
Simplified RISC Machine Manual
($Revision: 1.58 $)

Gary T. Leavens
Leavens@ucf.edu

October 3, 2023

Abstract
This document defines the machine code of the Simplified RISC Machine VM for use in the Systems

Software class (COP 3402) at UCF.

1 Overview

The Simplified RISC Machine (SRM) processor’s instruction set architecture (ISA) is simplified from the
MIPS processor’s ISA [2]. In particular, SRM is a little-endian machine with 32-bit (4-byte) words. All
instructions are also 32-bits wide and there is no floating-point support, kernel mode support, or other
advanced features.

1.1 Inputs and Outputs

1.1.1 Binary Object Files

The VM is passed a single file name on its command line as an argument; optionally it may also get the
option -p as an argument. When given a -p argument followed by a binary object file name, the VM loads
the binary object file and prints the assembly language form of the program, see Section 1.4 details. The
remainder of this section is concerned with what the VM does when it only is given a binary object file name
on its command line as an argument.

The file name given to the VM must be the name of a (readable) binary object file containing the program
that the VM should execute. For example, if the VM’s executable is named vm and the program it should
run is contained in the file named test.bof (and both these files are in the current directory), then the VM
should execute the program in the file test.bof by executing the following command in the Unix shell.

./vm test.bof

The format of a binary object file (BOF) is given in the header file bof.h, which is shown in part in
Figure 1. A BOF starts the header, then the instructions (also in binary form) follow, followed by the initial
values of data. This layout of binary object files is shown in Figure 2.

The header of a binary object file starts with a 4-character field that contains the characters “BOF” (and
a null character); this kind of “magic number” is commonly used to identify files in Unix. The magic
number is followed (in the BOF header) by the starting address of the program’s code and the length of the
program’s code (in bytes), which constitutes the “text” section of the binary object file. These are followed
by the starting address of the data section and its length (in bytes). The data section contains the global/static
variables that the program uses. Finally, the header contains the initial value for the stack and frame pointers,
which is the address (in bytes) of the bottom of the runtime stack.

1

/ * $ Id : b o f . h , v 1 . 1 2 2 0 2 3 / 0 9 / 2 6 1 7 : 4 9 : 3 8 l e a v e n s Exp $ * /
/ / B i na ry O b j e c t F i l e Format (f o r t h e SRM)
#ifndef _BOF_H
#define _BOF_H
#include <stdio.h>
#include <stdint.h>
#include "machine_types.h"

#define MAGIC_BUFFER_SIZE 4

typedef struct { / / F i e l d magic s h o u l d be "BOF" (w i t h t h e n u l l char)
char magic[MAGIC_BUFFER_SIZE];
word_type text_start_address; / / b y t e a d d r e s s t o s t a r t r u n n i n g (PC)
word_type text_length; / / s i z e o f t h e t e x t s e c t i o n i n b y t e s
word_type data_start_address; / / b y t e a d d r e s s o f s t a t i c da ta (GP)
word_type data_length; / / s i z e o f da ta s e c t i o n i n b y t e s
word_type stack_bottom_addr; / / b y t e a d d r e s s o f s t a c k " bo t tom " (FP)

} BOFHeader;

/ / a t y p e f o r B i na ry Outpu t F i l e s
typedef struct {

FILE *fileptr;
const char *filename;

} BOFFILE;
/ / . . .
#endif

Figure 1: The bof.h header file that defines the format and operations for binary object files.

2

Figure 2: The layout of a binary object file.

3

1.1.2 Initial/Default Values

The memory of the machine starts at all zero (0) values. Then the instructions specified by the given binary
object file (as named on the command line) are loaded into memory, starting at address 0, making the
contents of the first N bytes (where N is divisible by 4) of memory be the same as the N bytes following
the header itself in the binary object file; here N is the same as the header’s value of the text_length
field. Following those N bytes are the bytes of the data section. These are loaded into the memory starting
at the data start address given in the header; thus any initial values are copied from the data section of the
binary object file into VM’s memory.

