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Optimal Electricity Supply Bidding by Markov
Decision Process

Haili Song, Chen-Ching LiuFellow, IEEE Jacques Lawarrée, and Robert W. Dahlgidamber, IEEE

Abstract—The bidding decision making problem is studied new data are observed is discussed. Some studies on bidding
from a supplier's viewpoint in a spot market environment. The  strategies have been conducted for the electricity market. In
decision-making problem is formulated as a Markov Decision [5], a framework for an energy brokerage is proposed and a

Process - a discrete stochastic optimization method All other . . ; .
suppliers are modeled by their bidding parameters with cor- sub-optimal bidding strategy is developed according to the

responding probabilities. A systematic method is developed Competitor’s bidding probability density function. In [6], game
to calculate transition probabilities and rewards. A simplified theory is used to determine the suppliers’ pricing strategy
market clearing system is also included in the implementation. and it is assumed that suppliers bid with linear marginal price
A risk-neutral decision-maker is assumed, the optimal strategy - f;nctions without capacity limits. Game theory is also used in
is calculated to maximize the expected reward over a planning . . . - .
horizon. Simulation cases are used to illustrate the proposed [7]_ to S|mulate the decision m_aklng process for d_eflnlng (_)ﬁereq
method. prices in a deregulated environment. A genetic algorithm is
developed in [8] to select bidding strategies in the double
auction electricity marketplace. Technical issues related to an
auction and bidding market structure are analyzed in [9].
Besides bidding and pricing methods, other studies have

. INTRODUCTION been conducted on the subject of electricity transactions. For
HE power industry is evolving into an open-access, corfXxample, to handle the increasing number of electric energy
petitive environment. In this environment, economics arf§@nsactions, an algorithm is proposed for identification of
profitability are primary objectives of the market players. Faronflicting conditions between contracts [10].
each generation or distribution company, decisions have to bdn the literature, the optimal strategy is one that gives the
made on transactions, e.g., contract types and parameters. E48€ision-maker the maximum expected return for one bidding
tricity and services can be sold or purchased through bilateP&riod. However, in the daily electricity market, the decision-
contracts or the spot market [1]. The spot market usually OBlaker’s bid may influence the future market or the action may
erates as a pool, i.e., the market participants submit bids t&ffect his/her own market position in the future. For example, a
market that determines the transactions based on rules agrééeplier's bid can affect the spot price and the other suppliers’
upon by the participants. bidding behavior may change according to the spot price. A sup-

To achieve effciency in generation and consumption @ﬂier i; also subject to resource constraints. The production limit
electricity, an economic pricing scheme plays an importai§t 0bvious for a hydro producer. A gas or coal producer may
role. Properties of the prices of optional forward contracts ah@ve fuel contracts that define the production limit over a time
discussed in [2]. Alternative policies concerning access to af@rizon. In this environment, the decision-maker should look
pricing of transmission are studied in [3]. Game theory modéfo the future when a bidding decision is to be made. The bid-
are used to estimate the possible effects of various policfé§9 strategy that gives the best profit for one day may not be
upon productive efficiency and the distribution of gains amongt'ma' when the expected profit over the planning horizon is
all market players. esired.

In this paper, the problem of bidding decision-making is The market has various uncertainties, e.g., price and load.
studied from the viewpoint of a generation company. Strateditence, the market model proposed here is stochastic. The de-
bidding behavior has been studied in other fields such gision-maker is assumed to be risk-neutral; the optimal strategy
commodity markets but less so in the electricity market. In [4jhat maximizes the expected profit is desirable for the deci-
competitors are modeled by probability distributions of theffion-maker. To develop a tractable model, a Markov process is

