
Virtual memory policies
1.  The bring in policies

1.  On demand à bring the page to the main memory from the disk only when it is
needed. E.g., demand paging

2.  Anticipatory. E.g. pre-paging
2.  The replacement policies

¨  FIFO à First in first out
¨  OPTIMAL à what a clairvoyant multi-level memory manager would do.

Alternatively, construct the string of references and use it for a second
execution of the program (with the same data as input).

¨  LRU – Least Recently Used à replace the page that has not been referenced
for the longest time.

¨  MSU – Most Recently Used à replace the page that was referenced most
recently

3.  How to evalute a policy à use a string of references show what page is
needed at each moment.

4.  The capacity of the main memory is expressed as the number of frames.

Page Replacement Algorithms 1

Page replacement policies; Belady’s anomaly

n  In the following examples we use a given string of references to illustrate
several page replacement policies. We have five pages, 0, 1, 2, 3, and 4.

n  The main memory has a capacity of
¨  3 frames, labeled 0,1,2
¨  4 frames, labeled 0, 1, 2, 3

n  Once a frame has the “dirty bit” on it means that the page residing in that
frame was modifies and must be written back to the secondary device, the
disk before being replaced.

n  The capacity of the primary device is important. One expects that increasing
the capacity, in our case the number of frames in RAM leads to a higher hit
ratio. That is not always the case as our examples will show. This is the
Belady’s anomaly.

n  Note: different results are obtained with a different string of references!!

Page Replacement Algorithms 2

Time intervals 1 2 3 4 5 6 7 8 9 10 11 12 Total number of
page faults

Reference string 0 1 2 3 0 1 4 0 1 2 3 4
Frame 1 - 0 0 0 3 3 3 4 4 4 4 4
Frame 2 - - 1 1 1 0 0 0 0 0 2 2
Frame 3 - - - 2 2 2 1 1 1 1 1 3
Page OUT - - - 0 1 2 3 - - 0 1 -
Page IN 0 1 2 3 0 1 4 - - 2 3 - 9

Frame 1 - 0 0 0 0 0 0 4 4 4 4 3
Frame 2 - - 1 1 1 1 1 1 0 0 0 0
Frame 3 - - - 2 2 2 2 2 2 1 1 1
Frame 4 - - - - 3 3 3 3 3 3 2 2
Page OUT - - - - - - 0 1 2 3 4 0
Page IN 0 1 2 3 - - 4 0 1 2 3 4 10

FIFO Page replacement algorithm

Page Replacement Algorithms 3

Time intervals 1 2 3 4 5 6 7 8 9 10 11 12 Total number of
page faults

Reference string 0 1 2 3 0 1 4 0 1 2 3 4
Frame 1 - 0 0 0 0 0 0 0 0 0 2 3
Frame 2 - - 1 1 1 1 1 1 1 1 1 1
Frame 3 - - - 2 3 3 3 4 4 4 4 4
Page OUT - - - 2 - - 3 - - 0 2 -
Page IN 0 1 2 3 - - 4 - - 2 3 - 7

Frame 1 - 0 0 0 0 0 0 0 0 0 0 3
Frame 2 - - 1 1 1 1 1 1 1 1 1 1
Frame 3 - - - 2 2 2 2 2 2 2 2 2
Frame 4 - - - - 3 3 3 4 4 4 4 4
Page OUT - - - - - - 3 - - - 0 -
Page IN 0 1 2 3 - - 4 - - - 3 - 6

OPTIMAL page replacement algorithm

Page Replacement Algorithms 4

Time intervals 1 2 3 4 5 6 7 8 9 10 11 12 Total number of
page faults

Reference string 0 1 2 3 0 1 4 0 1 2 3 4
Frame 1 - 0 0 0 0 0 0 0 0 0 0 3
Frame 2 - - 1 1 2 1 1 1 1 1 1 1
Frame 3 - - - 2 3 3 3 4 4 4 2 2
Page OUT - - - 1 - 2 3 - - 4 0 1
Page IN 0 1 2 3 - 1 4 - - 2 3 4 9