When the program starts executing:

• the register $gp is set to the start address of the data section given in the header, which must be
divisible by 4,

• the registers $fp and $sp are both is set to the stack bottom address given in the header, which must
be divisible by 4 and strictly greater than the start address of the data section, and

• the program counter PC is set to the text section’s start address, which must be divisible by 4 and
strictly less than the data section’s start address.

1.2 The Running Program’s Input and Output

When the program executes instructions to read or write characters, these are read from standard input
(stdin) and written to standard output (stdout).

However, note that if you want the program to read a character, typing a single character (say x) into
the terminal (i.e., to the shell) while the program is running will not send that character immediately to the
program, as standard input is buffered by default. To send characters to the program it is best to use a pipe
or file redirection in the Unix shell; for example, to send the two characters x and y (followed by a newline
character) to the VM running the program progfile.bof one could use the following command at the
Unix shell:

echo xy | ./vm progfile.bof

Another command that would accomplish the same thing is to put the characters to be input into a file
(using a text editor), say xy-input.txt and then to use the following Unix command.

./vm progfile.bof < xy-input.txt

1.3 Tracing Output

By default, the VM produces output that traces the VM’s execution on stdout. This tracing output can be
turned off by executing a NOTR system call instruction and can be turned on by executing a STRA system
call instruction.1 (See Section A.4 for more information about these system call instructions.)

The tracing output shows the initial state of the VM, then for each instruction executed, it shows the
address (in bytes) of that instruction and then the assembly language form of that instruction.

The state of the machine shown in tracing output shows: the values in the PC, the values of the HI and LO
registers (if those are not zero) and the values in all the general purpose registers, then the memory starting
at the address in GPR[$gp] with locations containing zeros only indicated with “...”. and then the data in
the current activation record (i.e., the memory between the addresses GPR[$sp] and GPR[$fp] inclusive).
When showing the memory, locations containing zeros are only indicated with “...”. For example, when

1The STRA instruction has no effect if the VM is already producing tracing output.

4

$Id: vm_test0.asm,v 1.1 2023/09/18 03:32:18 leavens Exp $
.text start

start: STRA
ADDI $0, $t0, 1
EXIT
.data 1024
.stack 4096
.end

Figure 3: The SRM assembly language file vm_test0.asm.

the binary object file that is assembled from the assembly code shown in Figure 3 is executed, which is
found in the file vm_test0.bof, it produces the output shown in Figure 4.

1.4 Printing the Program

When the VM is given the argument -p option followed by a binary object file name, it first loads the
instructions and data from the given binary object file, then it prints what was loaded in assembly language
format, and then the VM exits (without running the program). This can be helpful for understanding what a
program is doing. This output is shown in Figure 5.

1.5 Error Outputs

All error messages (e.g., for division by zero) are sent to standard error output (stderr).

1.6 Exit Code

When the machine halts normally, it exits with a zero error code (which indicates success on Unix). How-
ever, when the machine encounters an error it halts and exits with a non-zero exit code (which indicates
failure on Unix).

2 Architecture

In SRM, words are 32 bits (4 bytes). These bits can be interpreted as an integer or as an address. The
machine is byte addressed but instructions must always be at an address that is on a word boundary (i.e.,
whose address is evenly divisible by 4).

2.1 Registers

2.1.1 General Purpose Registers and Their Names

The SRM is a register machine with 32 general purpose registers2, numbered 0 to 31 (inclusive). These are
all 32-bit registers. Since there are 32 registers, instructions use 5 bits to specify them.

Register 0 cannot be written to, and when read its value is always 0.
Conventions (from the MIPS architecture [2]) are followed for these registers and their names, as shown

in Table 1. The names shown in Table 1 are conventional ones.
2What we call “registers” in this document are simply important concepts that simulate what would be registers in a hardware

implementation of the virtual machine. For the VM program, these registers would be implemented as variables.

