
Policy gradient reinforcement learning

Some material on these slides are derived from the slides created by David Silver for University College London, available at

https://davidstarsilver.wordpress.com/ .

https://davidstarsilver.wordpress.com/

RL model

We assume a world governed by an MDP

States

Actions

System dynamics

Reward function

We are looking for the policy

But we don't know and/or as functions

But if we take an action , in state , we can observe that we landed in and received

reward .

What we have done until now is primarily value-based
RL

What we have done until now is primarily value-based RL

We estimated values: ,

Let us introduce a new value, the advantage
It shows how much a certain action is worse than the optimal action

The whole point of Q-learning was to calculate the Q-value without having to estimate
the whole MDP (the transition function , the reward function)

We estimated the Q by getting sample rewards as we were acting in the world

Then, we used the value to infer the policy

Policy gradient RL

Can we estimate directly the policy without going through the value first?

The idea is that we have a parameterized policy
Find the best

Based on the rewards sampled from the environment.

How do we measure the quality of the policy ?

We will define a function that describes the quality of the policy

Describing the quality of a policy

In discrete environments we can use the start value

In continuing environments we can use the average value

Or the average reward per time-step

Where is the stationary distribution of the Markov chain for
Basically: how much time are you going to spend in state if you follow in ?

Policy optimization

Policy-based reinforcement learning is an optimization problem
Find that optimizes

There are many approaches one can use, and not all of them use the gradient

Hill climbing

Simplex / amoeba / Nelder Mead

Greater efficiency often possible using gradient descent

We will focus on that.

Policy gradient

Let be any policy objective function.

Policy gradient algorithms search for a local maximum of by ascending the

gradient of the policy, w.r.t. parameters

where is the policy gradient and is a step-size parameter

Computing gradients by finite differences

To evaluate the policy gradient of

For each dimension

Estimate the -th partial derivative of the objective function wrt to

By perturbing with a small amount in the -th dimension

where is the unit vector in the -th component, elsewhere

We need to evaluate times for one step.

Simple, noisy, inefficient - but sometimes effective.

Works for arbitrary policies, even if the policy is not differentiable.

Computing the gradient analytically

Directly calculating the objective function is a very big pain in the neck

Even for the definition with the value of the start state... that is basically solving
the MDP! Which we don't have!

And with the density function: that assumes a level of knowledge about the
environment that we don't have

So we want some way to evaluate the policy gradient without actually calculating

Let us assume that the policy is differentiable whenever it is non-zero

Policy gradient theorem

Applies to start state objective, average reward and average value objective.

Theorem
For any differentiable policy , for any of the policy objective functions ,

 or , the policy gradient is:

Why is the policy gradient a big deal

We don't have to take the gradient of the function, we don't even have to calculate

it.

We need to calculate the gradient of the log policy - and the policy function is
something that we know, because we created it.

Eg. it is the neural network implementing the policy.

And we can just use the automatic differentiator

It works both for discrete and continuous states and actions.

We still need a way to estimate
Note that it is the of the policy, not the perfect

Still, how do we estimate it?

REINFORCE

The grandfather of all policy gradient approaches (Ronald Williams, 1992)

Idea: estimate with the return

That is: consider a run that terminates in state . Add up all the future rewards
between current timestep to the end: this is .

This is a single, unbiased sample of the -value at that point.

Also called
"vanilla policy gradient" - no other tricks in this algorithm

"Monte Carlo policy gradient" - because it waits to the end of the run to calculate

the total reward, and uses that as a learning signal.

REINFORCE algorithm

function REINFORCE
 initialize theta arbitrarily
 for each episode (s1,a1, r2, ...sT-1, aT-1, rT) do
 for t=1 to T-1 do
 theta = theta + alpha * nabla log pi_theta (st,at) * vt
 end for
 end for
end function

Why is REINFORCE not the perfect solution

We need to wait to the end of the run

So we need to wait to see how the run turns out before we can update the policy

In Q-learning, we were learning at every step

High variance

The return of a particular run can be very different from the value

Maybe you were just unlucky... but now you changed the policy away from the
correct one...

On-policy algorithm
We need to run the current policy to gather data.

Compare this to Q-learning which is off-policy: you can use samples from any

other agent running any policy, and learning will still work.

Reducing variance using a critic

We can use a critic to estimate the action-value function of the current policy:

Actor critic algorithms maintain two sets of parameters:
Critic updates action-value function parameters

Actor updates policy parameters , in the direction suggested by the critic

Actor-critic algorithms follow an approximate policy gradient:

Reducing variance using a baseline

We subtract a baseline function from the policy gradient

This can reduce variance without changing expectation:

We can take out the B(s) from the because it does not depend on

the sum for all is 1, because one of the actions will be taken

Reducing variance using a baseline

This means that we can subtract any function from the function we are taking the
gradient on, as long as it depends only on the state, not on the action.

A good baseline is the state value function

So we can rewrite the policy gradient using the advantage function

This creates the family of algorithms called advantage actor critic (A2C/A3C). Can

significantly reduce the variance of policy gradient: faster and more stable
convergence.

