector t) value, fv, and returns the sum of that vector’s
elements. If the vector is empty (has no elements), then zero is returned. Figure 15 shows examples,
written using the definitions in FVectorExamples (see Figure 10 on page 13).

module SumFVectorTests where
import Testing; import FloatTesting

import FVector; import FVectorExamples

import SumFVector -- your code goes in this module

main = dotests "SumFVectorTests Revision : 1.1" tests

tests :: [TestCase Double]
tests = [withinTest (sumFVector empty) "~=~" 0.0

,withinTest (sumFVector (zeros 1000)) "~=~" 0.0

,withinTest (sumFVector (nats 11)) "~=~" 55.0

,withinTest (sumFVector (negs 11)) "~=~" (-55.0)

,withinTest (sumFVector (hundredDown 201)) "~=~" 0.0

,withinTest (sumFVector (halves 9)) "~=~" 1.9609375

,withinTest (sumFVector (powersOf2 11)) "~=~" 2047.0

,withinTest (sumFVector (powersOf01 5)) "~=~" 1.1111]

Figure 15: Tests for problem 12.

We will take points off for code that uses intermediate lists; instead create an appropriate rule for
a new FVector.

18

13. (30 points) [Concepts] [UseModels] A set can be described by a “characteristic predicate” (i.e., a
function whose range is Bool) that determines if an element occurs in the set. For example, the function
φ such that φ(”coke”) = φ(”pepsi”) = True and for all other arguments x, φ(x) = False is the
characteristic predicate for a set containing the strings "coke" and "pepsi", but nothing else. Allowing
the user to construct a set from a characteristic predicate gives one the power to construct sets that may
“contain” an infinite number of elements (such as the set of all even numbers).

In a module named InfSet, you will declare a polymorphic type constructor Set, which can be declared
something like as follows:

type Set a = ...
-- or perhaps something like --
data Set a = ...

Hint: think about using a function type as part of your representation of sets.

Then fill in the operations of the module InfSet, which are described informally as follows.

1. The function

fromPred :: (a -> Bool) -> (Set a)

takes a characteristic predicate, p and returns a set such that each value x (of type a) is in the set
just when px is True.

2. The function

unionSet :: Set a -> Set a -> Set a

takes two sets, with characteristic predicates p and q, and returns a set such that each value x (of
type a) is in the set just when either (px) or (qx) is true.

3. The function

intersectSet :: Set a -> Set a -> Set a

takes two sets, with characteristic predicates p and q, and returns a set such that each value x (of
type a) is in the set just when both (px) and (qx) are true.

4. The function

inSet :: a -> Set a -> Bool

tells whether the first argument is a member of the second argument.

5. The function

complementSet :: Set a -> Set a

which returns a set that contains everything (of the appropriate type) not in the original set.

Tests for this are given in the Figure 16 on the following page.

Note (hint, hint) that the following equations must hold, for all p, q, and x of appropriate types.

inSet x (unionSet (fromPred p) (fromPred q)) == (p x) || (q x)
inSet x (intersectSet (fromPred p) (fromPred q)) == (p x) && (q x)
inSet x (fromPred p) == p x
inSet x (complementSet (fromPred p)) == not (p x)

19

module InfSetTests where
import InfSet

import Testing

main = dotests "InfSetTests Revision : 1.3" tests

tests :: [TestCase Bool]
tests =

[assertTrue (inSet 2 (fromPred even))
,assertFalse (inSet 3 (fromPred even))
,assertTrue (inSet 3 (fromPred odd))
,assertTrue (inSet "coke" (fromPred (\ x -> x == "coke")))

,assertFalse (inSet "pepsi" (fromPred (\ x -> x == "coke")))

,assertFalse (inSet "coke" (complementSet (fromPred (\x -> x == "coke"))))

,assertTrue (inSet "oil" (complementSet (fromPred (\x -> x == "coke"))))

,assertTrue (inSet "pepsi" (unionSet (fromPred (\ x -> x == "coke"))

(fromPred (\ x -> x == "pepsi"))))

,assertTrue (inSet "coke" (unionSet (fromPred (\x -> x == "coke"))

(fromPred (\x -> x == "pepsi"))))