5

PC: 0
GPR[$0]: 0 GPR[$at]: 0 GPR[$v0]: 0 GPR[$v1]: 0 GPR[$a0]: 0 GPR[$a1]: 0
GPR[$a2]: 0 GPR[$a3]: 0 GPR[$t0]: 0 GPR[$t1]: 0 GPR[$t2]: 0 GPR[$t3]: 0
GPR[$t4]: 0 GPR[$t5]: 0 GPR[$t6]: 0 GPR[$t7]: 0 GPR[$s0]: 0 GPR[$s1]: 0
GPR[$s2]: 0 GPR[$s3]: 0 GPR[$s4]: 0 GPR[$s5]: 0 GPR[$s6]: 0 GPR[$s7]: 0
GPR[$t8]: 0 GPR[$t9]: 0 GPR[$k0]: 0 GPR[$k1]: 0 GPR[$gp]: 1024 GPR[$sp]: 4096
GPR[$fp]: 4096 GPR[$ra]: 0

1024: 0 ...
4096: 0 ...

==> addr: 0 STRA
PC: 4

GPR[$0]: 0 GPR[$at]: 0 GPR[$v0]: 0 GPR[$v1]: 0 GPR[$a0]: 0 GPR[$a1]: 0
GPR[$a2]: 0 GPR[$a3]: 0 GPR[$t0]: 0 GPR[$t1]: 0 GPR[$t2]: 0 GPR[$t3]: 0
GPR[$t4]: 0 GPR[$t5]: 0 GPR[$t6]: 0 GPR[$t7]: 0 GPR[$s0]: 0 GPR[$s1]: 0
GPR[$s2]: 0 GPR[$s3]: 0 GPR[$s4]: 0 GPR[$s5]: 0 GPR[$s6]: 0 GPR[$s7]: 0
GPR[$t8]: 0 GPR[$t9]: 0 GPR[$k0]: 0 GPR[$k1]: 0 GPR[$gp]: 1024 GPR[$sp]: 4096
GPR[$fp]: 4096 GPR[$ra]: 0

1024: 0 ...
4096: 0 ...

==> addr: 4 ADDI $0, $t0, 1
PC: 8

GPR[$0]: 0 GPR[$at]: 0 GPR[$v0]: 0 GPR[$v1]: 0 GPR[$a0]: 0 GPR[$a1]: 0
GPR[$a2]: 0 GPR[$a3]: 0 GPR[$t0]: 1 GPR[$t1]: 0 GPR[$t2]: 0 GPR[$t3]: 0
GPR[$t4]: 0 GPR[$t5]: 0 GPR[$t6]: 0 GPR[$t7]: 0 GPR[$s0]: 0 GPR[$s1]: 0
GPR[$s2]: 0 GPR[$s3]: 0 GPR[$s4]: 0 GPR[$s5]: 0 GPR[$s6]: 0 GPR[$s7]: 0
GPR[$t8]: 0 GPR[$t9]: 0 GPR[$k0]: 0 GPR[$k1]: 0 GPR[$gp]: 1024 GPR[$sp]: 4096
GPR[$fp]: 4096 GPR[$ra]: 0

1024: 0 ...
4096: 0 ...

==> addr: 8 EXIT

Figure 4: The output of running the VM on file vm_test0.bof (which is the result of using the assembler
on vm_test0.asm), with the command ./vm vm_test0.bof, as would be printed on standard output.

Addr Instruction
0 STRA
4 ADDI $0, $t0, 1
8 EXIT
1024: 0 ...

Figure 5: The output of running ./vm -p vm_test0.bof. (where the file vm_test0.bof is the
result of assembling the file vm_test0.asm that is shown in Figure 3).

6

Table 1: SRM Register Numbers, Use, and Names

Number Use Name
0 always 0 (can’t write to this register!)
1 assembler temporary $at
2− 3 function results $v0, $v1
4− 7 function arguments $a0−$a3
8− 15 temporaries $t0−$t7
16− 23 temporaries $s0−$s7
24− 25 temporaries $t8, $t9
26− 27 reserved for use by OS (don’t use!)
28 globals pointer $gp
29 stack pointer $sp
30 frame pointer $fp
31 return address $ra

2.1.2 Special Purpose Registers

SRM also has a few special registers. The registers are named:

• PC, the program counter which holds the address of the next instruction to execute,

• HI, the high part (i.e., most significant bits) of the result of a multiplication or the remainder in a
division,

• LO, the low part (i.e., least significant bits) of the result of a multiplication or the quotient in a division.

