Game play and adversarial search

Some figures are derived from the slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley, available at
http://ai.berkeley.edu.

http://ai.berkeley.edu/

Comparison to planning and reflex agents

o We are still in the agent view of Al - we have a goal!

o But the transition function does not depend only on our actions
o There are other agents who take actions as well

o Usually, in opposition to our goals

e Planning all actions ahead of time will not work, we need to react to the actions of the
other agents.

o Paradoxically: a reflex agent, with a lookup table for every state might work (but would
be very inefficient)

State of the art in game play

Checkers: 1994: First computer champion. 2007: Checkers solved!

Chess: 1997 Deep Blue defeated human champion Gary Kasparov. Very sophisticated
evaluation techniques, and significant computing power. These days: trivial computing
power can defeat any human.

o Go: 2016, DeepMind AlphaGo defeats Lee Sedol, top Go player.

o Poker: Some variants were solved (eg. heads-up limit Texas hold'em).

What does it mean for a game to be solved: informally, that we found a strategy (not a plan)
that is the best possible.

Types of games

e Deterministic or stochastic?
o |s there randomness involved? Shuffled cards, dice?

e Complete or partial information game?
o |s a part of the information hidden?

One, two or more players?

e Zero sum? If yes, the game is fully adversarial

General games
o Qutcome values might be more complex, they don't add up to zero

o Eg. Monopoly, Settlers of Catan

o The player's strategy might include cooperation, indifference, competition,
alliances, cligues, contracts etc.

Deterministic games

States S = {sq, ...}
Players P = {1... N}, take turns

Actions A. Not all actions might be available for every player at every state.

Transition function T'(s,a) — s’

o The fact that this is not probabilistic, makes this a deterministic game

Terminal test: completed(s) — {true, false}
o Eg: checkmate!

o EQ: golden snitch was catched!

(Terminal) utilities: U(s, p) € R

Game playing in Al

o Agent view of Al: the Al is one of the players.
e Let us assume players A and B who take actions successively.
So —> A1 — 81 — ap] — S92 — Q42 — S3
o Usually, we cannot search for a plan, because the agent's actions are interleaved with

the actions of the opponent!

 We will search for a policy instead: 7(s) — a

Single player, deterministic, complete information
game

o Take actions to maximize the utility of the terminal state you reach!

e \What is value of the intermediate states?
o Depends on where you go from there...

o But you should go in the direction where you will eventually get better value

o A perfect player at any choice would choose the one with the maximum value

N
Value of a state: Non-Terminal States:
The best achievable V(s

outcome (utility)
\ from that state Y /“x
_ -!

ZZZ

max V(s')
s’echildren(s)

Terminal States:
V (s) = known

The V value

e The V value of a state s, in many Al contexts, is the value you can achieve starting
from s and acting perfectly from now on

e |n the case of a one player game: just calculate it recursively by max.
o ..it gets harder later...

e For aterminal state: V(s) = known

e For a non-terminal state

V(s)= mazx V(s)

s'€successors(s)

Example: tic-tic-tic game

e Tic-tic-tic is one person tic-tac-toe, with limit of 3 moves
e m=3,average b =8

e How do we calculate the V values?

How to act in a single player, deterministic, complete
information game?

e Your policy should be: take the action for which the successor has the largest value.
7(s) = argmazxz V (T'(s,a))

a
e |s this now gameplay or planning?

e Actually, both! You can calculate a list of actions to the end of the game.

Two player, deterministic, zero-sum games

o Agents have opposite utilities: for each terminal state they add up to zero:

U(Sapl) — _U(87p2)
o Eg.chess, go, etc.

e We can think of a single value that one of the agents maximizes and the other
minimizes.

e Purely adversarial

Zero sum game

States Under Agent’s Control: States Under Opponent’s Control:
Vi(s) = max V(s Vi(s') = min V{(s)
s Esuccessors(s) sEsuccessors(s’)

Terminal States:
V(s) = known

Adversarial search (minimax)

o Assume deterministic, zero sum games

o Player one maximizes the result, the other one minimizes it
o We call it a maximizing player A and minimizing player V

e Minimax search tree
o State-space search tree, with a V value

o Players alternate turns, correspond to vertical layers in the tree

Minimax algorithm

def maxvalue(s)
if s terminal return val(s)
V = —00
for s' in succ(s)
v = max (v, minvalue(s'))
return v

def minvalue(s)
if s terminal return val(s)
V = o
for s' in succ(s)
v = min (v, maxvalue(s'))
return v

Minimax example

e Tic-tac-toe - what is the value of this position?

Performance of minimax

e Similar to exhaustive DFS
o Time O(b™)
o Space O(bm)

e |t can solve any adversarial game, just not very efficiently
o Chess: b ~ 35 m ~ 100 — 3510

o Go:b ~ 250 m ~ 210 — 250210

Game style of minimax

e |t works perfectly against a perfect player.

e |t also works perfectly against a non-perfect opponent
o But this means that sometimes is too cautious

Alpha-beta pruning

o Can we improve on the performance of minimax?
e Forinstance, do we always need to search the whole tree, down to all the leaves?

e |t helps us to know that the other player is our adversary:
o |f we find that in a branch there is at least one very bad outcome, we can stop
searching it.

o Even if there are better outcomes in that branch, the opponent will not choose it!

