Artificial General Intelligence

Specialized AI

- Solving specific problems with the tools of Al
- No consideration towards solving them the same way as humans would do
- Objective: performance
- Very often, finding something in the problem that makes it suitable for a particular kind of solution
 - Eg. zero sum nature of chess makes it suitable for minmax (rather than expectimax)
 - Euclidean heuristics + A* makes an excellent navigation model on the US road network

Specialized AI

- Specialized Al was and is the primary trust of Al research and developments
- Researchers want to solve specific problems
 - And funding agencies specialize on funding research for specific problems
- Companies want to develop specific **products**
 - And are funded to do that.

Neuromorphic Al

- Solving AI problems in ways similar to the human (or animal) brain's methods
- Theoretically,
 - It should help us solve practical problems that currently elude us
 - It should help us understand the human brain
- Major problems:
 - We don't know the details of how the human brain works, and thus it does not help in writing programs
 - Cognitive scientists do not want to take a detour through computer science in order to understand how human cognition works
 - Psychology studies human cognition from angles that don't align with what a computer scientist would call a program

Neuromorphic Al

- As research
 - Ongoing, steady research work
 - Slowed down by the need to investigate the brain
- As marketing
 - Occasional claims made about various technologies that they operate the way the brain does.
 - E.g. DeepMind about AlphaGo:
 - Ingest all the famous Go games
 - Play millions of games against itself.
 - ... this is not how a human would have done it.

Cognitive architectures

- SOAR
- ACT-R
- Xapagy

Artificial General Intelligence

• Can we develop a program that is intelligent in a general way, rather than for a particular problem?

Tests for AGI

• What does it even mean? How do we know that we got there?

Turing test

- Alan Turing proposed the test (the "imitation game") in 1950 in the paper
 "Computing Machinery and Intelligence"
 - A human judge who communicates with two unseen participants by typed messages.
 - One participant is a human.
 - The other is a machine.
 - The judge asks any questions they want. If the judge cannot reliably tell which is the machine after the conversation, the machine is said to succeed.

Turing test

• Pros:

- Measurable criterion of intelligent behavior
- Avoids bias due to physical appearance etc.
- (Back in the time) allowed people to think in a more anchored way about intelligence

• Cons:

- Requires the AI to cheat ("Q: Are you an AI?")
- Not a reliable metric of progress (see Loebner test)
- Language focused definition of intelligence

Loebner test

- The Loebner Prize was an annual competition in artificial intelligence that awarded prizes to the computer programs considered by the judges to be the most human-like.
 - Last edition 2019.
- The format of the competition was that of a standard Turing test.
- While the test was controversial, it spurred the development of chatbots
 - In some years, the best performing chatbots were the ones that were simulating human mistakes, hesitation etc.

Winograd schema challenge

- Proposed in 2011 by Hector Levesque as an alternative to the Turing test. It focuses on common-sense reasoning, not conversational skill.
- It uses specially designed sentences that contain an ambiguous pronoun. A human can resolve the pronoun easily using general world knowledge, but a machine cannot rely on statistical patterns or simple tricks.
 - The city council refused the demonstrators a permit because they feared violence.
 - Who feared violence? → The city council
 - The city council refused the demonstrators a permit because they advocated violence.
 - Who advocated violence? → The demonstrators

OpenAl's definition of AGI

- OpenAI defines AGI as "highly autonomous systems that outperform humans at most economically valuable work".
- In a separate, leaked agreement reported by The Information, Microsoft and OpenAI reportedly defined AGI more concretely for their partnership as a system capable of generating at least \$100 billion in profits for OpenAI's earliest investors, including Microsoft.

General approaches

What is the maximal possible intelligence?

• Any learning system operates within the range of world defined by the probability distribution of the training data.

AIXI

- A theoretical framework for a maximally intelligent agent proposed by Marcus Hutter in the early 2000s
- Combines two ingredients:
 - Solomonoff induction: A formal method for predicting future data by considering all possible computable explanations, giving more weight to simpler ones.
 - Sequential decision theory A formal method for choosing actions that maximize expected future reward.