The PC register is manipulated by jump instructions. The HI and LO registers are read by instructions
that move their contents into another register.

2.1.3 Calling Convention

The calling convention on the SRM follows the calling convention on the MIPS processor.
That is, the caller must save registers 1 − 15, and 24 − 25 if they will be needed after a call (and then

restores them when needed).
The callee saves (and restores before it returns) registers 16− 23 and 29− 31, if it uses (writes) them.
(Furthermore, register 0 cannot be changed and registers 1 and 28 should not be changed by a hand-

written routine. Registers 26− 27 should not be changed by user code.)
Note that the jump-and-link (JAL) instruction does not save any registers except the PC, and it will save

that in register 31.

2.2 Binary Instruction Format

In object code, all instructions are one word long and start with a 6-bit opcode. However, instructions may
have one of several formats, with the format depending on the opcode (called “op” below). The fields of
each instruction format shown in Table 2 are followed by their width in bits; for example the op field is 6
bits wide.

The list of instructions and details on their execution appears in Appendix A.

7

Table 2: SRM Instruction Formats

• Register/computational type instruction format:
op:6 rs:5 rt:5 rd:5 shift:5 func:6

• System call instructions, whose format is a variant of the register type instruction format, but with a
func field value of 12:

op:6 code:20 func:6

• Immediate operand type instruction format:
op:6 rs:5 rt:5 immed:16

• Jump type instruction format:
op:6 addr:26

2.3 Machine Cycles

The SRM instruction cycle conceptually does the following for each instruction:

1. Let IR be the instruction at the location that PC indicates. (Note that IR could be considered to be the
contents of a register.)

2. The PC is made to point to the next instruction (i.e., it is set to the address PC + 4).

3. Then the instruction in IR is executed. The op component of this instruction (IR.op) indicates the
operation to be executed. For example, if IR.op encodes the instruction JR, then the machine jumps
to the specified address by setting the PC register (to the contents of the given register).

2.4 Size Limits

The following constant defines the size of the memory for the VM.

#define MEMORY_SIZE_IN_BYTES (65536 - BYTES_PER_WORD)

You might need to copy this definition into your program.
Note that BYTES_PER_WORD is defined to be 4 in machine_types.h, see Figure 7.

2.5 Invariants

The VM enforces the following invariants and will halt with an error message (written to stderr) if one of
them is violated:

• PC % BYTES_PER_WORD = 0,

• GPR[$gp] % BYTES_PER_WORD = 0,

• GPR[$sp] % BYTES_PER_WORD = 0,

• GPR[$fp] % BYTES_PER_WORD = 0,

• 0 ≤ GPR[$gp],

8

• GPR[$gp] < GPR[$sp],

• GPR[$sp] ≤ GPR[$fp],

• GPR[$fp] < MEMORY_SIZE_IN_BYTES,

• 0 ≤ PC,

• PC < MEMORY_SIZE_IN_BYTES, and

• GPR[0] = 0.

A Appendix A

In the following tables, italicized names (such as s) are meta-variables that refer to integers. If an instruc-
tion’s field is notated as −, then its value does not matter (we use 0 as a placeholder for such values in
examples).

All numbers appearing in the following table are in decimal (base 10) notation.

A.1 Register/Computational Instructions

Note that all of the instructions in table Table 3 have an opcode of 0, and a function specified by the func
field. They each also have 3 register arguments: rs, rt, and rd. The contents of the general purpose register
r is notated as GPR[r] in the table. All numbers in the table are in decimal notation.

All arithmetic and logical operations are performed as for C int values. However, the right shift works
on the contents of the register GPR[t] in a logical manner, as if it were an unsigned int, so it should shift in
zeros from the left.