Alpha-beta pruning: full minimax tree

e There are situations when Max already knows that it will not choose a node!

Alpha-beta pruning: pruned tree

4
2/

14

Alpha-beta pruning

e MIN version
o We are computing the min-value at n

o We are looping over n's children
o n's estimate of the children's min is dropping
o Who cares about n's value? MAX

o Let o« be the best value that MAX can get at any
choice point along the current path from the root

o If n becomes worse than o, MAX will avoid it, so
we can stop considering n's other children

e MAX version: symmetric, with 8 substituted for o

MAX

MIN

MAX

MIN

Alpha-beta implementation

def maxvalue(s, alpha, beta)

if s terminal return val(s)

V = —o

for s' in succ(s)
v = max (v, minvalue(s', alpha, beta))
1f v >= beta return v
alpha = max(alpha, v)

return v

def minvalue(s)

if s terminal return val(s)

V = 400

for s' in succ(s)
v = min (v, maxvalue(s', alpha, beta))
if v <= alpha return v
beta = min(beta, v)

return v

Understanding alpha-beta pruning

e The min or max value of the root does not change.
o But the values of nodes further down can change.

o Even at the first level! Which is not good, because those values are the ones used
for the action selection

o Solution: start alpha-beta at the children of the top node.

e How much we prune depends on the order in which we investigate the children
o You want to get the bad news to come soon, because then you can prune the
rest.

o Rich area for heuristics

What can be achieved with alpha-beta pruning

« If the ordering is perfect, time complexity drops from O(b™) to O(b™/?)

e Doubles the solvable depth!
o From looking ahead 4 moves to looking ahead 8...

o Complexity remains exponential, complete search of chess or go are still hopeless

Resource limited search for minimax

e |n practice, you can only search to a limited depth (plies)
o one ply == one move by one of the players

o EgQ. 4 plies ahead in chess
o More plies, better performance

e Evaluation function
o This is what you return when you hit the limit, cannot search further.

o |tis aninformed guess of the V value of the current state

Evaluation functions and cost

e The ideal evaluation function is the actual minimax value

e An evaluation function is always imperfect
o |[f we can made an efficient and perfect evaluation function for a game, it is not
much of a game.

o \We can sometimes make evaluation functions better by expending more computation.
o Cheap evaluation function in chess: add up the nominal piece values and return
the difference between the white and black pieces

o More expensive one: calculate the positional values of the pieces.

o Very expensive one: look up the position in a library of famous games

Evaluation functions and depth

e [t turns out that the deeper in the tree the evaluation function is, the less its quality
matters.

e Tradeoff:
o Cheap but weak evaluation function, go 8 plies deep?

o Expensive but good evaluation function, go 2 plies deep?

How to build an evaluation function?

e You can use just about any function eval(S) — R
o Historically: ask an expert for a formula that explains the evaluation of a game state

o Example evalution function for chess:

Evaluation = (9x Queens) + (5x Rooks) + (3x Bishops and Knights) + (1x Pawns) + Positional Adjustments

e This process is called knowledge elicitation
o Very work-intensive, expensive and prone to major errors

Feature-based evaluation function

e New idea: don't ask the expert for a formula, just important features.

o Afeature f(s) € {0,1}or f(s) € |0,1] is a property of a state which might or might
not hold
o f(s) =is the black king checked?

o f(s) = damage incurred by a unit

o \We assume that the evaluation is a weighted linear sum of features

eval(s) = wy - f1(8) + -+ + wy - fu(s)

Feature-based evaluation function (cont'd)

e What did we gain:
o Easier for the expert to list features that matter, rather than provide a formula

o Once we are done with the features, we can ask the expert for the weights
= Can be positive or negative, small or large in absolute value

Learning feature weights

e We can learn the weights!

o The features are the input @& of a machine learning system
o The real V(s) value is the output y

e [tis not exactly trivial to get the real V(s):

o we can try to run the search to completion... expensive in computer time, cannot
be done for chess or go

o ask the expert to evaluate the board... expensive in human time

o use library of games by expert players... not a bad idea, for games where such
records exist, like chess and go

o we can try to play the game to the end... players might not be optimal

More about features

e The idea of features had been [is very influential in Al.
o We will meet them again in reinforcement learning.

o They had been very important in computer vision, speech recognition etc.

e General consensus circa 2010: engineer f,learn w

Since 2012: learn f,learn w

It is sometimes not easy to find the f in a large neural network, even if we know they
should be there.

Explainable Al: one way to explain what a system does is to know what features it
takes into account
o Sometimes, we don't want some features to matter: eg. race, gender, immigration
status

Adversarial games are not only played on boards!

mm

THEATERKIDE
THEATERWIDE BIOTOXIC AND CHEMICAL WARFARE

6LOBAL THERMONUCLEAR HAR
1

CHALL HE PLAY A GAMER