bids. A method for updating probability distributions whe@Ssumed. The purpose of the proposed method is to optimize the
expected reward over a planning horizon. This paper reports new
results on the application of a Markov Decision Process (MDP)
Manuscript received March 16, 1998; revised February 3, 1999. This reseatohoptimize the bidding decisions. The MDP here is of the dis-
is sponsored by National Science Foundation under Grant no. ECS-9612836te-state and discrete-time type. MDP provides a systematic
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Fig. 1. States and state transition in MDP. ) model ) Markov Decision Process
(discrete density (algorithm)
function)
of feasible decision options. Corresponding to a deciajdghe v
transition probability from a stateto another stat¢ is given Optimal Decisions

by Pr(i,j,a). The decisions from the first stage to the end
of the planning horizon form one strategy (policy). The deckig. 2. Market and bidding decision making.
sion-maker receives a rewart, j, « from each transition. The

MDP model is mathematically well established and its applica- , , ,
tions can be found in many areas [11]-[12]. spot price over each load period for today’s market, and the

The significance of the proposed method lies in the fact thgﬁerageload over each load period f(_)r_t_omorrows forecast.
ere are 7 variables in the state definition: | to represent the

the method calculates the optimal decisiover a planning T TR . )
horizon The supplier's production limit is incorporated in th roduction limit, 2 to represent the prices, 2 to represent today’s
Rad, and 2 more for tomorrow’s load forecast. If 10 grid-num-

proposed bidding decision-making method. The informati q giff q evels. th b
structure can incorporate detailed information about the mar r's were used to represent different data levels, the number

accumulated over time. Hence, it is believed that the propos%dStates would be It is clear that the MDP formulation

methodology is promising as a practical market decisidif" suifer fram the curse O_f d|_m(_an3|onal|ty problem 'f.the
support tool number of states is large, which is likely for a complex decision

making problem. Aggregation can be used to reduce the number
of states. For example, the prices and demand can be represented
IIl. PROBLEM FORMULATION by ranges such as “high”, “medium”, or “low” to avoid a large

This study assumes a day-ahead auction system with mgmber of states using specific numbers. Suboptimal decisions
demand-side bidding; however, the proposed method can dsé be obtained for the reduced state space. Practical consider-
adapted for other types of markets. It is assumed that the bdions can be used to further reduce the number of states. For
are cleared for each hour. The suppliers submit bid with tigample, unusually low demand in one load period and unusu-
price and quantity at which they intend to sell during the neglly high demand in another load period may not happen on the
day. The market clears the bids. The spot price is determing@me day, so these combinations can be eliminated. Using sim-
according to the day-ahead load forecast and the bids fromilgr techniques to further reduce the number of states, the state
suppliers. A single spot price covers all purchases and sa#ces of the study cases in Sec. VI contain 210 and 21 states,
in each hour. Suppliers are paid according to this spot pritgspectively.
and possibly other market payment rules. The proposed markef decision-maker has to set the bid parameters, i.e., the price
model resembles the structures that have been establishedrd quantity have to be specified for each hour period of the next
England / Wales and New Zealand. day. In this study, a staircase supply function is used to describe

In Fig. 2, the environment in which the proposed electric etthe bid prices for different MW ranges over a day. One bid price
ergy Bldding Decision Support tool, call&IDS is illustrated. is used for each MW range. Also, the decision-maker specifies
The decision-maker’s bidding options and the competitors’ bidme MW quantity for each load period.
are specified depending on the state of the market. After the bidsAn MDP moves from one stateto another statg according
are cleared and transactions are completed, the market changestransition probability;;. A transition occurs as a result of
its state depending on the decision-maker’s decision and othezthange in price and / or load demand. A major difference be-
players’ bids. The reward from the bid is calculated based tmeen a Markov Process and an MDP is that the latter incorpo-
the spot price and the cost associated with the transaction. rates decision options for each state, which affect the transition

The load profile within one day is divided into different loadorobabilities and rewards. These probabilities represent the un-
periods, i.e., peak load and off-peak load. The average load éartainty of the market. In Sec. I, an algorithm is proposed for
eachload period is judged to be sufficient to represent the ovei@lculation of transition probabilities and rewards based on load
load profile. Thus, in the proposed methdtlde state is repre- forecast, decisions for each state, and bidding characteristics of
sented by the production limit, the amge load and aveage other suppliers. The reward from a transition is the total revenue
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minus the cost. It is assumed that the decision-maker knows it'he objective is to calculate the transition probability that

own cost.