9

Table 3: Register Format Instructions
Comment

Name op rs rt rd shift func (Explanation)
ADD 0 s t d - 33 Add: GPR[d]← GPR[s] + GPR[t]
SUB 0 s t d - 35 Subtract: GPR[d]← GPR[s]− GPR[t]
MUL 0 s t - - 25 Multiply: Multiply GPR[s] and GPR[t],

putting the least significant bits in LO
and the most significant bits in HI.
(HI,LO)← GPR[s]× GPR[t]

DIV 0 s t - - 27 Divide (remainder in HI, quotient in LO):
HI← GPR[s] % GPR[t]
LO← GPR[s]/GPR[t])

MFHI 0 - - d - 16 Move from HI: GPR[d]← HI
MFLO 0 - - d - 18 Move from LO: GPR[d]← LO
AND 0 s t d - 36 Bitwise And: GPR[d]← GPR[s] ∧ GPR[t]
BOR 0 s t d - 37 Bitwise Or: GPR[d]← GPR[s] ∨ GPR[t]
NOR 0 s t d - 39 Bitwise Not-Or: GPR[d]← ¬(GPR[s] ∨ GPR[t])
XOR 0 s t d - 38 Bitwise Exclusive-Or: GPR[d]← GPR[s] xor GPR[t]
SLL 0 - t d h 0 Shift Left Logical: GPR[d]← GPR[t] « h

SRL 0 - t d h 3 Shift Right Logical: GPR[d]← GPR[t] » h

JR 0 s 0 0 0 8 Jump Register: PC← GPR[s]
SYSCALL 0 - - - - 12 System Call: (see Table 6)

A.2 Immediate Type Instructions

The instructions in Table 4 may have up to 2 register arguments, and all have an immediate operand, which
is a 16 bit value.

For arithmetic operations, the immediate value is sign-extended (to an int value), which is written in
the explanations using the function “sgnExt.” For example, suppose i is −1, which is FFFF in hexadecimal
notation; then sgnExt(i) is FFFFFFFF in hexadecimal, which still represents −1.

However, for logical operations, the immediate value is zero-extended, which is written in the explana-
tions using the function “zeroExt.” For example, suppose i is −1, which is FFFF in hexadecimal notation;
then zeroExt(i) is 0000FFFF in hexadecimal notation.

For the branches, the immediate value, o is first shifted left 2 bits (multiplied by 4) and then sign-
extended, which is written as “formOffset” in the table. (Thus formOffset(o) = sgnExt(4 × o).) Note that
the resulting address is added to the address of the instruction following the currently executing instruction,
not the address of the instruction itself, since the PC has already been advanced. (As a simplification, the
opcode for the BLTZ instruction is different from that found in the MIPS architecture [2].)

For loads and stores, memory[a] denotes the contents of the machine’s memory at the byte address a.

A.3 Jump Type Instructions

The instructions in Table 5 have a 26-bit field “addr” which is used to form the address to jump to. Forming
this address is done by left-shifting the given “addr” field, a, by 2 bits, and then concatenating the (4) high
bits of the PC with those 26 + 2 bits to form a 32-bit address. This is written “formAddress(PC, a,)” in
the table. For example if a is DECADE in hexadecimal notation, and PC is FFFACADE in hexadecimal
notation, then formAddress(PC, a) is F37B2B78 in hexadecimal notation. (Note: if the high-order 4 bits of

10

Table 4: Immediate format instructions:
Comment

Name op rs rt immed (Explanation)
ADDI 9 s t i Add immediate: GPR[t]← GPR[s] + sgnExt(i)
ANDI 12 s t i Bitwise And immediate: GPR[t]← GPR[s] ∧ zeroExt(i)
BORI 13 s t i Bitwise Or immediate: GPR[t]← GPR[s] ∨ zeroExt(i)
XORI 14 s t i Bitwise Xor immediate: GPR[t]← GPR[s] xor zeroExt(i)
BEQ 4 s t o Branch on Equal: if GPR[s] = GPR[t] then PC← PC + formOffset(o)
BGEZ 1 s 1 o Branch ≥ 0: if GPR[s] ≥ 0 then PC← PC + formOffset(o)
BGTZ 7 s 0 o Branch > 0: if GPR[s] > 0 then PC← PC + formOffset(o)
BLEZ 6 s 0 o Branch ≤ 0: if GPR[s] ≤ 0 then PC← PC + formOffset(o)
BLTZ 8 s 0 o Branch < 0: if GPR[s] < 0 then PC← PC + formOffset(o)
BNE 5 s t o Branch Not Equal: if GPR[s] ̸= GPR[t] then PC← PC + formOffset(o)
LBU 36 b t o Load Byte Unsigned:

GPR[t]← zeroExt(memory[GPR[b] + formOffset(o)])
LW 35 b t o Load Word (4 bytes):

GPR[t]← memory[GPR[b] + formOffset(o)]
SB 40 b t o Store Byte (least significant byte of GPR[t]):

memory[GPR[b] + formOffset(o)]← GPR[t]
SW 43 b t o Store Word (4 bytes):

memory[GPR[b] + formOffset(o)]← GPR[t]

PC are 0, then formAddress(PC, a) is equivalent to left-shifting a by 2 bits.)

