Game play and adversarial search

Comparison to planning and reflex agents

- We are still in the agent view of AI we have a goal!
- But the transition function does not depend only on our actions
 - There are other agents who take actions as well
 - Usually, in opposition to our goals
- Planning all actions ahead of time will not work, we need to react to the actions of the other agents.
- Paradoxically: a reflex agent, with a lookup table for every state might work (but would be very inefficient)

State of the art in game play

- Checkers: 1994: First computer champion. 2007: Checkers solved!
- **Chess**: 1997 Deep Blue defeated human champion Gary Kasparov. Very sophisticated evaluation techniques, and significant computing power. These days: trivial computing power can defeat any human.
- Go: 2016, DeepMind AlphaGo defeats Lee Sedol, top Go player.
- Poker: Some variants were solved (eg. heads-up limit Texas hold'em).

What does it mean for a game to be **solved**: informally, that we found a strategy (*not* a plan) that is the best possible.

Types of games

- Deterministic or stochastic?
 - Is there randomness involved? Shuffled cards, dice?
- Complete or partial information game?
 - Is a part of the information hidden?
- One, two or more players?
- Zero sum? If yes, the game is fully adversarial
- General games
 - Outcome values might be more complex, they don't add up to zero
 - Eg. Monopoly, Settlers of Catan
 - The player's strategy might include cooperation, indifference, competition, alliances, cliques, contracts etc.

Deterministic games

- States $S = \{s_0, \ldots\}$
- Players $P = \{1 \dots N\}$, take turns
- ullet Actions A. Not all actions might be available for every player at every state.
- ullet Transition function T(s,a) o s'
 - The fact that this is not probabilistic, makes this a deterministic game
- ullet Terminal test: $completed(s)
 ightarrow \{true, false\}$
 - Eg: checkmate!
 - Eg: golden snitch was catched!
- (Terminal) utilities: $U(s,p) \in \mathbb{R}$

Game playing in Al

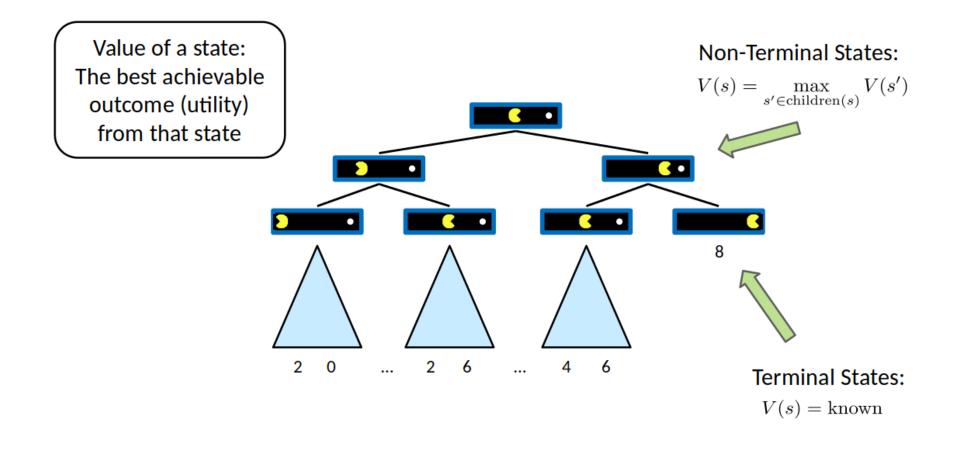
- Agent view of Al: the Al is one of the players.
- Let us assume players A and B who take actions successively.

$$s_0
ightarrow a_{A1}
ightarrow s_1
ightarrow a_{B1}
ightarrow s_2
ightarrow a_{A2}
ightarrow s_3$$

- Usually, we cannot search for a **plan**, because the agent's actions are interleaved with the actions of the opponent!
- ullet We will search for a **policy** instead: $\pi(s) o a$