Ill. CALCULATION OF TRANSITION PROBABILITIES AND

REWARDS

the system transfers from statéo a state in the next day, say
statej. Since the spot price for the next day should match the
supply with tomorrow’s load forecast, as the system moves to
statej, the production limit is denoted by L(; ), the spot price

is SP(j, t), the cleared load demand will be the tomorrow’s

It should be kept in mind that the proposed decision suppd®gad forecast that is available in statd he load forecast for the
tool, BIDS, is developed from the viewpoint of a supplier, i.e.day after tomorrow i F(j, ¢). Itis assumed that different sup-
the decision-maker using the MDP model. The decision-mak@iers’ bid options are independent. Therefore, the probability
observes and predicts the trend of the load demand, predictstttg supplien1 chooses optiok1 and supplien2 chooses op-
other suppliers’ bidding parameters, and optimizes his or Hé&n k2 will be Pr(i, n1, k1)* Pr(4, n2, k2). These probabili-
own profits accordingly.

To simplify the notation, the calculation is described in such For theN suppliers and” load periods, a scenarids a com-

a way that there is only one unit for each supplier and one Banation of the price and quantity from each supplier’s bidding
price is set for each unit. Also, the time variable is not expligarameters, i.e.,

itly shown. However, the proposed method does allow suppliers
to have multiple units and more than one bid price can be sef ~

ties should be determined by market data observations.

{(p(i7n7k)7q(i7n7t7k))}n:17"'7N;t:17"'7T

for any unit. The algorithm is identical when multiple units and The probability of this scenarid?r(i, s), is:
multiple prices are used. For time-varying data, the transition

probabilities and rewards are calculated accordingly, and a non- . nm .
stationary MDP is needed. The terminology is described in the Pr(i, s) = H PI(é, n, k) (1)
following. n=l,..N
N: # of suppliers (supplier is the decision-  Supplier n1 has K (i, nl1) options and suppliem2 has
maker) K(i, n2) options. All suppliers’ options are independent.
K(i, n): # of bidding options for suppliet in statei  Combining all the suppliers’ options, the possible scenarios
T: # of load periods " = 2 in this study, can be enumerated and the total number of scenarios is
peak/off-peak load period)
hours(t): # of hours in load period w= T[] KGmn (2)
(i, n, k): Bid price of supplier, given bidding option n=L,...,N
k. ) ) . To calculate the spot price for each scenario, a market
q(i, n, k): Bid quantity of supplier for load periodt,  clearing system has to be modeled. Unit Commitment based
givenk . [13] or Optimal Power Flow based [14] market clearing
Pr(i, n, k). Probability that supplien(n # m) chooses systems have been proposed. Without considering the security
optionk in state: S constraints and other market characteristics, a simplified market
PL(i): Decision-maker's production limitin stafe  clearing system is adopted in this study. The suppliers’ bids
SP(i, 1): Spot price at load periodin state: are ranked from the cheapest to the most expensive for each
LD(i, t): Load demand at load periddn state: load period. Suppliers’ bids are chosen from the cheapest until
LF(i, t): Load forecast at load periadn state: the load in that period is met. For all units that are called into

Pr(i, LF(j, t)):

Probability that the load forecast for the day,peration, the most expensive bid price defines the spot price

after tomorrow isLF'(j, t) for load period
t,t =1, ..., T, given the present staie

in that load period. It should be pointed out that the average
load does not necessarily lead to the average spot price, due