Table 5: Jump Type Instructions
Comment

Name op addr (Explanation)
JMP 2 a Jump: PC← formAddress(PC, a)

JAL 3 a Jump and Link: GPR[$ra]← PC;PC← formAddress(PC, a)

The Jump and Link (JAL) instruction does a subroutine call. It does not explicitly manipulate the runtime
stack.

A.4 System Calls

System calls are used to provide operating system services. System calls are made by instructions with op
0 and func 12 having the following format (with code field made of the 20 bits of what would be the rs, rt,
rd, and shift fields of a register type instruction, all combined). The code field is used to specify the service
requested.

System calls include exiting a program and various kinds of printing and reading of character data
(bytes). These are described in Table 6, using C library equivalents. In the table, an entry of − means that
the contents of argument registers is not specified. Otherwise, the contents of particular argument registers
are used to pass actual arguments to the system calls (the program must load the actual argument values
into those registers before making the call). (Recall that the correspondence between named registers and
register numbers is given in Table 1.) All printing done by these instructions is to the VM’s standard output
(stdout) and reading is from the VM’s standard input (stdin).

11

Table 6: System Calls
code name arg. reg. Effect (in terms of C std. library)
10 EXIT - exit(0) // halt
4 PSTR $a0 GPR[$v0]← printf("%s",&memory[GPR[$a0]])
11 PCH $a0 GPR[$v0]←fputc(GPR[$a0],stdout)
12 RCH - GPR[$v0]← getc(stdin)
256 STRA - start VM tracing; start tracing output
257 NOTR - no VM tracing; stop the tracing output

In the PSTR instruction, the C standard library function printf will expect a C pointer to characters
as its argument; this should be the address of those character’s representations in the memory starting at the
VM address given by the contents of GPR[$a0].

B Appendix B: Hints

B.1 Overall Structure of the Code

To implement the SRM VM, the first thing to do is to decide on some data structures to represent the
VM’s state: especially the memory and registers. You may want to represent the VM’s memory using
a definition like that in Figure 6. With this definition, the VM’s memory is represented as 3 arrays that

#include "machine_types.h"
#include "instruction.h"
/ / a s i z e f o r t h e memory (2^16 b y t e s = 64K)
#define MEMORY_SIZE_IN_BYTES (65536 - BYTES_PER_WORD)
#define MEMORY_SIZE_IN_WORDS (MEMORY_SIZE_IN_BYTES / BYTES_PER_WORD)

static union mem_u {
byte_type bytes[MEMORY_SIZE_IN_BYTES];
word_type words[MEMORY_SIZE_IN_WORDS];
bin_instr_t instrs[MEMORY_SIZE_IN_WORDS];

} memory;

Figure 6: A possible way to represent the memory of the VM, which allows access to the same storage as
bytes, words, or binary instructions.

share the same storage: memory.bytes, memory.words, and memory.instrs. For example, the
4 bytes at byte address 36 can be accessed as memory.bytes[36] or as memory.words[9] or as
memory.instrs[9]. This union definition allows VM’s code to decide what view it wants of the stor-
age at each point in the implementation, and whatever is changed in that view is seen by all the other
views. Using a union in this way avoids lots of casting and bit manipulation. Note that the C com-
piler considers memory.bytes to have the type byte_type[], and memory.words to have the type
word_type[], and memory.instrs to have the type bin_instr_t[].

The registers can be word_type variables (where word_type is defined in machine_types.h),
or an array of them.

12

Once the representation for memory and the registers is settled, implement the loading process and get
the -p option to work. There is code in the disassembler that can be used as a model of what to do.

