
COP 3402 — Systems Software February 13, 2023

Homework 2: Lexical Analyzer for PL/0
See Webcourses and the syllabus for due dates.

1 Purpose

In this homework your team [Collaborate] will implement a lexical analyzer for the PL/0 language [UseC-
oncepts] [Build], which is defined below.

2 Directions

1. (100 points) Implement and submit your code for the lexer and the output of our tests, as described in
the rest of this document.

For the implementation, your code must be written in 2017 ANSI standard C and must compile with
gcc and run correctly on Eustis, when compiled with the -std=c17 flag.1 We recommend using the
gcc flags -std=c17 -Wall and fixing all warnings before turning in this assignment.

You are not allowed to submit code generated by a lexical analyzer generator (such as lext) for this
homework.

Similarly, since we want you to learn how to implement regular expression matching yourself, you
are not allowed to submit code that uses a regular expression matching library (such as regcomp and
regexec).

Note that we will randomly ask questions of students in the team to ensure that all team members un-
derstand their solution; there will be penalty of up to 10 points (deducted from all team members’ scores
for that assignment) if some team member does not understand some part of the solution to an assignment.

3 What to Turn In

Your team must submit on Webcourses a single zip file containing:

1. A plain text file named sources.txt that lists the names of all the .c files needed to compile
your program, all on one line separated by spaces. For example, if you have files named token.c,
lexer.c, lexer_output.c, main.c, and utilities.c, then your file sources.txt
would look contain (only) the following line of text naming these files:

token.c lexer.c lexer_output.c main.c utilities.c

(The order of these names does not matter.)

If there is only one file in your program, then put its name in your sources.txt file.

2. Each source file that is needed to compile your lexer with gcc -std=c17 on Eustis, including all
needed header files (if there are any).

3. The output of our tests, using the output formatting specified below. These are the .myo files cre-
ated by the provided Makefile.

1See this course’s resources page for information on how to access Eustis.

http://www.cs.ucf.edu/~leavens/WWW/COP3402/about.shtml#OutCollaborate
http://www.cs.ucf.edu/~leavens/WWW/COP3402/about.shtml#OutUseConcepts
http://www.cs.ucf.edu/~leavens/WWW/COP3402/about.shtml#OutUseConcepts
http://www.cs.ucf.edu/~leavens/WWW/COP3402/about.shtml#OutBuild
http://www.cs.ucf.edu/~leavens/COP3402/resources.shtml#course

2

You can use the Unix command

make submission.zip

on Eustis to create a zip file that has all these files in it, after you have created your sources.txt file
and run our tests (using the command make check-outputs) to create the .myo files.

We will take some points off for: code that does not work properly, duplicated code, code with extra
unnecessary cases, or code that is excessively hard to follow. Avoid duplicating code by using helping
functions, or library functions. It is a good idea to check your code for these problems before submitting.

Don’t hesitate to contact the staff if you are stuck at some point. Your code should compile properly;
if it doesn’t, then you probably should keep working on it. Email the staff with your code file if you need
help getting it to compile or have trouble understanding error messages. If you don’t have time to get your
code to compile, at least tell us that you didn’t get it to compile in your submission.

4 What to Read

You should read Systems Software: Essential Concepts (by Montagne) in which we recommend reading
chapter 5 (pages 81-91).

5 Overview

In this assignment, you will implement a lexical analyzer for the PL/0 language, whose context-free gram-
mar is defined in Figure 1 and whose lexical grammar is defined in Figure 2.

The following subsections specify the interface between the Unix operating system (as on Eustis) and
the lexer as a program.

5.1 Inputs

The lexer is passed a single file name as its only command line argument; this file should be the name of a
(readable) text file containing the program that the lexer should produce tokens for. Note that this program
file is not necessarily legal according to the grammar for PL/0. (This homework is not about checking the
context-free grammar of programs, it is only checking the lexical grammar.) For example, if the file name
argument is hw2-test1.pl0 (and both the lexer executable, ./lexer, and the hw2-test1.pl0 file
are in the current directory), then the lexer should work on hw2-test1.pl0 and send all its output to
the file hw2-test1.myo by executing the following command in the Unix shell (e.g., at the command
prompt on Eustis):

./lexer hw2-test1.pl0 >hw2-test1.myo 2>&1

The same thing can also be accomplished using the make command on Unix:

make hw2-test1.myo

5.2 Outputs

The lexer prints its normal output, as specified below, to standard output (stdout). However, all error
messages (e.g., for unreadable files or illegal tokens) should be sent to standard error output (stderr).
See subsection 7.4 for more details about error messages.

