
Game play and adversarial search

Some figures are derived from the slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley, available at

http://ai.berkeley.edu.

http://ai.berkeley.edu/

Comparison to planning and reflex agents

We are still in the agent view of AI - we have a goal!

But the transition function does not depend only on our actions

There are other agents who take actions as well

Usually, in opposition to our goals

Planning all actions ahead of time will not work, we need to react to the actions of the

other agents.

Paradoxically: a reflex agent, with a lookup table for every state might work (but would

be very inefficient)

State of the art in game play

Checkers: 1994: First computer champion. 2007: Checkers solved!

Chess: 1997 Deep Blue defeated human champion Gary Kasparov. Very sophisticated
evaluation techniques, and significant computing power. These days: trivial computing

power can defeat any human.

Go: 2016, DeepMind AlphaGo defeats Lee Sedol, top Go player.

Poker: Some variants were solved (eg. heads-up limit Texas hold'em).

What does it mean for a game to be solved: informally, that we found a strategy (not a plan)
that is the best possible.

Types of games

Deterministic or stochastic?

Is there randomness involved? Shuffled cards, dice?

Complete or partial information game?
Is a part of the information hidden?

One, two or more players?

Zero sum? If yes, the game is fully adversarial

General games

Outcome values might be more complex, they don't add up to zero

Eg. Monopoly, Settlers of Catan

The player's strategy might include cooperation, indifference, competition,

alliances, cliques, contracts etc.

Deterministic games

States

Players , take turns

Actions . Not all actions might be available for every player at every state.

Transition function
The fact that this is not probabilistic, makes this a deterministic game

Terminal test:
Eg: checkmate!

Eg: golden snitch was catched!

(Terminal) utilities:

Game playing in AI

Agent view of AI: the AI is one of the players.

Let us assume players A and B who take actions successively.

Usually, we cannot search for a plan, because the agent's actions are interleaved with

the actions of the opponent!

We will search for a policy instead:

Single player, deterministic, complete information
game

Take actions to maximize the utility of the terminal state you reach!

What is value of the intermediate states?

Depends on where you go from there...

But you should go in the direction where you will eventually get better value

A perfect player at any choice would choose the one with the maximum value

The V value

The value of a state , in many AI contexts, is the value you can achieve starting
from and acting perfectly from now on

In the case of a one player game: just calculate it recursively by max.
...it gets harder later...

For a terminal state:

For a non-terminal state

Example: tic-tic-tic game

Tic-tic-tic is one person tic-tac-toe, with limit of 3 moves

m = 3, average b = 8

How do we calculate the V values?

How to act in a single player, deterministic, complete
information game?

Your policy should be: take the action for which the successor has the largest value.

Is this now gameplay or planning?

Actually, both! You can calculate a list of actions to the end of the game.

Two player, deterministic, zero-sum games

Agents have opposite utilities: for each terminal state they add up to zero:

Eg. chess, go, etc.

We can think of a single value that one of the agents maximizes and the other
minimizes.

Purely adversarial

Zero sum game

Adversarial search (minimax)

Assume deterministic, zero sum games

Player one maximizes the result, the other one minimizes it

We call it a maximizing player and minimizing player

Minimax search tree
State-space search tree, with a V value

Players alternate turns, correspond to vertical layers in the tree

Minimax algorithm

def maxvalue(s)
 if s terminal return val(s)
 v = -∞
 for s' in succ(s)
 v = max (v, minvalue(s'))
 return v

def minvalue(s)
 if s terminal return val(s)
 v = ∞
 for s' in succ(s)
 v = min (v, maxvalue(s'))
 return v

Minimax example

Tic-tac-toe - what is the value of this position?

 | x | o

o
x | x | o

Performance of minimax

Similar to exhaustive DFS
Time

Space

It can solve any adversarial game, just not very efficiently
Chess: ,

Go: ,

Game style of minimax

It works perfectly against a perfect player.

It also works perfectly against a non-perfect opponent
But this means that sometimes is too cautious

Alpha-beta pruning

Can we improve on the performance of minimax?

For instance, do we always need to search the whole tree, down to all the leaves?

It helps us to know that the other player is our adversary:

If we find that in a branch there is at least one very bad outcome, we can stop
searching it.

