
COP 3402 — Systems Software January 25, 2023

Tiny Machine ISA

1 Tiny Machine VM Architecture

The Tiny Machine is a von Neumann machine with a single register, the accumulator (ACCUM) and a
single memory. It is word-addressed and each instruction occupies a single word.

1.1 Registers

The VM has only one built-in user-accessible register, the accumulator (ACCUM).

1.2 Instruction Format

The Instruction Set Architecture (ISA) has instructions that may have two components, which are input
and output as integers (i.e., they have the C type int) named as follows:

OP is the operation code
ADDR an address in the memory

The list of instructions and details on their execution appears in Appendix A.

1.3 VM Cycles

The VM instruction cycle conceptually does the following for each instruction:

1. Let IR be the instruction in the memory at the location given by PC. (Note that IR could be consid-
ered to be the contents of a register.)

2. The PC is made to point to the next location in memory (it is incremented by 1).

3. The instruction IR is executed The OP component of this instruction (IR.OP) indicates the opera-
tion to be executed. For example, if IR.OP encodes the instruction ADD, then the machine adds the
memory value at the address given (by the IR.ADDR field of the instruction) to the accumulator.
Note that arithmetic overflows and underflows happen as in C int arithmetic.

This instruction cycle is repeated endlessly until the machine halts by executing a HLT instruction.

1.4 VM Initial/Default Values

When the VM starts execution, PC and ACCUM are all 0. This means that execution starts with the in-
struction at memory element 0. Similarly, the initial values in memory are all zero (0), before the program
is loaded.

1.5 Size Limits

The following constants define the size limitations of the VM.

• MAX_ADDR is 65536



2

1.6 Invariants

The VM enforces the following invariant and will halt with an error message (written to stderr) if violated:

• 0 ≤ PC ∧ PC < MAX_ADDR

A Appendix A: Instructions

In the following table, italicized names (such as a) are meta-variables that refer to integers. If an instruc-
tion’s ADDR field is notated as −, then its value does not matter (we use 0 as a placeholder for such val-
ues in examples).

OP OP M Comment
Code Num. Mnemonic (Explanation)

0 LIT n Literal n put in accumulator: ACCUM← n

1 LOD a Load from address a: ACCUM← memory[a]
2 STO a Store to address a: memory[a]← ACCUM
3 ADD a Add value in a to accumulator:

ACCUM← ACCUM + memory[a]
4 SUB a Subtract value in a from accumulator:

ACCUM← ACCUM−memory[a]
5 CIN − Read a character from stdin, with -1 representing EOF or error:

ACCUM← getc()
6 COU − Print a character to stdout:

putc(ACCUM)

7 HLT Halt the program’s execution
8 JMP a Jump to the given address:

PC← a

9 SKZ a Skip if zero:
if ACCUM = 0 then {PC← PC + 1}

10 SKG a Skip if greater than zero:
if ACCUM > 0 then {PC← PC + 1}

11 SKL a Skip if less than zero:
if ACCUM < 0 then {PC← PC + 1}

12 OR a Bitwise-or the value in a to accumulator:
ACCUM← ACCUM ∨memory[a]

13 AND a Bitwise-and the value in a to accumulator:
ACCUM← ACCUM ∧memory[a]

14 NOT − Bitwise complement the value in the accumulator:
ACCUM← ¬ACCUM

15 NDB − Stop printing debugging output

B Appendix B: Examples

B.1 A Simple Example Showing Output Formatting

The following very simple example shows the expected formatting. Suppose the input is the following file
(tm-test0.txt, the name of this file is passed to the VM on the Unix command line):



3

7 0

Running the VM with the above input produces the following output (written to stdout). Note that
there are two parts to the output: (1) a listing of the instructions in the program one per line, following a
header, with mnemonics for each instruction and (2) a trace of the program’s execution, following the line
Tracing ... (all on standard output). The trace of execution shows the state of the built-in registers
(PC and ACCUM) and the memory’s values, the first 100 locations with values printed in hexadecimal no-
tation (as that is more convenient for reading instructions) and the rest of the locations with values printed
in decimal. However, only the first of a run on zero values are shown, as most locations hold zero (since
that is the initial value). After this output of the program state, there is a line printed (on stdout) that starts
with ==> addr: followed by: (a) the address of the instruction being executed, then (b) the instruc-
tion with its mnemonic and ADDR value, then after showing the instruction being executed (and after the
instruction’s execution by the VM) the state is again shown (in the same format as before). The output of
the instruction and the resulting state are show after is each instruction executed.

