
System ArchitectureSystem Architecture

History of Operating SystemsHistory of Operating Systems

1© 2008 Universität Karlsruhe (TH), System Architecture Group

Some slides from A. D. Joseph, University of Berkeley

See also:
www.osdata.com/kind/history.htm
www.armory.com/~spectre/tech.html
courses.cs.vt.edu/~cs1104/VirtualMachines/OS.1.html
en.wikipedia.org/wiki/History_of_operating_systems

Moore’s Law Drives OS Change

100 0001TB10MB

32,7684GB128KB

1,280
6—40

3200x4
0.25—0.5

10
3—10

Factor20061981

Disk capacity

DRAM capacity

CPU MHz,
Cycles/inst

© 2008 Universität Karlsruhe (TH), System Architecture Group 2

Typical academic computer 1981 vs 2006

0.2$4,000$25,000

 0.1 110

23216

110,0001 Gb/s9600 b/s

100,0001TB10MB

Price

#users/machine

addr bits

Net bandwidth

Disk capacity

Moore’s Law Effects

 Nothing like this in any other area of business

 Transportation in over 200 years:
 Only 2 orders of magnitude from horseback @10mph to

Concorde @1000mph
 Computers do this every decade

© 2008 Universität Karlsruhe (TH), System Architecture Group 3

 What does this mean for us?
 Techniques have to vary over time to adapt to changing

tradeoffs

 Let’s place a lot more emphasis on principles
 The key concepts underlying computer systems
 Less emphasis on facts that are likely to change over the

next few years…

 Let’s examine the way changes in $/MIP has
radically changed how OS’s work

Dawn of Time ENIAC: (1945-55)

© 2008 Universität Karlsruhe (TH), System Architecture Group 4

 “The machine designed by Eckert and Mauchly was a
monstrosity. When it was finished, the ENIAC filled
an entire room, weighed 30 tons, and consumed
200 kilowatts of power.”

 http://ei.cs.vt.edu/~history/ENIAC.Richey.HTML

History Phase 1: 1948History Phase 1: 1948--7070

5© 2008 Universität Karlsruhe (TH), System Architecture Group

Expensive Hardware
Cheap Humans

OS

Hardware

History OS: Evolution Step 0

History of Systems

APP

© 2008 Universität Karlsruhe (TH), System Architecture Group 6

 Simple OS: One program, one user, one machine:
 examples: early computers, early PCs,
 embedded controllers such as Nintendo, cars, elevators
 OS just a library of standard services, e.g. standard device drivers,

interrupt handlers, I/O

 Non-problems: No malicious people. No bad programs
 A minimum of complex interactions

 Problem: poor utilization, expensive

History of Systems

History of Systems

© 2008 Universität Karlsruhe (TH), System Architecture Group 7

 Early batch system
 bring cards to 1401
 read cards to tape
 put tape on 7094 which does computing
 put tape on 1401 which prints output

History Phase 1
 When computers cost millions of $’s, optimize for

more efficient use of the hardware
 Lack of interaction between user and computer

 User at console: one user at a time

© 2008 Universität Karlsruhe (TH), System Architecture Group 8

 Batch monitor: load program, run, print

 Optimize to better use hardware
 When user thinking at console, computer idle very bad
 Feed computer batches and make users wait

 No protection: what if batch program was buggy?

Core Memories (1950s & 60s)

The first magnetic core
memory, from the IBM 405
Alphabetical Accounting
Machine.

© 2008 Universität Karlsruhe (TH), System Architecture Group 9

 Core Memory stored data as magnetization in iron rings

 Iron “cores” woven into a 2-dimensional mesh of wires

 Origin of the term “Dump Core”

 Rumor that IBM consulted Life Saver company

 http://www.columbia.edu/acis/history/core.html

Late 60s - Early 70s

 Data channels, Interrupts: overlap I/O and compute
 DMA – Direct Memory Access for I/O devices

 I/O can be completed asynchronously

 Multiprogramming: n>1 programs run simultaneously

© 2008 Universität Karlsruhe (TH), System Architecture Group 10

p g g p g y
 Small jobs not delayed by large jobs

 More overlap between I/O and CPU

 Need memory protection between programs and/or OS

Late 60s - Early 70s

 Complexity starts to get out of hand:
 Multics: announced in 1963, ran in 1969

 1777 people “contributed to MIT’s Multics” (30-40 core dev)

 Turing award lecture from Fernando Corbató (key researcher):
“On building systems that will fail”

© 2008 Universität Karlsruhe (TH), System Architecture Group 11

O bu d g syste s t at a

 OS 360: released with 1000 known bugs
 “Anomalous Program Activity Report”

 OS finally becomes an important science:
 How to deal with complexity?