Single player, deterministic, complete information game

- Take actions to maximize the utility of the terminal state you reach!
- What is value of the intermediate states?
 - Depends on where you go from there...
 - But you should go in the direction where you will eventually get better value
 - A perfect player at any choice would choose the one with the maximum value



The V value

- ullet The V value of a state s, in many Al contexts, is the value you can achieve starting from s and acting perfectly from now on
- In the case of a one player game: just calculate it recursively by max.
 - ...it gets harder later...
- ullet For a terminal state: V(s)=known
- For a non-terminal state

$$V(s) = \displaystyle \max_{s' \in successors(s)} V(s')$$

Example: tic-tic-tic game

- Tic-tic-tic is one person tic-tac-toe, with limit of 3 moves
- m = 3, average b = 8
- How do we calculate the V values?

How to act in a single player, deterministic, complete information game?

Your policy should be: take the action for which the successor has the largest value.

$$\pi(s) = \mathop{argmax}\limits_{a} \ V\left(T(s,a)
ight)$$

- Is this now gameplay or planning?
- Actually, both! You can calculate a list of actions to the end of the game.

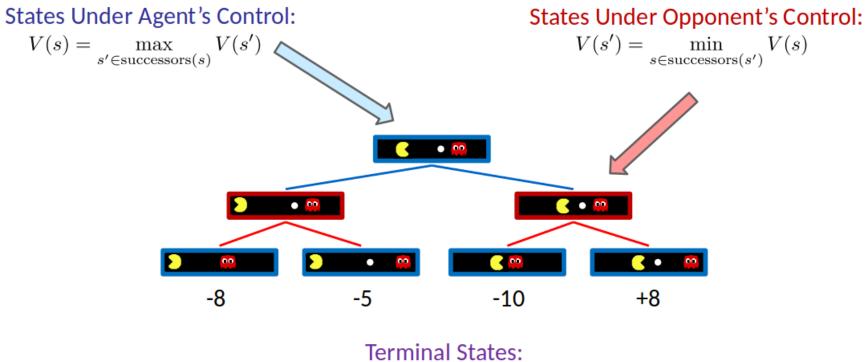
Two player, deterministic, zero-sum games

• Agents have opposite utilities: for each terminal state they add up to zero:

$$U(s,p_1)=-U(s,p_2)$$

- Eg. chess, go, etc.
- We can think of a single value that one of the agents maximizes and the other minimizes.
- Purely adversarial

Zero sum game



$$V(s) = known$$

Adversarial search (minimax)

- Assume deterministic, zero sum games
- Player one maximizes the result, the other one minimizes it
 - \circ We call it a maximizing player Δ and minimizing player abla
- Minimax search tree
 - State-space search tree, with a V value
 - Players alternate turns, correspond to vertical layers in the tree

Minimax algorithm

```
def maxvalue(s)
  if s terminal return val(s)
  for s' in succ(s)
   v = max (v, minvalue(s'))
  return v
def minvalue(s)
  if s terminal return val(s)
  V = \infty
  for s' in succ(s)
   v = min (v, maxvalue(s'))
  return v
```

Minimax example

• Tic-tac-toe - what is the value of this position?

Performance of minimax

- Similar to exhaustive DFS
 - \circ Time $O(b^m)$
 - \circ Space O(bm)
- It can solve any adversarial game, just not very efficiently
 - \circ Chess: bpprox 35, $mpprox 100
 ightarrow 35^{100}$
 - $_{\circ}$ Go: bpprox250 , $mpprox210
 ightarrow250^{210}$

