State-of-the-art reinforcement learning algorithms

What algorithms are currently used?

o Some of the algorithms we discussed are of historical importance:
o For instance, you probably don't want to use vanilla policy gradient.

o They had been superseeded by algorithms that add tweaks, and they are
specialized for particular setups - eg. continuous or discrete actions, continuous
or discrete states etc.

e These algorithms still fall in the classes we discussed - Q-learning, policy gradient,
actor-critic etc.

o Small optimizations in the implementation might make a significant difference in
performance
o E.g.things like memory access patterns

o Very likely, you don't want to implement them yourself, unless your objective is to
improve on them

Soft Actor-Critic (SAC)

Motivation

e Traditional actor—critic algorithms maximize expected return

e But they can suffer from:
o Poor exploration

o |nstability in training

e SAC introduces entropy maximization
o Encourages exploration

o Stabilizes learning

Coreldea

Maximize both:

1. Expected reward

2. Policy entropy (randomness in actions)

Objective:
J(7) = > E(sa)~r|r(se;ar) + aH(w(-]s.))]
t

o o: temperature parameter (trade-off between reward & entropy).

Key Components

e Actor (Policy 7y): stochastic policy outputs actions.
e Critic (Q¢): estimates action-value function.
e Entropy regularization: improves exploration.

o Automatic temperature tuning: adaptively balances reward vs entropy.

Update Rules

1. Critic Update (soft Bellman backup):
Q(s,a) < r+vEy o |Q(s',a") — alogm(a’|s"))
2. Actor Update (minimizing KL divergence):

VHJW(H) — Est,awﬂe [CV log 7'(',9((1,‘8) o Q(37 a’)}

Algorithm Steps

1. Initialize replay buffer, actor, critic, and temperature «

2. For each step:
o Sample action from policy 7y

o Store (s, a,r,s’)inreplay buffer.
o Update Q-functions using soft Bellman backup.
o Update policy g to maximize entropy-regularized objective

o Adjust temperature ¢ automatically.

Advantages

o Better exploration via entropy maximization
o Sample-efficient (uses off-policy replay buffer)
e Stable training (double critics, entropy regularization)

o \Works well in continuous action spaces

Applications

e Robotics (manipulation, locomotion)
e Continuous control tasks (Mujoco, PyBullet)

e Real-world autonomous systems

10

Summary

e SAC = Actor-Critic + Maximum Entropy RL
o |earns policies that are both reward-maximizing and stochastic

o Off-policy, sample-efficient, and stable in practice.

11

Proximal Policy Optimization (PPO)

12

Motivation

o Policy gradient methods (like REINFORCE, A2C) are:
o High variance

o Unstable with large updates

e Trust Region Policy Optimization (TRPO) improved stability,
but is complex and expensive.

e PPO: a simpler, more efficient alternative.

13

Core ldea

e Prevent policy updates from being too large.

e Use a clipped surrogate objective to constrain policy changes.

14

Clipped Objective

Define probability ratio:

7TH(at\st)

Weold(at\st)

r:(0) =
Clipped surrogate loss:
LCLIP(H) — Et [mm (’I“t(g)At, clip('rt(e), 1 — €, 1+ G)At)]

o A, - advantage estimate

e €-small hyperparameter (e.g. 0.1-0.2)

15

Training Procedure

1. Collect rollouts using current policy.

2. Estimate advantages (e.g., with GAE).
3. Optimize clipped loss for several epochs on minibatches.

4. Update value function (critic) and policy (actor).

5. Repeat.

16

Key Features

o Clipping: prevents excessively large updates.
o Multiple epochs: improves sample efficiency.
o Generalized Advantage Estimation (GAE): reduces variance in advantage estimates.

o Simpler than TRPO: no second-order optimization.

17

Advantages

Stable and reliable performance

Easy to implement

Works with high-dimensional continuous actions

Strong results across many benchmarks (Atari, Mujoco)

18

Applications

e Robotics and control (locomotion, manipulation)
o Games (Atari, Go, etc.)

e Large-scale RL benchmarks

19

Summary

e PPO = policy gradient + clipping for stability
e Balances performance and simplicity

e One of the most widely used RL algorithms today

20

Reinforcement Learning with Human Feedback
(RLHF)

21

Motivation

e Traditional RL requires a reward function, but many tasks lack a clear one.

e Human preferences can provide guidance:
o What outputs are more helpful, safe, or aligned?

e RLHF uses human feedback as a training signal.

22

Coreldea

1. Pretrain a model (e.g., language model) on large datasets.

2. Collect human feedback:
o Show multiple outputs for the same prompt.

o Ask humans which is preferred.
3. Train a reward model on this preference data.

4. Fine-tune the model with RL to maximize the learned reward.

23

RLHF Pipeline

1. Supervised Fine-Tuning (SFT):

o Start with pretrained model.

o Fine-tune on curated, high-quality examples.
2.Reward Model (RM):

o Learn to predict human preferences.

o Takes (prompt, output) as input - scalar reward.
3. RL Optimization (PPO often used):

o Fine-tune the model to maximize RM score.

o Use a KL penalty to keep outputs close to pretrained model.

24

Reward Model Training

e Human annotators label which response is better

o Reward model trained with pairwise ranking loss:
L=— log O'(R(ZIZ, y+) _ R(LE, y_))

where y™ is preferred, y is not.

25

Policy Optimization (PPO step)

e Policy = language model being trained.

e Objective combines:
o Reward model score

o KL penalty against initial policy

o Keeps the model aligned but avoids drifting too far.

26

Advantages

e Aligns Al behavior with human preferences
o Works when explicit reward functions are hard to define

o Improves helpfulness, safety, and user satisfaction

27

Applications

e Large Language Models (e.g., ChatGPT)
e Conversational Al and assistants
e Content moderation [safe generation

e Robotics tasks with human-in-the-loop training

28

Summary

e RLHF = Pretraining + Human Feedback + RL Fine-Tuning
o Replaces hand-designed rewards with learned human preference signals.

e Widely used to align large Al models with human values.

29