Frame 1 - 0 0 0 0 0 0 0 0 0 0 0
Frame 2 - - 1 1 1 1 1 1 1 1 1 1
Frame 3 - - - 2 2 2 2 4 2 2 2 2
Frame 4 - - - - 3 3 3 3 4 4 4 3
Page OUT - - - - - - 2 - - - 4 0
Page IN 0 1 2 3 - - 4 - - - 3 4 7

LRU page replacement algorithm

Page Replacement Algorithms 5

LRU, OPTIMAL, MRU
n  LRU looks only at history
n  OPTIMAL “knows” not only the history but also the future.
n  In some particular cases Most Recently Used Algorithm performs better than LRU.
n  Example: primary device with 4 cells.
 Reference string 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
 LRU F F F F F F F F F F F F F F F
 MRU F F F F - - - - F - - - F - -

Page Replacement Algorithms 6

Time intervals 1 2 3 4 5 6 7 8 9 10 11 12 Total number of
page faults

Reference string 0 1 2 3 0 1 4 0 1 2 3 4
Frame 1 - 0 0 0 0 0 0 0 0 0 2 3
Frame 2 - - 1 1 1 1 1 1 1 1 1 1
Frame 3 - - - 2 3 3 3 4 4 4 4 4
Page OUT - - - 2 - - 3 - - 0 2 -
Page IN 0 1 2 3 - - 4 - - 2 3 - 7

Frame 1 - 0 0 0 0 0 0 0 0 0 0 3
Frame 2 - - 1 1 1 1 1 1 1 1 1 1
Frame 3 - - - 2 2 2 2 2 2 2 2 2
Frame 4 - - - - 3 3 3 4 4 4 4 4
Page OUT - - - - - - 3 - - - 0 -
Page IN 0 1 2 3 - - 4 - - - 3 - 6

The OPTIMAL replacement policy keeps in the 3 frames the same pages as it
does in case of the 4 frame primary memory. There are 5 pages, 0, 1, 2, 3, 4

Page Replacement Algorithms 7

Time intervals 1 2 3 4 5 6 7 8 9 10 11 12 Total number of
page faults

Reference string 0 1 2 3 0 1 4 0 1 2 3 4
Frame 1 - 0 0 0 0 0 0 0 0 0 0 3
Frame 2 - - 1 1 2 1 1 1 1 1 1 1
Frame 3 - - - 2 3 3 3 4 4 4 2 2
Page OUT - - - 2 - - 3 - - 0 2 -
Page IN 0 1 2 3 - 1 4 - - 2 3 4 9

Frame 1 - 0 0 0 0 0 0 0 0 0 0 0
Frame 2 - - 1 1 1 1 1 1 1 1 1 1
Frame 3 - - - 2 2 2 2 4 2 2 2 2
Frame 4 - - - - 3 3 3 3 4 4 4 3
Page OUT - - - - - - 2 - - - 4 0
Page IN 0 1 2 3 - - 4 - - - 3 4 7

The LRU replacement policy keeps in the 3-frame primary memory the same
pages as it does in case of the 4-frame primary memory.

Page Replacement Algorithms 8

Time intervals 1 2 3 4 5 6 7 8 9 10 11 12 Total number of
page faults

Reference string 0 1 2 3 0 1 4 0 1 2 3 4
Frame 1 - 0 0 0 3 3 3 4 4 4 4 4
Frame 2 - - 1 1 1 0 0 0 0 0 2 2
Frame 3 - - - 2 2 2 1 1 1 1 1 3
Page OUT - - - 0 1 2 3 - - 0 1 -
Page IN 0 1 2 3 0 1 4 - - 2 3 - 9

Frame 1 - 0 0 0 0 0 0 4 4 4 4 3
Frame 2 - - 1 1 1 1 1 1 0 0 0 0
Frame 3 - - - 2 2 2 2 2 2 1 1 1
Frame 4 - - - - 3 3 3 3 3 3 2 2
Page OUT - - - - - - 0 1 2 3 4 0
Page IN 0 1 2 3 - - 4 0 1 2 3 4 10