Addr OP ADDR
0 HLT 0
Tracing ...
PC: 0 ACCUM: 0
memory: 0: 0x7000000 1: 0x0 ...
100: 0 ...
==> addr: 0 HLT 0
PC: 1 ACCUM: 0
memory: 0: 0x7000000 1: 0x0 ...
100: 0 ...

B.2 A More Involved Example

The following example has a more complex program and shows some of the details of the machine’s exe-
cution.

B.2.1 Input File

The following is the contents of the file tm-test1.txt:

0 5
2 105
0 7
3 105
2 106
0 12
4 106
9 0
8 12
0 89
2 107
8 14
0 78
2 107
15 0
0 10
2 108
1 107



4

6 0
1 108
6 0
7 0

B.2.2 Output (To Stdout)

Running the VM with the above input produces the following output (written to stdout).

Addr OP ADDR
0 LIT 5
1 STO 105
2 LIT 7
3 ADD 105
4 STO 106
5 LIT 12
6 SUB 106
7 SKZ 0
8 JMP 12
9 LIT 89
10 STO 107
11 JMP 14
12 LIT 78
13 STO 107
14 NDB 0
15 LIT 10
16 STO 108
17 LOD 107
18 COU 0
19 LOD 108
20 COU 0
21 HLT 0
Tracing ...
PC: 0 ACCUM: 0
memory: 0: 0x5 1: 0x2000069 2: 0x7 3: 0x3000069 4: 0x200006a 5: 0xc
6: 0x400006a 7: 0x9000000 8: 0x800000c 9: 0x59 10: 0x200006b
11: 0x800000e 12: 0x4e 13: 0x200006b 14: 0xf000000 15: 0xa 16: 0x200006c
17: 0x100006b 18: 0x6000000 19: 0x100006c 20: 0x6000000 21: 0x7000000
22: 0x0 ...
100: 0 ...
==> addr: 0 LIT 5
PC: 1 ACCUM: 5
memory: 0: 0x5 1: 0x2000069 2: 0x7 3: 0x3000069 4: 0x200006a 5: 0xc
6: 0x400006a 7: 0x9000000 8: 0x800000c 9: 0x59 10: 0x200006b
11: 0x800000e 12: 0x4e 13: 0x200006b 14: 0xf000000 15: 0xa 16: 0x200006c
17: 0x100006b 18: 0x6000000 19: 0x100006c 20: 0x6000000 21: 0x7000000
22: 0x0 ...
100: 0 ...
==> addr: 1 STO 105
PC: 2 ACCUM: 5
memory: 0: 0x5 1: 0x2000069 2: 0x7 3: 0x3000069 4: 0x200006a 5: 0xc
6: 0x400006a 7: 0x9000000 8: 0x800000c 9: 0x59 10: 0x200006b
11: 0x800000e 12: 0x4e 13: 0x200006b 14: 0xf000000 15: 0xa 16: 0x200006c
17: 0x100006b 18: 0x6000000 19: 0x100006c 20: 0x6000000 21: 0x7000000