Pr(i, j, a): Transition probability from stateéto j if the o the nonlinear relation between the load demand and the
decision-maker makes decisian resulting spot price. For tractability, this study uses the spot
Pr(i, s): Probability of scenaria price corresponding to the average load as an approximate
SP(i, s, t): Spot price at load periotifor scenarios average price for each load period.
Q(, 4): Subset of scenarios that results in the Spot The spot price for a scenario S P(i, s, t), is calculated by
price, cleared quantity, and production limityatching the suppliers’ bids with the load forecast at state
of state; from those of staté LF (i, t). The spot price and the decision-maker’s bid decision
Cost(q): Cost of the decision-maker to produge determine the amount to be produced by the decision-maker.
MWh ) The decision-maker’s production for scenaviis calculated by
r(i, s): Reward for scenarie N summing up the production in all load periods. The decision-
r(i, J, a): Reward corresponding to the transition frompaker’s production limit for the next stage is updated by
state: to statej, given decisior: .
qs(i, j, t): The decision-maker’s quantity that is called ] ] ] .
( : into operation in load periotifor scenarios PL(i,5) = PL(i) — Z[q’ (4, 5,8)" hours(r)] 3)
PL(i, s): The decision-maker's updated production =1

limit if scenario s takes place, starting from For each scenaris in Q(, j), the system moves from state

states:

1 to statej if the load forecast for the day after tomorrow is
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LI'(j, t) and scenarie takes place. Since all the scenarios are IV. VALUE ITERATION
exclusive, the probability that results in spot pri€g(j,t),t =

I, ..., T, and production limitP L(j) is the sum of the proba-
bilities of all the scenarios ifi(7, 7). In our notation, this means
SP(i, s, t) = SP(j, t),LF(i, t) = LD(j, t),t =1, ..., T,
and PL(i, s) = PL(j) for scenarios. For all scenarios in
Q(z, ), the probability can be evaluated by

After the transition probabilities and rewards are calculated,
the value iteration method is applied for this MDP model [11].
Value iteration is similar to backward dynamic programming.
Let V(4,7 + 1) be the total expected rewardint 1 remaining
stages starting from statef an optimal policy is followed. At
the last stage; = 0. Value iteration searches for the decision
that results in the maximum total expected reward in the re-

PISP(j, t)&PL(j)&LF (i, t) = LD(j, t)) mainingT + 1 stages, i.e.,
Z Pr(i, s) (4)
oS0(E ) V(i T+1) = Iiﬁa??Z{Pr (i d,0) (i, 5. )+ V(LT (®)

The above probability represents all scenarios that match the

spot price, the production limit, and tomorrow’s load forecast Equation (8) is the recursive relation that is used to calculate
with the definition of statej. State transition is also causedne optimal decision from the last stage£ 0) to the first stage.
by the change of load forecast between tomorrow’s load affjese rewards from a transition t@re weighted by the proba-

the day after tomorrow’s load. The probability that the systefiity of the transition,Pr (i, j, a), to obtain the total expected
moves from state to statej for the decision-maker’s decisiongarnings.

option a can now be calculated by
V. MODEL VALIDATION

Prli. j,a) = PKSE(J’*)&PL( JELE(,T) For validation purpose, it is necessary to accumulate the ac-
=LD(j,t))"Pri, LF(j, t)) tual data and observations from the market over a reasonable pe-
Z Pr(i, s)*Pr(¢, LE(4,%)) (5) riod of time, say, year. The market data set provides the actual
S€Q(i,5) scenarios. For each scenario, according toBHeS represen-
tation, the decision-maker’s rewardri€, j, a) for a transition
The above equations lead to transition probabilities that dgom statei to statej and decision option. Theactualreward
pend only on decision-maker’s decision and the two statess known from the market data. This actual reward is denoted
andj. As mentioned previously, if transition probabilities argy w(i, 7, a). The relationship between the estimated and the
time-dependent, the MDP is a nonstationary stochastic procegsual rewards can be analyzed by linear regression. If a linear
The reward is the difference between the revenue and the gesétionship is assumed between the estimated and the actual re-
of the decision-maker as a supplier. The cost function of tRgrds, then
decision-maker is assumed to be deterministic and known to
the decision-maker. Each generating unit has a cost function, w(i, j,a)=A-r(i, j,a)+ B 9)
which is assumed to be a piece-wise linear function of MW.
As the market clears, the amount to be produced by each uHfe coeffcientsd and B are found by minimizing the average
is allocated. Therefore, the cost of each unit can be calculag@efolute error over the market data set,
accordingly. The revenue at the load pertad the product of
the spot pricg and the quantity that is c_a_lled into op.eration. For Z lwi (i, 4, a) — A-rm(i, §,a) — B (10)
each scenario, the reward for the decision-maker is caIcuIated
as