 Result: UNIX based on Multics, but vastly simplified

The Multics System (~ 1976)

© 2008 Universität Karlsruhe (TH), System Architecture Group 12

 The 6180 at MIT IPC, skin doors open, circa 1976:
 “We usually ran the machine with doors open so the

operators could see the AQ register display, which gave you
an idea of the machine load, and for convenient access to
the EXECUTE button, which the operator would push to
enter BOS if the machine crashed.”

 http://www.multicians.org/multics-stories.html

Ritchie & Thompson at PDP 11

Unix needed 16 KB*

ld l t 8 KB

History of Systems

© 2008 Universität Karlsruhe (TH), System Architecture Group 13

users could only get 8 KB
for their application

*at that time a mini-OS

History OS: Evolution Step 1

 Simple OS is inefficient:
 a waiting process blocks everything else on the machine

 (Seemingly) Simple hack:
 run more than one process at once
 when one process blocks, switch to another

History of Systems

© 2008 Universität Karlsruhe (TH), System Architecture Group 14

gcc emacs

OS
Hardware

 A couple of problems: what if a program
 does infinite loops or
 starts randomly scribbling on memory?

 OS adds protection
 Interposition
 Preemption
 Privilege

History OS: Evolution Step 2
 Simple OS is too expensive:

 one user = one computer 

 (Seemingly) simple hack:
 Allow more than one user at once
 Does machine now run n times slower? Usually not
 Key observation: users are active in bursts

History of Systems

© 2008 Universität Karlsruhe (TH), System Architecture Group 15

OS
hardware

gcc

foo

emacs

bar

ey obse at o use s a e act e bu sts
 If idle, give resources to others

 Problems: what if
 users are greedy
 evil
 or just too numerous?

 OS adds protection
 (notice: as we try to utilize

resources, complexity grows)

Early Disk History

© 2008 Universität Karlsruhe (TH), System Architecture Group 16

1973:
1. 7 Mbit/sq. in
140 MBytes

1979:
7. 7 Mbit/sq. in
2300 MBytes

source: New York Times, 2/23/98, page C3,
“Makers of disk drives crowd even more data into even smaller spaces”

History Phase 2: 70 History Phase 2: 70 -- 8585

17© 2008 Universität Karlsruhe (TH), System Architecture Group

Cheaper HW
More Expensive Humans

History Phase 2

 Computers available for tens of thousands of dollars instead of
millions

 OS Technology maturing/stabilizing

 Interactive timesharing:
 Use cheap terminals (~$1000) to let multiple users interact

© 2008 Universität Karlsruhe (TH), System Architecture Group 18

p ($) p
with the system at the same time

 Sacrifice CPU time to get better response time
 Users do debugging, editing, and email online

 Problem: Thrashing
 Performance very non-linear

response with load
 Thrashing caused by many

factors including
 Swapping
 Inefficient queuing Users

Response
tim

e

History Phase 3: 81 History Phase 3: 81 -- 8989

19© 2008 Universität Karlsruhe (TH), System Architecture Group

Very Cheap HW
Very Expensive Humans

History Phase 3 (1981—)

 Computer costs $1K, Programmer costs $100K/year
 If you can make someone 1% more efficient by giving

them a computer, it’s worth it
 Use computers to make people more efficient

 Personal computing:
 Computers cheap, so give everyone a PC

© 2008 Universität Karlsruhe (TH), System Architecture Group 20

Computers cheap, so give everyone a PC

 Limited Hardware Resources Initially:
 OS becomes a subroutine library
 One application at a time (MSDOS, CP/M, …)

 Eventually PCs become powerful:
 OS regains all the complexity of a “big” OS
 multiprogramming, memory protection, etc (NT,OS/2)

 Question: As HW gets cheaper, does the need for OS
research go away?

Graphical User Interfaces

 CS160  All about GUIs

 Xerox Star: 1981
 Originally a research

project (Alto)
 First “mice”, “windows”

 Apple Lisa/Machintosh: 1984

X
erox Star

© 2008 Universität Karlsruhe (TH), System Architecture Group 21

pp /
 “Look and Feel” suit 1988

 Microsoft Windows:
 Win 1.0 (1985)
 Win 3.1 (1990)
 Win 95 (1995)

 Win NT (1993)

 Win 2000 (2000)
 Win XP (2001)

W
indows 3.1

Single
Level

HAL/Protection

No HAL/
Full Prot

