Independence in probabilities, Bayes' nets

Models

- A **model** is a way to describe how the world works (or at least, the portion of interest to us)
- You have learned about many models in physics, chemistry, biology, economics
 - The so-called "laws" are very often better described as "models"
- Models are not reality!
 - Even in the best case, they only model the aspects of reality we are interested in
 - We ignore some variables because (a) we are not interested in them or (b) we cannot measure them or (c) we cannot handle the computation...

Probabilistic models

- Models that describe the world through random variables and their relationships
- Sources of randomness:
 - Intrinsic randomness in the world we model: eg. our returns at the casino
 - Lack of knowledge in predictions: eg. predicting tracks of hurricanes.
 - Populations we look at measurements averaged over populations (or repeated samples). Example: predicting
 - Noisy observations the world is deterministic, but our observations are affected by random noise
 - Preference for probabilistic models sometimes we prefer a probabilistic model because the math works out better. Example: diffusion models for image generation.

How do we use probabilistic models

- The world is described by a set of random variables
- We have some information about the distributions of these variables and the relations between them
 - Some individual probabilities, some joints, some conditionals
- Some variables are known (evidence)
- Using the relations between the variables, we answer questions about the world such as:
 - explanation diagnostic reasoning
 - o prediction what is the likely value of a variable?
 - value of information what other information do we need to better answer a question?

The best probabilistic model, and why we cannot have it

- ullet Let us say that we describe the world with random variables $X_1, X_2, \dots X_n$
- If we have the joint probability table $P(X_1, X_2, \dots P_n)$ all our problems are solved!
 - We can answer any question, for any evidence by simply applying the reasoning process described in the last class: select rows compatible with evidence + marginalize!
- The problem:
 - $\circ~$ The joint table is huge! If n=10 and each random variable has 10 possible values, we need 10^{10} probabilities.
 - And this is nothing compared to, eg. the stock market
 - How are we going to build a model this big? Who is going to give us the probabilities?

Two fundamentally different ideas to build a probabilistic model

- Idea 1: Introduce structure
- Idea 2: Use learning

Structured probabilistic models

- We assume that the joint probability table does not contain all independent values. For instance, some of the values can be described by mathematical operations on a smaller number of probabilities
- This can happen, for instance, if some of the variables are **independent** of each other.
- These relationships can be described through some kind of structure, often described as a graph
- Examples:
 - Bayesian Networks (directed graphs)
 - Markov Random Fields (undirected graphs)
 - Factor Graphs
 - Probabilistic Circuits, etc.

Learned probabilistic models

• We assume that the probabilities are described by a certain parameterized function

$$P(x_1,x_2,\ldots x_n)=f(x_1,x_2,\ldots x_n;\Theta)$$

- \circ We use data to learn the parameter Θ
- Examples:
 - Classical parametric models: eg Gaussian Mixture Models
 - Latent variable models
 - \circ Deep generative models: use deep neural networks for f
 - Variational autoencoders, Normalizing flows, Diffusion models
 - Energy based models
 - Define probability via an unnormalized energy function (we don't need to calculate the normalizing factor Z)

What we will do today?

- One of the simplest ways to simplify probabilistic models:
 - Introduce the concept of independence and conditional independence
 - Create a directed graph (the bayesian network) what describes the set of dependencies between the variables of the model.

Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product of two simplest distributions.
- Why is this "independence"? Another way to write this (direct consequence of the definition of a conditional)

$$\forall x, y : P(x|y) = P(x)$$

We write

$$X \perp \!\!\! \perp Y$$

Independence is a simplifying assumption

- If we have 10 variables with 10 possible values
 - \circ If they are **not independent** we need 10^10 probability values to describe the joint
 - \circ If they are **independent** we need 100 probability values
- Are there many independent variables in the world?
 - Sure: throwing a dice in Las Vegas and an airport delay in Orlando are usually independent!
 - $\circ N$ fair, independent coin flips are independent
- But any set of variables chosen for a given problem, they are rarely fully independent!