The FIFO replacement policy does not keep in the 3-frame primary memory the
same pages as it does in case of the 4-block primary memory

Page Replacement Algorithms 9

How to avoid Belady’s anomaly
n  The OPTIMAL and the LRU algorithms have the subset property, a primary

device with a smaller capacity hold a subset of the pages a primary device
with a larger capacity could hold.

n  The subset property creates a total ordering. If the primary system has 1
blocks and contains page A a system with two block add page B, and a
system with three blocks will add page C. Thus we have a total ordering

 AàB à C or (A,B,C)
n  Replacement algorithms that have the subset property are called “stack”

algorithms.
n  If we use stack replacement algorithms a device with a larger capacity can

never have more page faults than the one with a smaller capacity.
 mà the pages held by a primary device with smaller capacity
 n à the pages held by a primary device with larger capacity
 m is a subset of n

Page Replacement Algorithms 10

Simulation analysis of page replacement algorithms

n  Given a reference string we can carry out the simulation for all possible cases
when the capacity of the primary storage device varies from 1 to n with a
single pass.

n  At each new reference to some page move to the top of the ordering and the
pages that were above it either move down or stay in the same place as
dictated by the replacement policy. We record whether this movement
correspond to paging out, movement to the secondary storage.

Page Replacement Algorithms 11

Time 1 2 3 4 5 6 7 8 9 10 11 12
Reference string 0 1 2 3 0 1 4 0 1 2 3 4

Size 1 in/out 0/- 1/0 2/1 3/2 0/3 1/0 4/1 0/4 1/0 2/1 3/2 4/3 12
Size 2 in/out 0/- 1/- 2/0 3/1 0/2 1/3 4/0 0/1 1/4 2/0 3/1 4/2 12

Size 3 in/out 0/- 1/- 2/- 3/0 0/1 1/2 4/3 -/- -/- 2/4 3/0 4/1 10

Size 4 in/out 0/- 1/- 2/- 3/- -/- -/- 4/2 -/- -/- 2/3 3/4 4/0 8

Size 5 in/out 0/- 1/- 2/- 3/- -/- -/- 4/- -/- -/- -/- -/- -/- 5

Simulation of LRU page replacement algorithm

Stack contents
after refrence

0
-
-
-
-

1
0
-
-
-

2
1
0
-
-

3
2
2
0
-

0
3
2
1
-

1
0
3
2
-

4
1
0
3
2

0
4
1
3
2

1
0
4
3
2

2
1
0
4
5

3
2
1
0
4

4
3
2
1
0

Total number of
page faults

Page Replacement Algorithms 12

Time 1 2 3 4 5 6 7 8 9 10 11 12
Reference string 0 1 2 3 0 1 4 0 1 2 3 4

Size 1 victim - 0 1 2 3 0 1 4 0 1 2 3 11
Size 2 victim - - 1 2 - 3 1 - 1 2 3 4 10

Size 3 victim - - - 2 - - 4 - - 2 3 - 7

Size 4 victim - - - - - - 4 - - 2 - - 6

Size 5 victim - - - - - - - - - - - - 5

Simulation of OPTIMUM

Stack contents
after reference

0
-
-
-
-

1
0
-
-
-

2
0
1
-
-

3
0
1
2
-

0
3
1
2
-

1
0
3
2
-

4
0
1
3
2

0
4
1
3
2

1
0
4
3
2

2
0
4
3
1

3
0
4
2
1

4
0
3
2
1

Total number
of page faults

Page Replacement Algorithms 13

Clock replacement algorithm
n  Approximates LRU with a minimum

¨  Additional hardware: one reference bit for each page
¨  Overhead

n  Algorithm activated :
¨  when a new page must be brought in move the pointer of a virtual clock

in clockwise direction
¨  if the arm points to a block with reference bit TRUE

n  Set it FALSE
n  Move to the next block

¨  if the arm points to a block with reference bit FALSE
n  The page in that block could be removed (has not been referenced for a

while)
n  Write it back to the secondary storage if the “dirty” bit is on (if the page has

been modified.

Page Replacement Algorithms 14

Page Replacement Algorithms 15