,assertFalse (inSet "sprite" (unionSet (fromPred (\x -> x == "coke"))

(fromPred (\x -> x == "pepsi"))))

,assertFalse (inSet "coke" (intersectSet (fromPred (\x -> x == "coke"))

(fromPred (\x -> x == "pepsi"))))

,assertFalse (inSet "pepsi" (intersectSet (fromPred (\x -> x == "coke"))

(fromPred (\x -> x == "pepsi"))))

,assertTrue (inSet "dr. p" (intersectSet (fromPred (\x -> "coke" <= x))

(fromPred (\x -> x <= "pepsi"))))

,assertTrue (inSet "pepsi" (intersectSet (fromPred (\x -> "coke" <= x))

(fromPred (\x -> x <= "pepsi"))))

,assertFalse (inSet "beer" (intersectSet (fromPred (\x -> "coke" <= x))

(fromPred (\x -> x <= "pepsi"))))

,assertFalse (inSet "wine" (intersectSet (fromPred (\x -> "coke" <= x))

(fromPred (\x -> x <= "pepsi"))))

,assertTrue (inSet "wine" (unionSet (fromPred (\x -> "coke" <= x))

(fromPred (\x -> x <= "pepsi"))))]

Figure 16: Tests for the module InfSet. Recall that assertTrue e is equivalent to eqTest e "==" True,
and assertFalse e is equivalent to eqTest e "==" False.

20

Functional Abstractions of Programming Patterns

14. (10 points) [UseModels] [Concepts] Using Haskell’s built-in foldr function, write the polymorphic
function

concatMap :: (a -> [b]) -> [a] -> [b]

This function can be considered to be an abstraction of problems like deleteAll. An application such
as (concatMap f ls) applies f to each element of ls, and concatenates the results of those applications
together (preserving the order). Note that application of f to an element of type a returns a list (of type
[b]), and so the overall process collects the elements of these lists together into a large list of type [b].

Your solution must have the following form:

module ConcatMap where
import Prelude hiding (concatMap)
concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f ls = foldr ...

where the “...” is where you will put the arguments to foldr in your solution.

Note: your code in ... must not call concatMap (let foldr do the recursion).

There are test cases contained in ConcatMapTests.hs, which is shown in Figure 17.

module ConcatMapTests where
import Prelude hiding (concatMap)

import ConcatMap

import Testing

main :: IO()
main = dotests "ConcatMapTests Revision : 1.5" tests

-- some definitions using concatMap, for testing, not for you to implement

deleteAll toDel ls = concatMap (\e -> if e == toDel then [] else [e]) ls

xerox ls = concatMap (\e -> [e,e]) ls

next3 lst = concatMap (\n -> [n,n+1,n+2]) lst

tests :: [TestCase Bool]
tests =

[assertTrue ((deleteAll 'c' "abcdefedcba") == "abdefedba")

,assertTrue ((deleteAll 3 [3,3,3,7,3,9]) == [7,9])

,assertTrue ((deleteAll 3 []) == [])

,assertTrue ((xerox "") == "")

,assertTrue ((xerox "okay") == "ookkaayy")

,assertTrue ((xerox "balon") == "bbaalloonn")

,assertTrue ((next3 []) == [])

,assertTrue ((next3 [1,2,3]) == [1,2,3,2,3,4,3,4,5])]

Figure 17: Tests for problem 14.

21

15. (30 points) [UseModels] [Concepts] In this problem you will write a function

foldWindowPlan :: ((String,Int,Int) -> r) -> ([r] -> r) -> ([r] -> r)
-> WindowPlan -> r

that abstracts from all the WindowPlan examples we have seen (such as those earlier in this homework
and similar WindowLayout examples on the course examples page). For each type r, the function
foldWindowPlan takes 3 functions: wf, hf, and vf, which correspond to the three variants (Win, Horiz,
and Vert) in the grammar for WindowPlan. In more detail:

• wf, operates on a tuple of the information from a Win variant and returns a value of type r,

• hf, takes a list of the results of mapping (foldWindowPlan wf hf vf) over the list in a Horiz
variant, and returns a value of type r,

• vf, takes a list of the results of mapping (foldWindowPlan wf hf vf) over the list in a Vert
variant, and returns a value of type r.