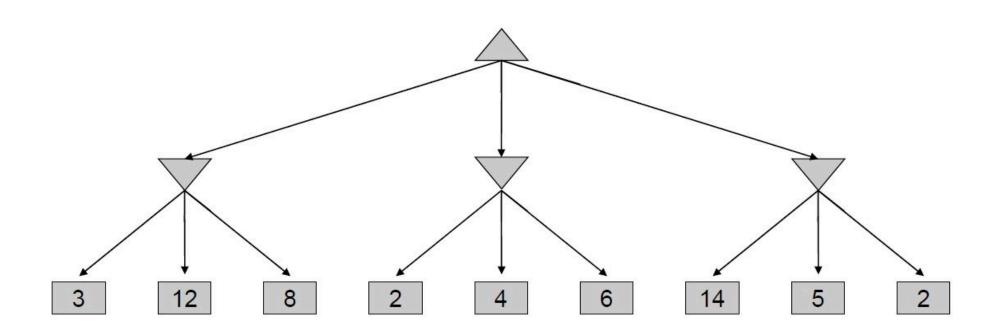
Game style of minimax

- It works perfectly against a perfect player.
- It also works perfectly against a non-perfect opponent
 - But this means that sometimes is too cautious

Alpha-beta pruning

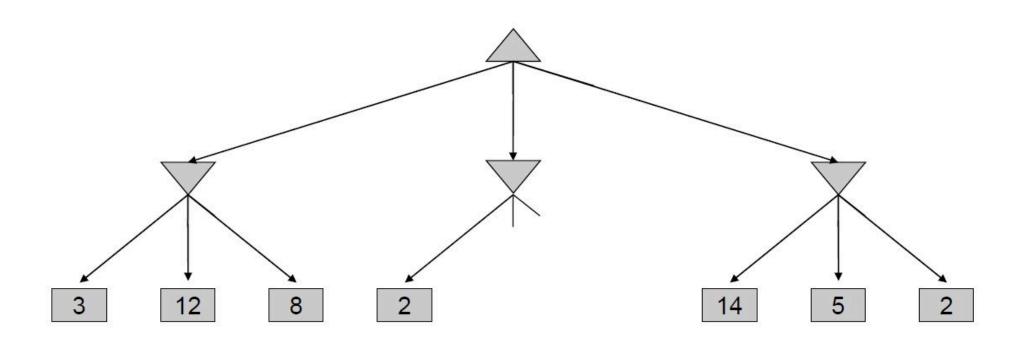
- Can we improve on the performance of minimax?
- For instance, do we always need to search the whole tree, down to all the leaves?
- It helps us to know that the other player is our adversary:
 - If we find that in a branch there is at least one very bad outcome, we can stop searching it.
 - Even if there are better outcomes in that branch, the opponent will not choose it!

Alpha-beta pruning: full minimax tree



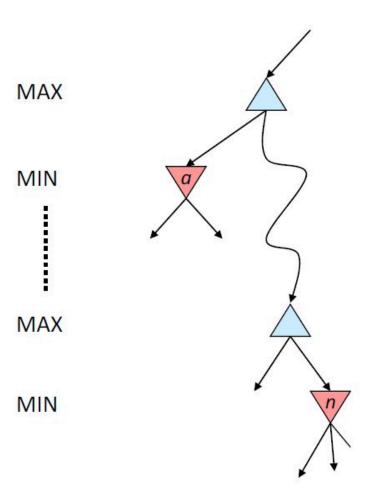
• There are situations when Max already knows that it will not choose a node!

Alpha-beta pruning: pruned tree



Alpha-beta pruning

- MIN version
 - We are computing the min-value at n
 - We are looping over n's children
 - n's estimate of the children's min is dropping
 - Who cares about n's value? MAX
 - \circ Let α be the best value that MAX can get at any choice point along the current path from the root
 - \circ If n becomes worse than α , MAX will avoid it, so we can stop considering n's other children
- ullet MAX version: symmetric, with eta substituted for lpha



Alpha-beta implementation

```
def maxvalue(s, alpha, beta)
  if s terminal return val(s)
  V = -\infty
  for s' in succ(s)
    v = max (v, minvalue(s', alpha, beta))
    if v >= beta return v
    alpha = max(alpha, v)
  return v
def minvalue(s)
  if s terminal return val(s)
  V = +\infty
  for s' in succ(s)
    v = min (v, maxvalue(s', alpha, beta))
    if v <= alpha return v</pre>
    beta = min(beta, v)
  return v
```

