Imitation learning

Imitation learning vs. planning vs. reinforcement
learning

e Planning:
o We have a goal state s,
o We know the model T'(s, a, s')
o We create a plan of actions a1, a2, as,...a,

e Reinforcement learning:

o We can get samples of s, a, 7, s’ either from our own experience or observing
somebody else

o We are searching for a policy 7* (s) that maximizes utility (roughly, rewards
received)

Imitation learning vs. planning vs. reinforcement
learning

e |mitation learning
o We have demonstrations of the form:
= $1,a1, 82,02, 83,03 ...
o We don't have rewards. We don't necessarily know the goal state.

o We vaguely assume that whomever did the demonstrations mostly knew what
they were doing

o But we do not assume that they were optimal.

o We are searching for a policy 7* (s) that has the same goals of the demonstrator.

NOTE: This is my (Lotzi's) definition.

What people believe about imitation learning

e Justreplay ay,as,as...
e Thatis not learning, that is replay.

o Might be useful in high precision industrial robotics
o e.g.paint all the cars the same way.

o it has nothing to do with Al

e The term "learning from demonstrations” might be more accurate, but it is used less
often.

e The challenge: it is unlikely that you will see exactly the states in the demonstrations
again. And even if you see them, the randomness in the transition function might land
you in a different state afterwards!

o Replay won't work!

Two approaches to imitation learning

e Behavior cloning
o Assume that the demos were done by an agent using an unknown policy

7Tdemo(3)
o Learn apolicy m =~ T 4.mo USiNg the demonstrations as training data.

e |Inverse reinforcement learning
o Assume that the demos were done by an agent pursuing a certain set of
unknown rewards 7 gemo (S, @, s')

o Reverse engineerar(s,a, s') = riemo(Ss, a, s')

o Use RL to find a 7 that maximizes the rewards in r

Behavior cloning

Behavior cloning

e Assume an underlyingMDP M = {S, A, T, R,~}.Unknown T and R.
e Let us assume that the expert has a (nearly) optimal policy 7*
e We will denote with d™ the state visitation frequency implied by a policy 7
e Demonstrations are samples drawn from the state visitation frequency of the optimal
policy
D= (sj,a)it; ~d"

e Goalistolearn a policy ¢ that is as good as the expert 7*

Behavior cloning (cont'd)

o Let us assume that we are choosing our policies from a certain parameterized policy

class o € 11
o These days, this usually means that it is a neural network with weights w

e Behavior cloning is essentially supervised learning

M

7T =argmin Y L(m, s;,a;)
mell 1

e There are many choices the loss function L can take:
o Negative log-likelihood L(7, s}, a}) = —In w(a*|s*)

o Square loss (if a is a continuous signal like steering angle)
L(m,s7,a7) = || m(s) — a*[[3

What could go wrong?

[Pomerleau89,Daume09]

Predictions affect future inputs/

observations
Learned Pol_]cy . .-“--. Expert’s trajectory
\»‘“ . i .
0'0.‘“ ai .‘O
:.:’./ S “‘

*
. * 3
B & s
® -... \ o
... d L}

I @

wy +

\.."'l-.--l" o

Distribution shift

e Here is the general argument
o Assume perfect demonstrations which tell you what to do in a set of states s
= eg. keeping the car in the middle of the road

o Some unexpected thing will happen, which gets you into a state s’ from which
you don't have information in demonstrations
= eg. drifted from the middle of the road

o The farther you are from the demonstrations, the worse your policy
= 50, you will wear more and more off the road

10

Making behavior cloning work

o Many of these arguments turned out to have too many simplifying assumptions.
o The problem of distribution shift was presented as a fundamental problem that
dooms BC in general cases

o But people learn from demonstrations!

e Couple of ways forward:
o Maybe the imitation happens in a favorable latent space

o Maybe you also have imperfect demonstrations and demonstrations of self-
correction

o Maybe there is an underlying policy of getting back to known states

11

Video time:

o | earning real manipulation tasks from virtual demonstrations using LSTM
o https://www.youtube.com/watch?v=9vYIllIG20zaM

12

https://www.youtube.com/watch?v=9vYlIG2ozaM

Generative Adversarial Imitation Learning (GAIL)

e |Inspired by Generative Adversarial Networks (GANS):
o (Generator policy 7y - produces actions from states

o Discriminator D¢ - distinguishes expert vs. agent trajectories.

e Training objective:
o Policy improves to fool discriminator.

o Discriminator learns to separate expert from agent.

13

Algorithm

1. Collect expert demonstrations.
2. Initialize policy g and discriminator D¢.

3. Repeat:
o Sample trajectories using 6.

o Train D¢ to distinguish expert vs. agent data.
o Train 7mg to maximize “being classified as expert.”

o Update with policy gradient (e.g., TRPO, PPO).

14

Objective Function

min max E expert|l0g D(s,a)| + E;r|log(1 — D(s,a))]

e Equivalent to the GAN objective.

e Discriminator acts as a learned reward signal

15

Advantages

e Avoids handcrafting rewards
e Learns directly from expert demonstrations

e Robust to compounding errors compared to behavioral cloning

16

Applications

e Robotics (e.g., manipulation, locomotion)
e Autonomous driving

e Game Al (mimicking human playstyles)

17

Inverse reinforcement learning

18

Inverse reinforcement learning

o Assume an underlyingMDP M = {S, A, T, R,~}.Unknown R. Usually, known T".

e Let us assume that the expert has a (nearly) optimal policy 7*

e Demonstrations are samples drawn from the state visitation frequency of the optimal
policy

D = (Syva:)?il ~d"

e The setting is almost the same as behavior cloning.

19

Inverse RL

e We assume that the expert is optimizing some kind of reward R
e Our goal is to reverse engineer the reward
e Then we can create a policy gy, by solving the MDP

e Possible benefits (over behavior cloning)
o The rewards seem to better capture the meaning of the action (compared to
cloning the behavior)

o We can, possibly, transfer the reward structure to a completely different MDP, with
different transitions etc.

o We can perform better than the expert if we manage to optimize better for the
same reward!

20

Inverse RL Challenges

e lll-posed problem: the actions of an expert do not uniquely define the rewards it
follows
o Eg.scaling...

o But those different reward functions might generate different policies...

o Scalability: inferring the reward function in a large state space is hard
o Requires a lot of data
o |t seems to be actually a harder problem than the one we started with (finding a
policy)
o Generalization: the inferred reward might not be correct outside our range of
observations...

21

Maximum margin IRL (Abbeel and Ng 2004)

e Find areward that makes expert trajectories score higher than alternatives by a margin

o Autonomous Helicopters Teach Themselves to Fly Stunts
o https://www.youtube.com/watch?v=M-QUkgk3HyE

22

https://www.youtube.com/watch?v=M-QUkgk3HyE

Maximum entropy IRL (Ziebart 2008)

Models the probability of expert trajectories using the principle of maximum entropy.
Assume that the probability of the trajectory is:

P(T) a exp (Z R(st,at)>

From all the reward functions that explain the observed behaviors, choose the one

that maximizes the entropy over the distribution of possible behaviors
e Assume an expert that is as random as possible given the observed data

e The goalis to avoid introducing additional biases, or to overfit to the training data.

23