To read from the binary object files (BOFs) you should use the functions in the bof module. In particular,
use bof_read_open to open such a file, use bof_read_header to read and return the header from
a BOF, then read each of the instructions using instruction_read (from the instruction module), and
bof_read_word to read words in the data section of the BOF.

You will find the function instruction_assembly_form from the instruction module helpful in
doing the printing of instructions. See the code in the disassembler (disasm.c in particular) for a model
of how to use it.

After getting the -p option to work, you need to implement the basic fetch-execute cycle for the VM
(without the -p option): make a function that executes a single instruction and handles the tracing and call
the fuction to execute each instruction in a loop.

To implement the function that executes a single instruction, have that function decide between the possi-
ble instructions (using the functions from the instruction module) and in each case carry out the effect of the
instruction as described in the “Simplified RISC Machine Manual”, which is available on Webcourses. You
can see the provided code in the instruction_assembly_form function in the instruction module as
an example of how to decide what an instruction is.

B.2 Writing Your Own Tests

It is often helpful to write your own tests to execute just one or two instructions during testing of the VM.
However, be sure to include an EXIT instruction in your test to stop your program’s execution!

To write your own tests you can use the provided assembler, since the VM only takes binary object files
as inputs.

The SRM assembler can be compiled using the provided Makefile and the following command.

make asm

We also provide documentation for the assembly language in the course files on webcourses; see the file
named “srm-asm.pdf”.

B.3 Disassembler

We also provide a disassembler, that does something similar to running the virtual machine with the -p
option; this program can be built using the Makefile by issuing the command make disasm. The way
that the disassembler does its output, using the instruction module, can be helpful in writing the code
for the -p option of the VM.

B.4 Provided Files

We provide all the source files used to build the assembler and the disassembler. Many of these can be
helpful in writing your VM implementation. The following describes some of these.

B.4.1 Makefile

The provided Makefile describes how to compile and link programs and run tests. This Makefile tells
the GNU program make [1] about dependencies between files that make uses to decide when targets need
to be built.

You should edit the Makefile’s definition of VM_OBJECTS; change that to be a complete list of the
.o files that are needed to build your virtual machine. The list present in the Makefile for VM_OBJECTS

13

is what the course staff used, but you might, for example, combine the main function, which was in our
files machine_main.c and machine.c (none of these are provided to you) into a single file named
vm.c, in which case would replace our machine_main.o and machine.o with your vm.o On the
other hand, you will need to leave the object file names in the list that your code uses, such as bof.o and
utilities.o. If you receive an error message from the Unix linker/loader (ld) about an “undefined
reference” to a function or a piece of data, then the solution is likely to include the relevant object file in the
list of VM_OBJECTS.

You should not need to edit anything in the bottom half of the Makefile, which is the “developer’s
section” used by the course staff.

There are several useful targets in the Makefile that can be used with the make command. A target is
a name given on the command line to make; for example vm is a target, and running the command make
vm should compile and link the code needed to build your VM and create an executable program in the file
vm (or vm.exe on Windows). The following is a list of the targets in the Makefile that may be useful.

file.o compiles file.c if it (or file.h) is newer than file.o, producing a new copy of file.o.
This works for any file name not just “file”, as the Makefile has a general rule to compile .c files
into .o files.

vm compiles (if necessary) all the .o files named in the macro VM_OBJECTS and links them together into
an executable named vm (or vm.exe on Windows).

vm_test1.myo runs your virtual machine program (./vm) on the input vm_test1.bof and sends the
(standard) output (and standard error output) to vm_test1.myo. This works for any test file, not
just “vm_test1.bof” as the Makefile has a general rule for this.

vm_test1.myp runs your virtual machine program (./vm) with the -p option on the input vm_test1.bof
and sends the (standard) output (and standard error output) to vm_test1.myp. This works for any
test file, not just “vm_test1.bof” as the Makefile has a general rule for this.

check-vm-outputs runs all of the provided tests in the .bof files and produces the corresponding
.myo files using your VM (in ./vm), and compares each one to the expected output in the corre-
sponding .out file using the diff command. Each such test passes if no differences are detected.