m=1

where M is the total number of observations for a transition
T from statei to statej. Ideally, A should be close td and B
Z [SP(i,s,t)"qs(i, s, t)" hours(t)] should be close t0. A significant deviation from these values
t=1 implies the necessity to tune the reward calculation method.
T
- 2 Cost(g, (i, s,t)"hours(t)) (6) VI. | MPLEMENTATION AND CASE STUDIES
t=
A 3-supplier-5-generator system is used for illustration of
The reward has to be calculated for all scenarios associatgd BIDS method. The suppliers a®enCoA, GenCoBand
with the transition from to j. Also, the reward for each transi-GenCoC. GenCo#s the decision-maker using our MDP tech-
tion froms to j has to be weighted by the conditional probabilityiique. The decision-maker owns one generating GenCoB
that the system moves from stat® state;j. Finally, the reward owns two units andsenCoCowns two other units. All three
for the transition from statéto statej and decision option is  suppliers bid in the spot market. The planning horizon is 7 days,
the sum of the rewards for individual scenarios weighted by the., the bid decision for the next day considers the entire week

conditional probabilities of these scenarios. ahead. In each stat&enCoAmakes its decision from a set of
pre-specified decision options. In each st&@enCoAdoes not
(i,5,0)= > {r(i,s)"[Pri,s)/ > Pr(is]} (7) know exactly howGenCoBandGenCoCare going to bid. How-

5COAi,5) 5CQ(i,5) ever, their individual bidding behavior is modeled by bid prices,
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TABLE | TABLE IV
SUPPLIER CAPACITIES AND POSSIBLELOAD LEVELS SELECTED RESULTS FROMEXAMPLE 1
Possible system Peak 220, 240, 260 MW Resuits from B/DS Peak-load strategy
load levels Off-peak | 160, 180, 200 MW Onday 1 [ Decision | Expected Expected
GenCoA capacity 120MW No. reward ($) reward ($)
GenCoB capacity 2*50MW
GenCoC capacity 2*50MW State 190 No. 3* 43,973 39,138
State 191 No. 1 42,061 38,511
. 4291 8,699
maie i T
GENCOA'S COST, PRODUCTION LIMIT AND DECISION OPTIONS tate 0. 2 2
* — - -
Marginal cost 040MW | 40-80MW | 80-120MW Decision Option 3.
($/MWh) 16 17 18 Block 1: 183/MWh, 40MW for peak & off-peak load;
Production limit: 0 — 9,600MWh Block 2: 193/MWh; 40MW for peak & off-peak load;
No. of decision options : 6 (for every state) *Decision Option 4:
Option ]:al::g‘i'?fpixi;::/WMh; intend to sell 40MW for both peak Block I: 198/MWh; 40MW for peak & off-peak load:

Block 2: 208/MWh; 40MW for peak & off-peak load;

TABLE I Block 3: 213/MWh; 40MW for peak; OMW for off-peak;

PARAMETERS OF STATE 1

rational strategyPeak-Load Strategys chosen for comparison

Producti Spot pri System load Tomorrow’s load . . .
m",f}t'o" (g;',\dlw}ff ys(:,in\}v)oa forezvast with the BIDSresults. By taking Peak-Load Strategy, the deci-
(MWh) [ Peak | Off-peak | Peak | Off-peak | Peak | Off-peak | Sion-maker bids at the cost, divides the production limit evenly

960 23 20 260 200 260 200 over the week, and sells only at the peak load period on each day.