3

⟨program⟩ ::= ⟨block⟩ .

⟨block⟩ ::= ⟨const-decls⟩ ⟨var-decls⟩ ⟨proc-decls⟩ ⟨stmt⟩

⟨const-decls⟩ ::= {⟨const-decl⟩}
⟨const-decl⟩ ::= const ⟨const-def⟩ {⟨comma-const-def⟩} ;
⟨const-def⟩ ::= ⟨ident⟩ = ⟨number⟩
⟨comma-const-def⟩ ::= , ⟨const-def⟩

⟨var-decls⟩ ::= {⟨var-decl⟩}
⟨var-decl⟩ ::= var ⟨idents⟩ ;
⟨idents⟩ ::= ⟨ident⟩ {⟨comma-ident⟩}
⟨comma-ident⟩ ::= , ⟨ident⟩

⟨proc-decls⟩ ::= {⟨proc-decl⟩}
⟨proc-decl⟩ ::= procedure ⟨ident⟩ ; ⟨block⟩ ;

⟨stmt⟩ ::= ⟨ident⟩ := ⟨expr⟩
| call ⟨ident⟩
| begin ⟨stmt⟩ {⟨semi-stmt⟩} end
| if ⟨condition⟩ then ⟨stmt⟩ else ⟨stmt⟩
| while ⟨condition⟩ do ⟨stmt⟩
| read ⟨ident⟩
| write ⟨expr⟩
| skip

⟨semi-stmt⟩ ::= ; ⟨stmt⟩
⟨empty⟩ ::=

⟨condition⟩ ::= odd ⟨expr⟩
| ⟨expr⟩ ⟨rel-op⟩ ⟨expr⟩

⟨expr⟩ ::= ⟨term⟩ {⟨add-sub-term⟩}
⟨add-sub-term⟩ ::= ⟨add-sub⟩ ⟨term⟩
⟨add-sub⟩ ::= ⟨plus⟩ | ⟨minus⟩
⟨term⟩ ::= ⟨factor⟩ {⟨mult-div-factor⟩}
⟨mult-div-factor⟩ ::= ⟨mult-div⟩ ⟨factor⟩
⟨mult-div⟩ ::= ⟨mult⟩ | ⟨div⟩
⟨factor⟩ ::= ⟨ident⟩ | ⟨sign⟩ ⟨number⟩ | (⟨expr⟩)
⟨sign⟩ ::= ⟨plus⟩ | ⟨minus⟩ | ⟨empty⟩

Figure 1: Context-free grammar of PL/0. The grammar uses a terminal font for terminal symbols,
and a bold terminal font for reserved words. As in EBNF, curly brackets {x} means an arbitrary
number of (i.e., 0 or more) repetitions of x. Note that curly braces are not terminal symbols in this gram-
mar. Also note that an else clause is required in each if-statement.

4

⟨ident⟩ ::= ⟨letter⟩ {⟨letter-or-digit⟩}
⟨letter⟩ ::= a | b | . . . | y | z | A | B | . . . | Y | Z
⟨number⟩ ::= ⟨digit⟩ {⟨digit⟩}
⟨digit⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
⟨letter-or-digit⟩ ::= ⟨letter⟩ | ⟨digit⟩
⟨rel-op⟩ ::= = | <> | < | <= | > | >=
⟨plus⟩ ::= +
⟨minus⟩ ::= -
⟨mult⟩ ::= *
⟨div⟩ ::= /