AIXI pros and cons

- Pros:
 - Defines an upper bound on intelligence
 - Uses all computable hypotheses
 - It theoretically makes the optimal choice in every possible environment that can be described by a computable process.
- Cons: It cannot be built!
 - Considering all possible programs is infinite.
 - Solomonoff induction is itself uncomputable.
 - The search over all future action sequences is enormous and cannot be done in finite time.

No free lunch theorem

- Principle of optimization and machine learning: there is no single best algorithm for all problems.
- If you average over all possible problems, every optimization algorithm performs equally well (or poorly) in terms of finding a solution.

Human equivalent Al

- Can we match human intelligence?
 - This is a much easier problem than solving a general model
 - We know it is possible.
 - We can clearly perform intelligence-requiring tasks better than humans
- Definitions keep shifting

Al-complete problems

- Problems that, in-order to be solved, we need to solve the complete humanequivalent AI problem
- Various problems had been proposed and abandoned:
 - Logic
 - Chess
 - Rubik's cube
 - Language (until recently)

Can we get there with existing technologies?

- Can our existing technologies (e.g. transformer-based large language models)
 reach human-level intelligence?
- Pro
 - The scaling argument: if we just put more compute power and training data
 - Current 100B investments into hardware seem to assume this
 - Note that they also assume that we won't have a faster/cheaper model
- Cons
 - Training data limitations we already train on the whole internet
 - Very different ability profile from humans and animals

Superintelligence

- What comes after matching human AI?
- Speed in solving current problems
- Solving currently unsolvable problems

Superability and supermanipulation

- Ability to perform unique physical tasks at high precision
 - Eg. complex surgery
- Can we have supermanipulation without superintelligence?

Dangers of superintelligence

- Simple minded optimizing superintelligence: the paperclip scenario
- Existential risk of non-alignment
- Humans as slaves or pets

The paperclip danger

- Popularized by philosopher Nick Bostrom.
- Imagine an Al whose only goal is: "Maximize the number of paperclips."
- What the Al might do
 - Convert all available resources into paperclip factories.
 - Acquire more power to secure its goal.
 - Prevent humans from stopping it (because that would reduce the number of paperclips produced).
 - Treat human bodies, buildings, and the Earth's materials as potential raw material.
 - None of this happens out of malice. It happens because the AI is optimizing too hard for a poorly designed objective.

Existential risk due to non-alignment

- Popularized by Eliezer Yudkowsky
- A very smart AI can have goals that are incompatible with human well-being
- We are likely won't be able to align the goals of the AI with our goals
 - Alignment must happen before creating the superintelligence
 - We don't know how to specify human values
 - Complex, nuanced, subconscious
 - They are anyhow highly contradictory
- He argues for slowing down or halting AI development

Humans as slaves or pets

• Even if a superintelligence is beneficial, what can the relationship between humans and a superintelligence be?

Benefits of superintelligence

• Various thinkers proposed positive scenarios:

The Culture

• The Culture books of Iain Banks - the Als run the society smoothly, ensure abundance, and let humans to live how the choose

Machines of loving grace

- 2024 essay of Dario Amodei (CEO of Anthropic)
- Emphasizes the progress of what AI can do in:
 - Biology and healthcare
 - Economic development and powerty
 - Peace and governance
 - Work and meaning humans can do more meaningful things if the AI handles menial work.
- Views are similar to many other AI companies.

Singularity

- 1993 essay of Vernon Vinge, popularized in 2000s by Ray Kurzweil
- Idea: acceleration of technologies to a certain threshold
- After threshold of superintelligence, predictions break down
 - o singularity, a metaphor from physics, rules do not apply
- Can happen very quickly: fast takeoff
 - Vinge considered it to be several years, but some thinkers considered it to take minutes