check-lst-outputs runs all of the provided tests in the .bof files and produces the corresponding
.myp files using your VM (as ./vm -p), and compares each one to the expected output in the cor-
responding .lst file using the diff command. Each such test passes if no differences are detected.

check-outputs runs all of the provided tracing and listing tests (using the targets check-lst-outputs
and check-vm-outputs).

submission.zip runs all of the provided tests (using the check-outputs target) and creates a zip
file that can be submitted for the assignment including your code and outputs from the tests.

clean removes all the compiled object files (*.o) and testing output files (*.myo and *.myp) as well as
the executable VM (files named vm and vm.exe) and the submission zip file (submission.zip).
This allows you to start over from scratch, forcing make to build the do the work specified for the tar-
gets given, instead of thinking that they are up to date. (This is especially useful if some dependencies
are not captured in the Makefile.)

14

B.4.2 C Typedefs for SRM Machine Types

We provide a module, machine_types (the header machine_types.h is shown in Figure 7), which
defines some C equivalents for important types of data in the SRM.

B.4.3 Other modules provided

The following gives a brief summary of the other provided code modules, each of which consists of a .c
file and a .h file.

• bof, which describes binary object files,

• file_location, which groups file names and line numbers,

• instruction, which describes machine instructions and provides several useful utilities for creat-
ing and printing instructions,

• regname, which provides access to the symbolic names of the SRM’s general purpose registers,

• utilities, which describes several functions for error output, including bail_with_error.

In addition, we provide code to build the assembler (including many of the above and also the files
asm_main.c, asm.y, asm_lexer.l, asm_unparser.[ch], ast.[ch], lexer.[ch], pass1.[ch],
assemble.[ch], and id_attrs) and the disassembler (including many mentioned above and also
disasm_main.c, disasm.[ch]).

You can use any of these provided files in your solution.

References

[1] Free Software Foundation. GNU Make Manual, Feb 2023. https://www.gnu.org/software/
make/manual/.

[2] Gerry Kane and Joe Heinrich. MIPS RISC architectures. Prentice-Hall, Inc., 1992.

15

https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/

/ / $ Id : m a c h i n e _ t y p e s . h , v 1 . 8 2 0 2 3 / 0 9 / 1 8 0 2 : 2 4 : 3 1 l e a v e n s Exp $
/ / Machine Types f o r t h e S i m p l i f i e d R i s c Machine (SRM)
#ifndef _MACHINE_TYPES_H
#define _MACHINE_TYPES_H

/ / r e g i s t e r s encoded i n i n s t r u c t i o n s
typedef unsigned short reg_num_type;

/ / t y p e o f s h i f t v a l u e s encoded i n immed ia t e i n s t r u c t i o n s
typedef unsigned short shift_type;

/ / t y p e o f f u n c t i o n s encoded i n i n s t r u c t i o n s
typedef unsigned short func_type;

/ / t y p e o f immed ia t e operands encoded i n i n s t r u c t i o n s
typedef unsigned short immediate_type;

/ / t y p e o f a d d r e s s e s
typedef unsigned int address_type;

/ / t y p e o f b y t e s
typedef unsigned char byte_type;

/ / t y p e o f machine words
typedef int word_type;

#define BYTES_PER_WORD 4

/ / Re tu rn t h e s i g n e x t e n d e d e q u i v a l e n t o f i
extern int machine_types_sgnExt(immediate_type i);

/ / Re tu rn t h e z e r o e x t e n d e d e q u i v a l e n t o f i
extern unsigned int machine_types_zeroExt(immediate_type i);

/ / Re tu rn t h e o f f s e t g i v e n by o , which i s t h e s i g n e x t e n s i o n o f (o t i m e s 4)
extern int machine_types_formOffset(immediate_type o);

/ / Re tu rn an a d d r e s s formed by s h i f t i n g a l e f t by 2 b i t s
/ / and c o n c a t e n a t i n g t h a t w i t h t h e high −o r d e r 4 b i t s o f PC .
extern address_type machine_types_formAddress(address_type PC, address_type a);

#endif

Figure 7: The header file of the machine_types module, which provides some basic definitions for the
VM.

16