⟨ignored⟩ ::= ⟨blank⟩ | ⟨tab⟩ | ⟨vt⟩ | ⟨formfeed⟩ | ⟨eol⟩ | ⟨comment⟩
⟨blank⟩ ::= “A space character (ASCII 32)”
⟨tab⟩ ::= “A horizontal tab character (ASCII 9)”
⟨vt⟩ ::= “A vertical tab character (ASCII 11)”
⟨formfeed⟩ ::= “A formfeed character (ASCII 12)”
⟨newline⟩ ::= “A newline character (ASCII 10)”
⟨cr⟩ ::= “A carriage return character (ASCII 13)”
⟨eol⟩ ::= ⟨newline⟩ | ⟨cr⟩ ⟨newline⟩
⟨comment⟩ ::= ⟨pound-sign⟩ {⟨non-nl⟩} ⟨newline⟩
⟨pound-sign⟩ ::= #
⟨non-nl⟩ ::= “Any character except a newline”

Figure 2: Lexical grammar of PL/0. The grammar uses a terminal font for terminal symbols. Note
that all ASCII letters are included in the production for ⟨letter⟩. Again, curly brackets {x} means an ar-
bitrary number of (i.e., 0 or more) repetitions of x. Note that curly braces are not terminal symbols in
this grammar. Some character classes are described in English, these are described in a Roman font be-
tween double quotation marks (“ and ”). Note that all characters matched by the nonterminal ⟨ignored⟩ are
ignored by the lexer (except that each instance of ⟨eol⟩ ends a line).

5

5.3 Exit Code

When the lexer finishes without any errors, it should exit with a zero error code (which indicates suc-
cess on Unix). However, when the lexer encounters an error it should terminate with a non-zero exit code
(which indicates failure on Unix).

5.4 Tokens

The tokens that the lexer returns are defined in the header file token.h (see Figure 4). The correspon-
dence between the token types and strings those represent is shown in Figure 3.

6

Enum Enum
value name The token’s text
0 periodsym “.”
1 constsym “const”
2 semisym “;”
3 commasym “,”
4 varsym “var”
5 procsym “procedure”
6 becomessym “:=”
7 callsym “call”
8 beginsym “begin”
9 endsym “end”
10 ifsym “if”
11 thensym “then”
12 elsesym “else”
13 whilesym “while”
14 dosym “do”
15 readsym “read”
16 writesym “write”
17 skipsym “skip”
18 oddsym “odd”
19 lparensym “(”
20 rparensym “)”
21 identsym (⟨ident⟩, e.g., “temp1”)
22 numbersym (⟨number⟩, e.g., “3402”)
23 eqsym “=”
24 neqsym “<>”
25 lessym “<”
26 leqsym “<=”
27 gtrsym “>”
28 geqsym “>=”
29 plussym “+”
30 minussym “-”
31 multsym “*”
32 divsym “/”
33 eofsym (end-of-file)

Figure 3: Token types and the strings of characters that they represent (the quotation marks (“ and ”) are
not part of these strings of characters. See the token.h file (Figure 4) for details. The reserved words are
written in a bold terminal font.

7

/ * $ Id : t o k e n . h , v 1 . 7 2 0 2 3 / 0 2 / 0 1 1 7 : 1 4 : 0 5 l e a v e n s Exp l e a v e n s $ * /
#ifndef _TOKEN_H
#define _TOKEN_H

#define MAX_IDENT_LENGTH 255

/ / t y p e s o f t o k e n s
typedef enum {

periodsym, constsym, semisym, commasym,
varsym, procsym, becomessym, callsym, beginsym, endsym,
ifsym, thensym, elsesym, whilesym, dosym,
readsym, writesym, skipsym,
oddsym, lparensym, rparensym,
identsym, numbersym,
eqsym, neqsym, lessym, leqsym, gtrsym, geqsym,
plussym, minussym, multsym, divsym,
eofsym

} token_type;

/ / i n f o r m a t i o n abou t each t o k e n
typedef struct token {

token_type typ;
const char *filename;
unsigned int line;
unsigned int column;
char *text; / / non−NULL , i f a p p l i c a b l e
short int value; / / when t y p==numbersym , i t s v a l u e

} token;

/ / Re tu rn t h e name o f t h e t o k e n _ t y p e enum
/ / c o r r e s p o n d i n g t o t h e g i v e n t o k e n _ t y p e v a l u e
extern const char *ttyp2str(token_type ttyp);

#endif

Figure 4: The token.h file that defines the token types and struct for tokens.

6 Lexer API

Tokens returned by the lexer must be elements of the type token defined in the token.h file provided in
the hw2-tests.zip file in the course homeworks directory.

