PUTING

MAPREDUCE

Lecture D

FAULT TOLERANCE

e Server failure
e NM heartbeats to RM

o Ifserver fails, RM lets all affected AMs know, and
AMs take action

 NM keeps track of each task running at its server

 If task fails while in-progress, mark the task as idle and
restart it

e AM heartbeats to RM

* On failure, RM restarts AM, which then syncs up
with its running tasks

RM failure
« Use old checkpoints and bring up secondary RM
* Heartbeats also used to piggyback container requests

* Avoids extra messages

Stragglers (slow nodes)

* The slowest machine slows the entire job down
(why?)

* Due to bad disk, network bandwidth, CPU, or
memory

« Keep track of “progress” of each task (% done)

* Perform backup (replicated) execution of
straggler task: task considered done when first
replica complete. Called speculative execution.

LOCALITY

e Locality

 Since cloud has hierarchical topology (e.g.,
racks)

 GFS/HDFS stores 3 replicas of each of
chunks (e.g., 64 MB in size)
* Maybe on different racks, e.g., 2 on arack, 1 on
a different rack
 MapReduce attempts to schedule a map
task on

* A machine that contains a replica of corresponding
input data, or failing that,

* On the same rack as a machine containing the input,
or failing that,

* Anywhere

MAPREDUCE: SUMMARY

e MapReduce uses parallelization +
aggregation to schedule applications across
clusters

* Need to deal with failure

* Plenty of ongoing research work in
scheduling and fault-tolerance for
MapReduce and Hadoop