According to the production limit in this case studyenCoA
quantities and the associated probabilities baseGemCoA’'s €an sell97MW each day for the peak-load period. The result
knowledge and information. The transition probabilities and réhows that the expected rewards fromEBSbidding strategy
wards are calculated according to the algorithm describedaff consistently higher than that of the Peak-Load Strategy.
Sec. lll. TheBIDSvalue iteration algorithm is implemented in  The resulting optimal strategy isme dependentFor ex-
Matlab. ample,the optimal strategy for state 190 is no. 3 for day 1 to

Example 1: The decision-maker has a production limit oveflay 4 and it is no. 4 for day 5 to day The optimal decision for
the planning horizon. In this simulation, the number of states@&y 1 to day4 is to sell less (optios) and save the capacity for
210 and there ar&0 grid numbers betweeahand the production day5 to day7. The production limit i), 600MWh in state190.
limit. The production limit for one week is set at the level sucH the system happens to be in sta® on days, the production
that if the unit runs at its capacity, the production limit will bdimit will not be violated even if the unit runs at its capacity for

reached ini days. the remaining 3 days. The optimal decision (opti)ns to sell
Due to space limitation, only selected data is shown iRore electricity, i.e., th8 blocks in option at increasing prices.
Tables I-ll. From dayl to day?7, the optimal decision changes according

The user specifies the state parameters. The parameterdddhe production limit even if the price and demand are iden-
one of the states, stateare listed in Table Il for illustration. tical. In some of the states, the resulting optimal decision is not
The other suppliers’ bid parameters and probabilities ai@ sell (option6); the resources are saved for more profitable
specified depending on the state (from state state210). For days.
example, one of the bid options GenCoB’sin state 1 is Example 2: The decision-maker has market power and no
Unitl: bid price 15$/MWh for the first 20MW block, Production limit. The decision-maker can manipulate the bid to
16$/MWh for the next 30MW, maximum output 50MW fanfluence the spot price. Other suppliers will bid according to the
both peak & off-peak load period; spot price and load demand information. The decision-maker
Unit2: bid price 17$/MWh for the whole capacity (50Mw)makes the bidding decision to maximize the expected reward
maximum output 50MW for both peak & off-peak load p&ver the planning horizon.
riod Without production limit, there ar@1 states in the MDP
The probability of this bidding option: 0.25 model. The feasible decision set is taken to be different from
Using the data above, the transition probabilities and reward@t in Example 1. For this example, the Daily Maximum
are caloulated by the proposed algorithm. For example, for tBgategy is chosen for comparison with &S results. The
decision-maker’s ® decision option: selling nothing, the tran-Daily Maximum Strategy maximizes the daily reward without
sition probability from state to statel, Pr(2,1,6) = 0.17188 considering how the bid affects the market trend. The results
which corresponds to a reward2, 1,6) = 0. are shown in Table V.
The value iteration algorithm is used to calculate the optimal The expected reward is the accumulated reward fromi.day
decision for each state and each stage. The decisions at sonwagf . It depends on the strategy from dbto day?7. In Table V,
the states on the first day, day 1, are illustrated in Table IV. Ooaly the optimal decisions on ddyare illustrated. Note that the



SONGet al. OPTIMAL ELECTRICITY SUPPLY BIDDING BY MARKOV DECISION PROCESS 623

TABLE V
SELECTED RESULTS FROMEXAMPLE 2

theBIDSalgorithm. The decision-maker should not rely on the
daily profit in making decisions. This optimal profit can not be
achieved when the bidding strategy is derived from only one