The lexer you are to implement will have a stream-like API, supporting the following functions, as
declared in the provided file lexer.h:

http://www.cs.ucf.edu/~leavens/COP3402/homeworks/

8

/ * $ Id : l e x e r . h , v 1 . 2 2 0 2 3 / 0 1 / 3 1 0 6 : 4 5 : 0 2 l e a v e n s Exp $ * /
#ifndef _LEXER_H
#define _LEXER_H
#include <stdbool.h>
#include "token.h"

/ / R e q u i r e s : fname != NULL
/ / R e q u i r e s : fname i s t h e name o f a r e a d a b l e f i l e
/ / I n i t i a l i z e t h e l e x e r and s t a r t i t r e a d i n g
/ / from t h e g i v e n f i l e name
extern void lexer_open(const char *fname);

/ / C lose t h e f i l e t h e l e x e r i s work ing on
/ / and make t h i s l e x e r be done
extern void lexer_close();

/ / I s t h e l e x e r ' s t o k e n s t r e am f i n i s h e d
/ / (e i t h e r a t EOF or n o t open)?
extern bool lexer_done();

/ / R e q u i r e s : ! l e x e r _ d o n e ()
/ / Re tu rn t h e n e x t t o k e n i n t h e i n p u t f i l e ,
/ / advanc ing i n t h e i n p u t
extern token lexer_next();

/ / R e q u i r e s : ! l e x e r _ d o n e ()
/ / Re tu rn t h e name o f t h e c u r r e n t f i l e
extern const char *lexer_filename();

/ / R e q u i r e s : ! l e x e r _ d o n e ()
/ / Re tu rn t h e l i n e number o f t h e n e x t t o k e n
extern unsigned int lexer_line();

/ / R e q u i r e s : ! l e x e r _ d o n e ()
/ / Re tu rn t h e column number o f t h e n e x t t o k e n
extern unsigned int lexer_column();
#endif

A few notes about these functions to add to the comments in the lexer.h file (above):

• For lexer_open, if the file named cannot be read (e.g., is not readable), then an informative error
message is issued to stderr (see subsection 7.4) and the program exits with a non-zero error code.

• lexer_done(), the lexer is “done,” so this function returns true, when the lexer’s file has been
closed, encountered an error, or is finished reading (has returned the end-of-file token).

• lexer_next(), “advancing in the input” means that the characters in the file corresponding to the
token returned (and any ignored whitespace characters and comments before it) have been consumed
by the lexer and will not be read again.

7 Output

The output consists of a listing of the tokens read from the input file, as printed by the code provided in
lexer_output.c, which is provided (along with a header file lexer_output.h) in the hw2-tests.zip

9

file in the course homeworks directory.

7.1 A Simple Example

Consider the following input in the file hw2-test0.pl0, (note that the suffix is lowercase ‘P’, low-
ercase ‘L’, and the numeral zero, i.e., ‘0’) which is included in the hw2-tests.zip file in the course
homeworks directory.

var x;
x := 3

This produces the output found in the following file (hw2-test0.out):

Tokens from file hw2-test0.pl0
Number Name Line Column Text/Value
4 varsym 1 1 "var"
21 identsym 1 5 "x"
2 semisym 1 6 ";"
21 identsym 2 1 "x"
6 becomessym 2 3 ":="
22 numbersym 2 6 3
33 eofsym 3 1

7.2 Provided Driver

We provide a driver, found in lexer_output.c to run tests with the proper output formatting. Af-
ter your program opens the given file in the lexer, by calling lexer_open, your program should call
lexer_output to run the lexer. The lexer_output function asks for each token (in the lexer’s file),
until the lexer is done, and it also prints the tokens in a standard format.

More extensive tests are found in the files named hw2-test*.pl0, where * is replaced by a number
(or letter). The expected output of each test is found in a file named the same as the test input but with the
suffix .out. For example, the expected output of hw2-test3.pl0 is in the file hw2-test3.out.

You can check your own lexer by running the tests using the Unix command on Eustis:

make check-outputs

Running the above command will generate files with the suffix .myo; for example your output from
test hw2-test3.pl0 will be put into hw2-test3.myo.

