
State-of-the-art reinforcement learning algorithms

1

What algorithms are currently used?

Some of the algorithms we discussed are of historical importance:

For instance, you probably don't want to use vanilla policy gradient.

They had been superseeded by algorithms that add tweaks, and they are
specialized for particular setups - eg. continuous or discrete actions, continuous

or discrete states etc.

These algorithms still fall in the classes we discussed - Q-learning, policy gradient,

actor-critic etc.

Small optimizations in the implementation might make a significant difference in
performance

E.g. things like memory access patterns

Very likely, you don't want to implement them yourself, unless your objective is to

improve on them 2

Soft Actor-Critic (SAC)

3

Motivation

Traditional actor–critic algorithms maximize expected return

But they can suffer from:

Poor exploration

Instability in training

SAC introduces entropy maximization

Encourages exploration

Stabilizes learning

4

Core Idea

Maximize both:

1. Expected reward

2. Policy entropy (randomness in actions)

Objective:

: temperature parameter (trade-off between reward & entropy).

5

Key Components

Actor (Policy): stochastic policy outputs actions.

Critic (): estimates action-value function.

Entropy regularization: improves exploration.

Automatic temperature tuning: adaptively balances reward vs entropy.

6

Update Rules

1. Critic Update (soft Bellman backup):

2. Actor Update (minimizing KL divergence):

7

Algorithm Steps

1. Initialize replay buffer, actor, critic, and temperature

2. For each step:
Sample action from policy

Store in replay buffer.

Update -functions using soft Bellman backup.

Update policy to maximize entropy-regularized objective

Adjust temperature automatically.

8

Advantages

Better exploration via entropy maximization

Sample-efficient (uses off-policy replay buffer)

Stable training (double critics, entropy regularization)

Works well in continuous action spaces

9

Applications

Robotics (manipulation, locomotion)

Continuous control tasks (Mujoco, PyBullet)

Real-world autonomous systems

10

Summary

SAC = Actor–Critic + Maximum Entropy RL

Learns policies that are both reward-maximizing and stochastic

Off-policy, sample-efficient, and stable in practice.

11

Proximal Policy Optimization (PPO)

12

Motivation

Policy gradient methods (like REINFORCE, A2C) are:
High variance

Unstable with large updates

Trust Region Policy Optimization (TRPO) improved stability,
but is complex and expensive.

PPO: a simpler, more efficient alternative.

13

Core Idea

Prevent policy updates from being too large.

Use a clipped surrogate objective to constrain policy changes.

14

Clipped Objective

Define probability ratio:

Clipped surrogate loss:

 - advantage estimate

 - small hyperparameter (e.g. 0.1–0.2)

15

Training Procedure

1. Collect rollouts using current policy.

2. Estimate advantages (e.g., with GAE).

3. Optimize clipped loss for several epochs on minibatches.

4. Update value function (critic) and policy (actor).

5. Repeat.

16

Key Features

Clipping: prevents excessively large updates.

Multiple epochs: improves sample efficiency.

Generalized Advantage Estimation (GAE): reduces variance in advantage estimates.

Simpler than TRPO: no second-order optimization.

17

Advantages

Stable and reliable performance

Easy to implement

Works with high-dimensional continuous actions

Strong results across many benchmarks (Atari, Mujoco)

18

Applications

Robotics and control (locomotion, manipulation)

Games (Atari, Go, etc.)

Large-scale RL benchmarks

19

Summary

PPO = policy gradient + clipping for stability

Balances performance and simplicity

One of the most widely used RL algorithms today

20

Reinforcement Learning with Human Feedback
(RLHF)

21

Motivation

Traditional RL requires a reward function, but many tasks lack a clear one.

Human preferences can provide guidance:
What outputs are more helpful, safe, or aligned?

RLHF uses human feedback as a training signal.

22

Core Idea

1. Pretrain a model (e.g., language model) on large datasets.

2. Collect human feedback:
Show multiple outputs for the same prompt.

Ask humans which is preferred.

3. Train a reward model on this preference data.

4. Fine-tune the model with RL to maximize the learned reward.

23

RLHF Pipeline

1. Supervised Fine-Tuning (SFT):

Start with pretrained model.

Fine-tune on curated, high-quality examples.

2. Reward Model (RM):

Learn to predict human preferences.

Takes (prompt, output) as input → scalar reward.

3. RL Optimization (PPO often used):

Fine-tune the model to maximize RM score.

Use a KL penalty to keep outputs close to pretrained model.

24

Reward Model Training

Human annotators label which response is better

Reward model trained with pairwise ranking loss:

where is preferred, is not.

25

Policy Optimization (PPO step)

Policy = language model being trained.

Objective combines:

Reward model score

KL penalty against initial policy

Keeps the model aligned but avoids drifting too far.

26

Advantages

Aligns AI behavior with human preferences

Works when explicit reward functions are hard to define

Improves helpfulness, safety, and user satisfaction

27

Applications

Large Language Models (e.g., ChatGPT)

Conversational AI and assistants

Content moderation / safe generation

Robotics tasks with human-in-the-loop training

28

Summary

RLHF = Pretraining + Human Feedback + RL Fine-Tuning

Replaces hand-designed rewards with learned human preference signals.

Widely used to align large AI models with human values.

29