On day | Results from BIDS Daily maximum strategy day’s information.
Decision | Expected Decision Expected
No. reward (8) No. reward ($)
VIl. CONCLUSION
* 2% 4 . - . . .
State 1 No.4 65,342 No.2 38,82 The spot market bidding decision-making problem is studied
State 2 No. 5 62,802 No. 4 56,254 i thi lorithm is developed el h )
State 3 No. 4 60,592 No. 4 56,594 in this paper. An algorithm is developed to calculate t e tra.nS|-
State 4 No. 4 63,823 No. 4 57,858 tion probabilities and rewards for the MDP model. Simulation
cases have been studied to validate the method. Compared to

other analysis methods, MDP is able to optimize the decision
over a planning horizon. Even though the modeling is fairly de-

tailed for the market, the power system operational constraints
are ignored for tractability of the model. These issues should be
considered in the future.

A risk-neutral decision-maker is assumed in this paper. If
the decision-maker is risk-averse, the variance of his/her profit
should be incorporated in the bidding decisions. The optimal de-
cisions will then be determined by maximizing the total benefit.
There is no provision for incorporating risk attitude in an ordi-

*Decision Option 4. (see Decision Option 4 in Table 4)
*Decision Option 2:

Block 1: 213/MWh; 40MW for peak & off-peak load;
Block 2: 228/MWh; 40MW for peak & off-peak load;
Block 3: 238/MWh,; 40MW for peak & off-peak load;

TABLE VI
TRANSITION PROBABILITIES FOR DECISIONNO. 2AND NO. 4IN STATE 1

E{ZIL‘ To | To | To To | To | To nary MDP. A slightly different formulation, risk-sensitive MDP
=1 U I A I E U I O [15], can be used to solve this problem.
Decision Probabilistic bidding information of competitors is required
No2 [ 0125 | 025 | 0.125 0125 | 025 | 0.125 to calculate the state transition probabilities and rewards. For
Decision 0 0 0 025 | os | o02s some of the markets, the market participants’ bidding data is
No.4 : - - L . ) .
public information, e.g., the United Kingdom Market. If the

competitors’ bidding data is not available, the historical market
. . L . . prices and load demand information can be used to identify state
Daily Maximum Strategy istime independentthe deci transition probabilities by statistical data analysis. The number

sion-maker chooses the same decision option as long as oPeIa ers and the number of generators affect the computa-
system is at the same state. TBEDS results show the same play 9 P

- . X S dtional effort in calculating the state transition probabilities and
decisions on day of the planning horizon. This is expecte : : .
rewards. However, it does not influence the size of the state

since the decision is also to maximize the expected profit for
that day only. The results froaIDS aretime dependenfThe
optimal decisions on day are different from those of the pre-
vious days. For example, in stat€same as statein example

Since the competitor’s strategy may change, it may be inter-
esting to calculate the sensitivity of the policy / reward with
respect to the competitor's bids. To analyze the sensitivities,

1 but without production limit), decision opticfiis to bid at ; . ,
. o ) o . : one can vary the price, amount and the probability of this com-

low prices and decision optidhis to bid high prices. Sincethe .~ - s
etitor's bids and re-calculate the transition probabilities, op-

decision-maker has market power, bidding at high prices gi . ; .
the decision-maker a high immediate reward and the sysregr%al policies, etc. using the proposed MDP algorithm.

transfers to high price states with higher probabilities. Simi-
larly, bidding at low prices gives the decision-maker relatively
low immediate reward and the system transfers to low price The authors would like to thank Roger Bjorgan for the many
states with higher probabilities. The transition probabilities ¢felpful discussions.

decisionno. 2andno. 4in statel are illustrated in Table VI.
By making decisiomo. 2 the system possibly moves to states
1 to 33 and state§ to 9 (with nonzero transition probabilities).
By making decisiomo. 4 however, the system possibly moves
only to statest to 9. The spot prices in statdsto 3 are high,
the spot prices in statésto 9 are lower. The peak spot price [2]
for the former is23$/MWh and21$/MWh for the latter. The
optimal decision for staté is no. 4on dayl based on th&IDS
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