Expectimax search

Some figures are derived from the slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley, available at
http://ai.berkeley.edu.

http://ai.berkeley.edu/

Uncertain outcomes

e Single agent search tree assumed that you are the only agent taking actions and their
result is predicted by the transition function T'(s, a) — s’

¢ Minmax assumed that there is also an opponent taking actions
o But, in some sense, the zero sum opponent is also predictable

o What if we don't know the result of the action?
o Inherent randomness in the environment: rolling a dice

o Unpredictable opponents or bystanders with random behavior

o Actions can fail or succeed partially (slipping wheels etc)

Probabilistic transition function

o A way to think about this is that the transition function is now probabilistic:
T(s,a,s') €[0,1]

o We will talk more about this when we discuss Markov Decision Processes and
reinforcement learning

Expectimax search

We are still trying to compute the V value
e max nodes: return the max of successors

e min nodes: return the min of the successors

expectation nodes: return the probability weighted average (expectation) of children

Reminder: expectation of a random variable
E(f(z)) = Zp(wi)f(wz-)

or, in a continuous case:

Expectation of time to get to the airport:

e Drive time: 20 clear weather, 40 min in rain, 60 min in show
e Likelihood of clear weather 80%, rain 15%, snow 5%
o Expectation: 20*0.8+40*0.15+60 *0.05=25

Backgammon (or other dice-based zero-sum games)

e Max node (move by ego, after knowing dice)

Expect node (dice by opponent)

Min node (move by opponent, after knowing dice)

Expect node (dice by ego)

e Max node (move by ego, after knowing dice)...and so on

Expectimax (and other variants) pseudocode

def value(state):
if state is TERMINAL: return value
if state is MAX: return maxvalue(state)
if state is MIN: return minvalue(state)
if state is EXPECT: return expvalue(state)

def maxvalue(s)
V = —00
for s' in succ(s)
v = min (v, maxvalue(s'))
return v

def expvalue(s)
v =0
for s' in succ(s)
v = v + probability(s') * value(s')
return v

12

15

Expectimax pruning

e Can we prune expectimax?

e Problem: expectation can go both up and down with new nodes!
o You need all the subnodes to calculate the expectation

e Heuristics:
o prune branches if their contribution to the expectation is small enough to be
negligible (e.g.they are unlikely)

o prune branches if you predict their values as being below a threshold

Depth limited expectimax

e Expectimax nodes can really blow up the computation time, because you need to
evaluate everything below

o |tis useless to make long plans when they depend on repeated dice throws to come

out just so:
o | will throw an 8 and move like this, then my opponent will throw a 4 and move like

that, then | will throw an 11...

o Game programs for games with significant random component:
o Think ahead only 1..4 plies

o Use a very good evaluation function

Where do we get the probabilities from?

e |n expectimax search, we need to know the probabilities of outcomes
o Sometimes it is some uniform or near randomness (eg. dice)

o Sometimes it is a small uncertainty on a positive or negative action.

 Where do we get the probabilities? - The model
o Sometimes it is simple - eg. dice roll

o Sometimes it is very complex

e We will revisit this later

Informed probabilities

e Expectimax can also handle situations where you try to model an imperfect opponent:

e Let us say that the opponent is doing the perfect minmax move 90% of the time, but

moves randomly 10% of the time
o This is an expectation node. But you don't know the probability of the moves

ahead of time, you need to calculate it!

e You need to run a simulation of your opponent, with the opponent simulating you
o This is very expensive for expectimax

o |tis much cheaper for minmax, because the two simulations are folded into the
same tree.

Mixed layers

o Different layers (max/min/expectations) can be mixed randomly.
o Often, we consider the environment an additional "random" player.

e Each node computes the appropriate combination of its children.

Example: Backgammon

Er2 X3

[@3\

[9)1.....0 ®e o 0’0

] % XSl B
= 5%%&(@.%&%

Example: Backgammon

e Dicerolls increase b: 21 possible rolls with 2 dice
o About 20 legal moves

o With depth 2 number of nodes is 20 x (21 x 20)? = 1.2 x 10”

o As depth increases, probability of reaching a given search node is getting smaller
o Searching for the best outcome is getting less and less useful

o There is no point searching ten moves ahead: it is very unlikely that the dice will
play out just so

e History
o TDGammon (Gerald Tesauro, 1990s): 1st Al world champion in any significant
game. Uses depth-2 search + very good evaluation function + reinforcement
learning

Multi-agent games

e What if the game is not zero sum,
or has multiple players?

e Node values are not tuples of

utility
e Each player maximizes its own ﬁ

ut|||ty 166 || 712 || 612|721 557 152|771 || 525

e Emergent cooperation and
competitition