Understanding alpha-beta pruning

- The min or max value of the *root* does not change.
 - But the values of nodes further down can change.
 - Even at the first level! Which is not good, because those values are the ones used for the action selection
 - Solution: start alpha-beta at the children of the top node.
- How much we prune depends on the order in which we investigate the children
 - You want to get the bad news to come soon, because then you can prune the rest.
 - Rich area for heuristics

What can be achieved with alpha-beta pruning

- If the ordering is perfect, time complexity drops from $O(b^m)$ to $O(b^{m/2})$
- Doubles the solvable depth!
 - From looking ahead 4 moves to looking ahead 8...
- Complexity remains exponential, complete search of chess or go are still hopeless

Resource limited search for minimax

- In practice, you can only search to a limited depth (plies)
 - one ply == one move by one of the players
 - Eg. 4 plies ahead in chess
 - More plies, better performance

Evaluation function

- This is what you return when you hit the limit, cannot search further.
- It is an informed guess of the V value of the current state

Evaluation functions and cost

- The ideal evaluation function is the actual minimax value
- An evaluation function is always imperfect
 - If we can made an efficient and perfect evaluation function for a game, it is not much of a game.
- We can sometimes make evaluation functions better by expending more computation.
 - Cheap evaluation function in chess: add up the nominal piece values and return the difference between the white and black pieces
 - More expensive one: calculate the positional values of the pieces.
 - Very expensive one: look up the position in a library of famous games

Evaluation functions and depth

- It turns out that the deeper in the tree the evaluation function is, the less its quality matters.
- Tradeoff:
 - Cheap but weak evaluation function, go 8 plies deep?
 - Expensive but good evaluation function, go 2 plies deep?

How to build an evaluation function?

- ullet You can use just about any function $eval(S)
 ightarrow \mathbb{R}$
- Historically: ask an expert for a formula that explains the evaluation of a game state
- Example evalution function for chess:

```
Evaluation = (9 	imes Queens) + (5 	imes Rooks) + (3 	imes Bishops\ and\ Knights) + (1 	imes Pawns) + Positional Adjustments
```

- This process is called knowledge elicitation
 - Very work-intensive, expensive and prone to major errors

Feature-based evaluation function

- New idea: don't ask the expert for a formula, just important features.
- ullet A feature $f(s) \in \{0,1\}$ or $f(s) \in [0,1]$ is a property of a state which might or might not hold
 - \circ f(s) = is the black king checked?
 - \circ f(s) = damage incurred by a unit
- We assume that the evaluation is a weighted linear sum of features

$$eval(s) = w_1 \cdot f_1(s) + \cdots + w_n \cdot f_n(s)$$

Feature-based evaluation function (cont'd)

- What did we gain:
 - Easier for the expert to list features that matter, rather than provide a formula
 - Once we are done with the features, we can ask the expert for the weights
 - Can be positive or negative, small or large in absolute value

Learning feature weights

- We can learn the weights!
 - \circ The features are the **input** \boldsymbol{x} of a machine learning system
 - The real V(s) value is the output y
- It is not exactly trivial to get the real V(s):
 - we can try to run the search to completion... expensive in computer time, cannot be done for chess or go
 - ask the expert to evaluate the board... expensive in human time
 - use library of games by expert players... not a bad idea, for games where such records exist, like chess and go
 - we can try to play the game to the end... players might not be optimal

More about features

- The idea of features had been / is very influential in Al.
 - We will meet them again in reinforcement learning.
 - They had been very important in computer vision, speech recognition etc.
- General consensus circa 2010: engineer f, learn w
- Since 2012: learn f, learn w
- It is sometimes not easy to find the f in a large neural network, even if we know they should be there.
- Explainable AI: one way to explain what a system does is to know what features it takes into account
 - Sometimes, we don't want some features to matter: eg. race, gender, immigration status

Adversarial games are not only played on boards!

SHALL HE PLAY A GAME