Independence in probabilities, Bayes' nets
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Models

e A modelis a way to describe how the world works (or at least, the portion of interest to
us)

e You have learned about many models in physics, chemistry, biology, economics
o The so-called "laws" are very often better described as "models”
e Models are not reality!

o Evenin the best case, they only model the aspects of reality we are interested in

o We ignore some variables because (a) we are not interested in them or (b) we
cannot measure them or (c) we cannot handle the computation...



Probabilistic models

e Models that describe the world through random variables and their relationships

e Sources of randomness:
o Intrinsic randomness in the world we model: eg. our returns at the casino

o Lack of knowledge in predictions: eg. predicting tracks of hurricanes.

o Populations we look at measurements averaged over populations (or repeated
samples). Example: predicting

o Noisy observations the world is deterministic, but our observations are affected
by random noise

o Preference for probabilistic models sometimes we prefer a probabilistic model
because the math works out better. Example: diffusion models for image
generation.



How do we use probabilistic models

e The world is described by a set of random variables

e \WWe have some information about the distributions of these variables and the relations
between them

o Some individual probabilities, some joints, some conditionals

e Some variables are known (evidence)

o Using the relations between the variables, we answer questions about the world such
as:

o explanation - diagnostic reasoning

o prediction - what is the likely value of a variable?

o value of information - what other information do we need to better answer a
question?



The best probabilistic model, and why we cannot have
it

 Let us say that we describe the world with random variables X1, X, ... X,

o If we have the joint probability table P( X1, X, ... P,) all our problems are solved!
o We can answer any question, for any evidence by simply applying the reasoning
process described in the last class: select rows compatible with evidence +
marginalize!

e The problem:
o The joint table is huge! If n = 10 and each random variable has 10 possible
values, we need 10'° probabilities.
= And this is nothing compared to, eg. the stock market

o How are we going to build a model this big? Who is going to give us the
probabilities?



Two fundamentally different ideas to build a
probabilistic model

e |dea 1: Introduce structure

e |dea 2: Use learning



Structured probabilistic models

o \We assume that the joint probability table does not contain all independent values. For
instance, some of the values can be described by mathematical operations on a
smaller number of probabilities

e This can happen, for instance, if some of the variables are independent of each other.

e These relationships can be described through some kind of structure, often
described as a graph

e Examples:
o Bayesian Networks (directed graphs)

o Markov Random Fields (undirected graphs)
o Factor Graphs

o Probabilistic Circuits, etc.



Learned probabilistic models

o \We assume that the probabilities are described by a certain parameterized function
P(x1,z9,...2,) = f(x1,22,...2,;0)
o We use data to learn the parameter ©
o Examples:
o Classical parametric models: eg Gaussian Mixture Models

o Latent variable models

o Deep generative models: use deep neural networks for f
= Variational autoencoders, Normalizing flows, Diffusion models

o Energy based models
= Define probability via an unnormalized energy function (we don't need to
calculate the normalizing factor Z)



What we will do today?

e One of the simplest ways to simplify probabilistic models:
o Introduce the concept of independence and conditional independence

o Create a directed graph (the bayesian network) what describes the set of
dependencies between the variables of the model.



Independence

e Two variables are independent if:
Vz,y: P(z,y) = P(z)P(y)
e This says that their joint distribution factors into a product of two simplest
distributions.

e Why is this "independence"? Another way to write this (direct consequence of the
definition of a conditional)

Va,y: P(zly) = P()
We write
X 1Y



Independence is a simplifying assumption

e |[f we have 10 variables with 10 possible values
o If they are not independent we need 1010 probability values to describe the joint

o If they are independent we need 100 probability values

e Are there many independent variables in the world?
o Sure: throwing a dice in Las Vegas and an airport delay in Orlando are usually
independent!

o N fair, independent coin flips are independent

e But any set of variables chosen for a given problem, they are rarely fully independent!



Conditional independence

e X is conditionally independent of Y given Z
X UY|Z
if and only if
vz,y,z: P(x,y|z) = P(z|z)P(y|2)
or, equivalently
Va,y, z: P(z|y, z) = P(x|z)



Importance of conditional independence

e |tis much more likely that we find conditional independence in the variables of our
problem.



Example with conditional independence here



Bayes Nets

e \We have a probabilistic model, which would require us to have the full joint table.

o \We will describe the joint table using simple, local, conditional distributions

We describe how the variables interact locally using a graph
o part of a family called probabilistic graphical models

e Local interactions chain together to give global interactions



Example Bayes Net for diagnosing a car that won't
start

alternator fanbelt
broke broke

batte fuel line starter
Cooar ) Goas

Notice that there are relatively few dependencies between the nodes!

dea




Notations

e Nodes: variables with domains
o Can be assigned (observed) or unassigned (unobserved)

e Directed edges
o Indicate direct influence between variables

o Formally: encode conditional independence

o Although this is not strictly correct, you can imagine that the edges mean direct

causation.



Example: coin flips

e N independent coin flips

ORORORERO

e No interactions between variables: absolute independence



Example: traffic

Variables: R it rains, T there is traffic
e \WWe can model it as independent (model O)

e Or we can model it that rain causes traffic (model 1) or traffic causes rain (model 2)

o boH

Which is better? What does an agent gain by using model 1?
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Bayes' net semantics

A set of nodes, one per variable X

A directed, acyclic graph

A conditional distribution for each node

o A collection of distributions over X, one
for each combination of parent's values
» P(Xl|ai,ao,...a,)
Bayes Net = Topology (graph) + Local
Conditional Probabilities



Probabilities in Bayes' nets

o Bayes' nets implicitly encode joint distributions
o As a product of local conditional distributions

o To see what probability a Bayes Net gives to a full assignment, multiply all the
relevant conditionals together

n
P(x1,x9,...,T,) = H P(x;|parents(X;))
i=1
e This means that a Bayes net cannot express any possible joint distribution, only those
that can be written this way.
o The smaller the number of arrows (parent/child relationships) the less number of
values we need to describe the joint distro described by the Bayes net.



Probabilities in Bayes' nets

o But, wait, will this result in proper joint distribution? Meaning, does it add up to 1.0?

e Chain rule (valid for all distributions)

n
P($1, LYy oo ,wn) — H P($i’$1, c o ZEi_l)

i=1

e |f we assume the conditional independence:

P(x;|zy,...2;_1) = P(z;|parents(X;))

e What this means that the node only depends on the parents!
o |If we know how the parents turned out, the probability of the node doesn't
depend on the rest of the network ("d-separation")



Example Bayes net - independent nodes



Example Bayes net - Naive Bayes



Example Bayes net - Markov chain



Example Bayes net - Hidden markov model



Causality?

e Bayes' nets are just conditional probabilities
o Arrows just encode conditional independence

o The arrows only reflect correlation, not causation.

o This is good, because we can build a Bayes net even if we don't understand
causation

e Sometimes we can build the Bayes net such that it really reflects causality
o Often simpler (nhodes have fewer patterns)

o Often easier to think about

o Often easier to elicit from experts



What do we think about Bayes nets?

e The whole area of probabilistic graphical models was the last great Al idea before the
deep learning revolution

e [tis stillin the spirit of expert systems:
o Interview an expert to deduct the structure of the Bayes net

o Ask the expert for the probabilities - or learn the probabilities from data.

o They still have benefits:
o Explainability: they can be understood by humans

o Often learning can be more efficient if we first restrict what we are learning by
recognizing conditional independencies.