7.3 Do Not Change the Provided Files

You must not change any of the provided .h or .c files. You must use the provided files in your program.

7.4 Errors that Must be Detected

Your code must detect the following errors:

1. An ⟨ident⟩ has more than MAX_IDENT_LENGTH characters, where MAX_IDENT_LENGTH is de-
fined in the provided token.h file.

2. A number’s value is too large to be contained in a C short int (use SHRT_MIN and SHRT_MAX from
the standard header file limits.h to determine if the number’s value is outside the range that the
implementation of C allows).

http://www.cs.ucf.edu/~leavens/COP3402/homeworks/
http://www.cs.ucf.edu/~leavens/COP3402/homeworks/
http://www.cs.ucf.edu/~leavens/COP3402/homeworks/

10

3. A character in the input is not one of the characters permitted by the lexical grammar (i.e., the char-
acter cannot be part of a token and is not one of the recognized whitespace characters). However,
note that any character is allowed inside a comment.

4. The input ends during a comment (i.e., a comment was started but not finished when an end-of-file
was seen reading from the input file).

Error messages sent to stderr should start with a file name, a colon, a space and the line and column
numbers, followed by a space. Use the provided function lexical_error (found in utilities.c)
to produce such error messages. See the header file utilities.h below for the interface:

/ * $ Id : u t i l i t i e s . h , v 1 . 2 2 0 2 3 / 0 1 / 3 1 0 8 : 3 2 : 1 7 l e a v e n s Exp $ * /
#ifndef _UTILITIES_H
#define _UTILITIES_H

/ / Format a s t r i n g e r r o r message and p r i n t i t u s i n g p e r r o r (f o r an OS e r r o r)
/ / t h e n e x i t w i t h a f a i l u r e code , so a c a l l t o t h i s does n o t r e t u r n .
extern void bail_with_error(const char *fmt, ...);

/ / P r i n t a l e x i c a l e r r o r message t o s t d e r r
/ / s t a r t i n g w i t h t h e f i l e n a m e , a colon , t h e l i n e number , a comma
/ / t h e column number , a colon , and t h e n t h e message .
/ / Ou tpu t goes t o s t d e r r and t h e n an e x i t w i t h a f a i l u r e code ,
/ / so a c a l l t o t h i s f u n c t i o n does n o t r e t u r n .
extern void lexical_error(const char *filename, unsigned int line,

unsigned int column, const char *fmt, ...);
#endif

The fmt argument passed to lexical_error points to a string that uses the same conventions for
formatting as the standard printf function, so the arguments that follow fmt should be arguments ap-
propriate to be printed according to the formats called for in the fmt string.

There are examples of programs with lexical errors in the files named hw2-errtest*.pl0, where
* is replaced by a number (or letter). The expected output of each test is found in a file named the same as
the test input but with the suffix .out. For example, the expected output of hw2-errtest3.pl0 is in
the file hw2-test3.out.

7.5 Checking Your Work

You can check your own lexer by running the tests using the Unix command on Eustis, which uses the
Makefile from the hw2-tests.zip file in the course homeworks directory.

make check-outputs

Running the above command will generate files with the suffix .myo; for example your output from
test hw2-errtest3.pl0 will be put into hw2-errtest3.myo.

A Hints

Create a transition diagram for a finite state automaton (DFA) to recognize each lexeme on the source pro-
gram and once accepted generate the token, otherwise emit an error message.

You can use the ungetc function from the C standard library to push a character back on the input.
You may find the macros and functions in the standard library’s header file ctype.h useful.

http://www.cs.ucf.edu/~leavens/COP3402/homeworks/

11

We are providing several files for this homework, all of which are in the hw2-tests.zip file in the
course homeworks directory:

• token.h and token.c, which have declarations of types and a function related to tokens and
their types.

• lexer_output.h and lexer_output.c which provide declarations and definitions for for-
matting the output and driving the analysis.

• utilities.h and utilities.c, which provide for printing of error messages to stderr.

• lexer.h, which declares the types of the functions you are to implement.

• Makefile, which can compile your program (based on the files named in your sources.txt
file), and can check the output of tests against our tests.

http://www.cs.ucf.edu/~leavens/COP3402/homeworks/