Even if there are better outcomes in that branch, the opponent will not choose it!

Alpha-beta pruning: full minimax tree

There are situations when Max already knows that it will not choose a node!

Alpha-beta pruning: pruned tree

Alpha-beta pruning

MIN version

We are computing the min-value at n

We are looping over n's children

n's estimate of the children's min is dropping

Who cares about n's value? MAX

Let be the best value that MAX can get at any
choice point along the current path from the root

If n becomes worse than , MAX will avoid it, so

we can stop considering n's other children

MAX version: symmetric, with substituted for

Alpha-beta implementation

def maxvalue(s, alpha, beta)
 if s terminal return val(s)
 v = -∞
 for s' in succ(s)
 v = max (v, minvalue(s', alpha, beta))
 if v >= beta return v
 alpha = max(alpha, v)
 return v

def minvalue(s)
 if s terminal return val(s)
 v = +∞
 for s' in succ(s)
 v = min (v, maxvalue(s', alpha, beta))
 if v <= alpha return v
 beta = min(beta, v)
 return v

Understanding alpha-beta pruning

The min or max value of the root does not change.
But the values of nodes further down can change.

Even at the first level! Which is not good, because those values are the ones used
for the action selection

Solution: start alpha-beta at the children of the top node.

How much we prune depends on the order in which we investigate the children
You want to get the bad news to come soon, because then you can prune the

rest.

Rich area for heuristics

What can be achieved with alpha-beta pruning

If the ordering is perfect, time complexity drops from to

Doubles the solvable depth!

From looking ahead 4 moves to looking ahead 8...

Complexity remains exponential, complete search of chess or go are still hopeless

Resource limited search for minimax

In practice, you can only search to a limited depth (plies)

one ply == one move by one of the players

Eg. 4 plies ahead in chess

More plies, better performance

Evaluation function
This is what you return when you hit the limit, cannot search further.

It is an informed guess of the V value of the current state

Evaluation functions and cost

The ideal evaluation function is the actual minimax value

An evaluation function is always imperfect

If we can made an efficient and perfect evaluation function for a game, it is not
much of a game.

We can sometimes make evaluation functions better by expending more computation.

Cheap evaluation function in chess: add up the nominal piece values and return
the difference between the white and black pieces

More expensive one: calculate the positional values of the pieces.

Very expensive one: look up the position in a library of famous games

Evaluation functions and depth

It turns out that the deeper in the tree the evaluation function is, the less its quality
matters.

Tradeoff:

Cheap but weak evaluation function, go 8 plies deep?

Expensive but good evaluation function, go 2 plies deep?

How to build an evaluation function?

You can use just about any function

Historically: ask an expert for a formula that explains the evaluation of a game state

Example evalution function for chess:

This process is called knowledge elicitation
Very work-intensive, expensive and prone to major errors

Feature-based evaluation function

New idea: don't ask the expert for a formula, just important features.

A feature or is a property of a state which might or might
not hold

 = is the black king checked?

 = damage incurred by a unit

We assume that the evaluation is a weighted linear sum of features

Feature-based evaluation function (cont'd)

What did we gain:

Easier for the expert to list features that matter, rather than provide a formula

Once we are done with the features, we can ask the expert for the weights
Can be positive or negative, small or large in absolute value

Learning feature weights

We can learn the weights!

The features are the input of a machine learning system

The real V(s) value is the output

It is not exactly trivial to get the real V(s):

we can try to run the search to completion... expensive in computer time, cannot
be done for chess or go

ask the expert to evaluate the board... expensive in human time

use library of games by expert players... not a bad idea, for games where such
records exist, like chess and go

we can try to play the game to the end... players might not be optimal

More about features

The idea of features had been / is very influential in AI.

We will meet them again in reinforcement learning.

They had been very important in computer vision, speech recognition etc.

General consensus circa 2010: engineer , learn

Since 2012: learn , learn

It is sometimes not easy to find the in a large neural network, even if we know they
should be there.

Explainable AI: one way to explain what a system does is to know what features it

takes into account
Sometimes, we don't want some features to matter: eg. race, gender, immigration

status

Adversarial games are not only played on boards!