There are test cases contained in FoldWindowPlanTests.hs, which is shown in Figure 18 on the
following page and Figure 19 on page 23.

16. [UseModels] [Concepts] Use your foldWindowPlan function to implement

(a) (15 points) height from problem 1, and

(b) (15 points) split from problem 2.

Hint: look at the testing file for the previous problem.

Write these solutions into modules Height and Split, respectively, that both import the module
FoldWindowPlan from the previous problem, and then run the tests appropriate to each of these window
plan problems. Hand in your code for these new implementations of height and split as well as the
output of both tests on this “assignment” on webcourses.

Points
This homework’s total points: 295.

22

-- Id : FoldWindowP lanTests.hs, v1.12019/10/0915 : 48 : 55leavensExpleavens
module FoldWindowPlanTests where
import WindowPlan

import FoldWindowPlan

import Testing

main = dotests "FoldWindowPlanTests Revision : 1.1" tests

-- uses of foldWindowPlan for testing purposes, not for you to implement

watching' = foldWindowPlan (\(wn,_,_) -> [wn]) concat concat

changeChannel new old =

let changeName new old nm = if nm == old then new else nm

in foldWindowPlan

(\(nm,w,h) -> (Win (changeName new old nm) w h))

Horiz

Vert

doubleSize = foldWindowPlan

(\(wn,w,h) -> (Win wn (2*w) (2*h)))

Horiz

Vert

addToSize n = foldWindowPlan

(\(wn,w,h) -> (Win wn (n+w) (n+h)))

Horiz

Vert

multSize n = foldWindowPlan

(\(wn,w,h) -> (Win wn (n*w) (n*h)))

Horiz

Vert

totalWidth = foldWindowPlan

(\(_,w,_) -> w)

sum

sum

-- a WindowPlan for testing

hplan =

(Horiz

[(Vert [(Win "Tempest" 200 100), (Win "Othello" 200 77), (Win "Hamlet" 1000 600)])

,(Horiz [(Win "baseball" 50 40), (Win "track" 100 60), (Win "golf" 70 30)])

,(Vert [(Win "Star Trek" 40 100), (Win "olympics" 80 33), (Win "news" 20 10)])])

tests :: [TestCase Bool]
tests =

[assertTrue ((totalWidth hplan) == 1760)

,assertTrue ((doubleSize hplan) == (multSize 2 hplan))

,assertTrue ((watching' hplan)

== ["Tempest","Othello","Hamlet","baseball","track","golf",

Figure 18: Tests for problem 15, part 1.

23

,assertTrue

((changeChannel

"pbs" "news"

(Vert [(Win "news" 10 5), (Win "golf" 50 25), (Win "news" 30 70)]))

==

(Vert [(Win "pbs" 10 5), (Win "golf" 50 25), (Win "pbs" 30 70)]))

,assertTrue

((addToSize 100 hplan)

==

(Horiz

[(Vert [(Win "Tempest" 300 200), (Win "Othello" 300 177), (Win "Hamlet" 1100 700)])

,(Horiz [(Win "baseball" 150 140), (Win "track" 200 160), (Win "golf" 170 130)])

,(Vert [(Win "Star Trek" 140 200), (Win "olympics" 180 133), (Win "news" 120 110)])]))

,assertTrue

((doubleSize hplan)

==

(Horiz

[(Vert [(Win "Tempest" 400 200), (Win "Othello" 400 154), (Win "Hamlet" 2000 1200)])

,(Horiz [(Win "baseball" 100 80), (Win "track" 200 120), (Win "golf" 140 60)])

,(Vert [(Win "Star Trek" 80 200), (Win "olympics" 160 66), (Win "news" 40 20)])]))]

Figure 19: Tests for problem 15, part 2.

24

References
[Lea13] Gary T. Leavens. Following the grammar with Haskell. Technical Report CS-TR-13-01, Dept. of

EECS, University of Central Florida, Orlando, FL, 32816-2362, January 2013.

[Tho11] Simon Thompson. Haskell: the craft of functional programming. Addison-Wesley, Harlow,
England, third edition, 2011.