5

22: 0x0 ...
100: 0 ... 105: 5 106: 0 ...
==> addr: 2 LIT 7
PC: 3 ACCUM: 7
memory: 0: 0x5 1: 0x2000069 2: 0x7 3: 0x3000069 4: 0x200006a 5: 0xc
6: 0x400006a 7: 0x9000000 8: 0x800000c 9: 0x59 10: 0x200006b
11: 0x800000e 12: 0x4e 13: 0x200006b 14: 0xf000000 15: 0xa 16: 0x200006c
17: 0x100006b 18: 0x6000000 19: 0x100006c 20: 0x6000000 21: 0x7000000
22: 0x0 ...
100: 0 ... 105: 5 106: 0 ...
==> addr: 3 ADD 105
PC: 4 ACCUM: 12
memory: 0: 0x5 1: 0x2000069 2: 0x7 3: 0x3000069 4: 0x200006a 5: 0xc
6: 0x400006a 7: 0x9000000 8: 0x800000c 9: 0x59 10: 0x200006b
11: 0x800000e 12: 0x4e 13: 0x200006b 14: 0xf000000 15: 0xa 16: 0x200006c
17: 0x100006b 18: 0x6000000 19: 0x100006c 20: 0x6000000 21: 0x7000000
22: 0x0 ...
100: 0 ... 105: 5 106: 0 ...
==> addr: 4 STO 106
PC: 5 ACCUM: 12
memory: 0: 0x5 1: 0x2000069 2: 0x7 3: 0x3000069 4: 0x200006a 5: 0xc
6: 0x400006a 7: 0x9000000 8: 0x800000c 9: 0x59 10: 0x200006b
11: 0x800000e 12: 0x4e 13: 0x200006b 14: 0xf000000 15: 0xa 16: 0x200006c
17: 0x100006b 18: 0x6000000 19: 0x100006c 20: 0x6000000 21: 0x7000000
22: 0x0 ...
100: 0 ... 105: 5 106: 12 107: 0 ...
==> addr: 5 LIT 12
PC: 6 ACCUM: 12
memory: 0: 0x5 1: 0x2000069 2: 0x7 3: 0x3000069 4: 0x200006a 5: 0xc
6: 0x400006a 7: 0x9000000 8: 0x800000c 9: 0x59 10: 0x200006b
11: 0x800000e 12: 0x4e 13: 0x200006b 14: 0xf000000 15: 0xa 16: 0x200006c
17: 0x100006b 18: 0x6000000 19: 0x100006c 20: 0x6000000 21: 0x7000000
22: 0x0 ...
100: 0 ... 105: 5 106: 12 107: 0 ...
==> addr: 6 SUB 106
PC: 7 ACCUM: 0
memory: 0: 0x5 1: 0x2000069 2: 0x7 3: 0x3000069 4: 0x200006a 5: 0xc
6: 0x400006a 7: 0x9000000 8: 0x800000c 9: 0x59 10: 0x200006b
11: 0x800000e 12: 0x4e 13: 0x200006b 14: 0xf000000 15: 0xa 16: 0x200006c
17: 0x100006b 18: 0x6000000 19: 0x100006c 20: 0x6000000 21: 0x7000000
22: 0x0 ...
100: 0 ... 105: 5 106: 12 107: 0 ...
==> addr: 7 SKZ 0
PC: 9 ACCUM: 0
memory: 0: 0x5 1: 0x2000069 2: 0x7 3: 0x3000069 4: 0x200006a 5: 0xc
6: 0x400006a 7: 0x9000000 8: 0x800000c 9: 0x59 10: 0x200006b
11: 0x800000e 12: 0x4e 13: 0x200006b 14: 0xf000000 15: 0xa 16: 0x200006c
17: 0x100006b 18: 0x6000000 19: 0x100006c 20: 0x6000000 21: 0x7000000
22: 0x0 ...
100: 0 ... 105: 5 106: 12 107: 0 ...
==> addr: 9 LIT 89
PC: 10 ACCUM: 89
memory: 0: 0x5 1: 0x2000069 2: 0x7 3: 0x3000069 4: 0x200006a 5: 0xc
6: 0x400006a 7: 0x9000000 8: 0x800000c 9: 0x59 10: 0x200006b



6

11: 0x800000e 12: 0x4e 13: 0x200006b 14: 0xf000000 15: 0xa 16: 0x200006c
17: 0x100006b 18: 0x6000000 19: 0x100006c 20: 0x6000000 21: 0x7000000
22: 0x0 ...
100: 0 ... 105: 5 106: 12 107: 0 ...
==> addr: 10 STO 107
PC: 11 ACCUM: 89
memory: 0: 0x5 1: 0x2000069 2: 0x7 3: 0x3000069 4: 0x200006a 5: 0xc
6: 0x400006a 7: 0x9000000 8: 0x800000c 9: 0x59 10: 0x200006b
11: 0x800000e 12: 0x4e 13: 0x200006b 14: 0xf000000 15: 0xa 16: 0x200006c
17: 0x100006b 18: 0x6000000 19: 0x100006c 20: 0x6000000 21: 0x7000000
22: 0x0 ...
100: 0 ... 105: 5 106: 12 107: 89 108: 0 ...
==> addr: 11 JMP 14
PC: 14 ACCUM: 89
memory: 0: 0x5 1: 0x2000069 2: 0x7 3: 0x3000069 4: 0x200006a 5: 0xc
6: 0x400006a 7: 0x9000000 8: 0x800000c 9: 0x59 10: 0x200006b
11: 0x800000e 12: 0x4e 13: 0x200006b 14: 0xf000000 15: 0xa 16: 0x200006c
17: 0x100006b 18: 0x6000000 19: 0x100006c 20: 0x6000000 21: 0x7000000
22: 0x0 ...
100: 0 ... 105: 5 106: 12 107: 89 108: 0 ...
==> addr: 14 NDB 0
Y


