
Expectimax search

Some figures are derived from the slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley, available at

http://ai.berkeley.edu.

http://ai.berkeley.edu/

Uncertain outcomes

Single agent search tree assumed that you are the only agent taking actions and their

result is predicted by the transition function

Minmax assumed that there is also an opponent taking actions
But, in some sense, the zero sum opponent is also predictable

What if we don't know the result of the action?
Inherent randomness in the environment: rolling a dice

Unpredictable opponents or bystanders with random behavior

Actions can fail or succeed partially (slipping wheels etc)

Probabilistic transition function

A way to think about this is that the transition function is now probabilistic:

We will talk more about this when we discuss Markov Decision Processes and
reinforcement learning

Expectimax search

We are still trying to compute the V value

max nodes: return the max of successors

min nodes: return the min of the successors

expectation nodes: return the probability weighted average (expectation) of children

Reminder: expectation of a random variable

or, in a continuous case:

Expectation of time to get to the airport:

Drive time: 20 clear weather, 40 min in rain, 60 min in snow

Likelihood of clear weather 80%, rain 15%, snow 5%

Expectation: 20 * 0.8 + 40 * 0.15 + 60 * 0.05 = 25

Backgammon (or other dice-based zero-sum games)

Max node (move by ego, after knowing dice)

Expect node (dice by opponent)

Min node (move by opponent, after knowing dice)

Expect node (dice by ego)

Max node (move by ego, after knowing dice)... and so on

Expectimax (and other variants) pseudocode

def value(state):
 if state is TERMINAL: return value
 if state is MAX: return maxvalue(state)
 if state is MIN: return minvalue(state)
 if state is EXPECT: return expvalue(state)

def maxvalue(s)
 v = -∞
 for s' in succ(s)
 v = min (v, maxvalue(s'))
 return v

def expvalue(s)
 v = 0
 for s' in succ(s)
 v = v + probability(s') * value(s')
 return v

Expectimax pruning

Can we prune expectimax?

Problem: expectation can go both up and down with new nodes!
You need all the subnodes to calculate the expectation

Heuristics:
prune branches if their contribution to the expectation is small enough to be

negligible (e.g. they are unlikely)

prune branches if you predict their values as being below a threshold

Depth limited expectimax

Expectimax nodes can really blow up the computation time, because you need to

evaluate everything below

It is useless to make long plans when they depend on repeated dice throws to come
out just so:

I will throw an 8 and move like this, then my opponent will throw a 4 and move like
that, then I will throw an 11...

Game programs for games with significant random component:
Think ahead only 1..4 plies

Use a very good evaluation function

Where do we get the probabilities from?

In expectimax search, we need to know the probabilities of outcomes

Sometimes it is some uniform or near randomness (eg. dice)

Sometimes it is a small uncertainty on a positive or negative action.

Where do we get the probabilities? - The model

Sometimes it is simple - eg. dice roll

Sometimes it is very complex

We will revisit this later

Informed probabilities

Expectimax can also handle situations where you try to model an imperfect opponent:

Let us say that the opponent is doing the perfect minmax move 90% of the time, but

moves randomly 10% of the time
This is an expectation node. But you don't know the probability of the moves

ahead of time, you need to calculate it!

You need to run a simulation of your opponent, with the opponent simulating you

This is very expensive for expectimax

It is much cheaper for minmax, because the two simulations are folded into the
same tree.

Mixed layers

Different layers (max/min/expectations) can be mixed randomly.

Often, we consider the environment an additional "random" player.

Each node computes the appropriate combination of its children.

Example: Backgammon

Example: Backgammon

Dice rolls increase : 21 possible rolls with 2 dice

About 20 legal moves

With depth 2 number of nodes is

As depth increases, probability of reaching a given search node is getting smaller

Searching for the best outcome is getting less and less useful

There is no point searching ten moves ahead: it is very unlikely that the dice will
play out just so

History
TDGammon (Gerald Tesauro, 1990s): 1st AI world champion in any significant

game. Uses depth-2 search + very good evaluation function + reinforcement
learning

Multi-agent games

What if the game is not zero sum,

or has multiple players?

Node values are not tuples of

utility

Each player maximizes its own
utility

Emergent cooperation and
competitition