Conditional independence

• X is conditionally independent of Y given Z

$$X \perp \!\!\! \perp Y|Z$$

if and only if

$$\forall x,y,z: P(x,y|z) = P(x|z)P(y|z)$$

or, equivalently

$$orall x,y,z:P(x|y,z)=P(x|z)$$

Importance of conditional independence

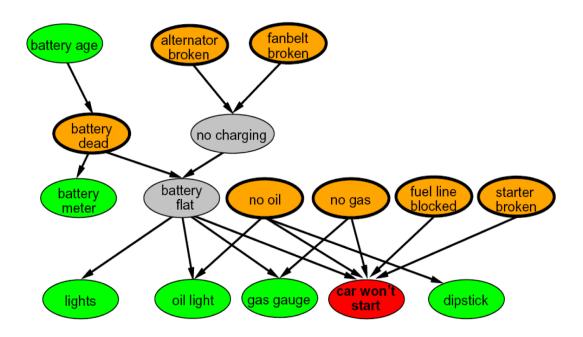
• It is much more likely that we find conditional independence in the variables of our problem.

Example with conditional independence here

Bayes Nets

- We have a probabilistic model, which would require us to have the full joint table.
- We will describe the joint table using simple, local, conditional distributions
- We describe how the variables interact locally using a graph
 - part of a family called probabilistic graphical models
- Local interactions chain together to give global interactions

Example Bayes Net for diagnosing a car that won't start



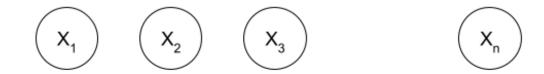
Notice that there are relatively few dependencies between the nodes!

Notations

- Nodes: variables with domains
 - Can be assigned (observed) or unassigned (unobserved)
- Directed edges
 - Indicate direct influence between variables
 - Formally: encode conditional independence
- Although this is not strictly correct, you can imagine that the edges mean direct causation.

Example: coin flips

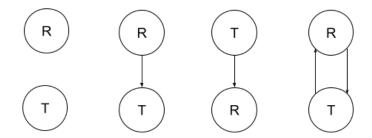
• N independent coin flips



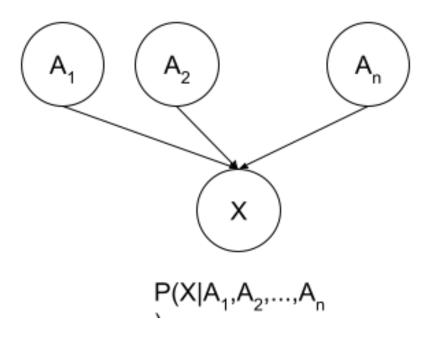
• No interactions between variables: absolute independence

Example: traffic

- Variables: R it rains, T there is traffic
- We can model it as independent (model 0)
- Or we can model it that rain causes traffic (model 1) or traffic causes rain (model 2)



• Which is better? What does an agent gain by using model 1?



Bayes' net semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parent's values

$$P(X|a_1,a_2,\ldots a_n)$$

Bayes Net = Topology (graph) + Local
Conditional Probabilities

Probabilities in Bayes' nets

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a Bayes Net gives to a full assignment, multiply all the relevant conditionals together

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i|parents(X_i))$$

- This means that a Bayes net cannot express any possible joint distribution, only those that can be written this way.
 - The smaller the number of arrows (parent/child relationships) the less number of values we need to describe the joint distro described by the Bayes net.

Probabilities in Bayes' nets

- But, wait, will this result in proper joint distribution? Meaning, does it add up to 1.0?
- Chain rule (valid for all distributions)

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | x_1, \dots x_{i-1})$$

• If we assume the conditional independence:

$$P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$$

- What this means that the node only depends on the parents!
 - If we know how the parents turned out, the probability of the node doesn't depend on the rest of the network ("d-separation")

Example Bayes net - independent nodes

Example Bayes net - Naive Bayes

Example Bayes net - Markov chain

Example Bayes net - Hidden markov model

Causality?

- Bayes' nets are just conditional probabilities
 - Arrows just encode conditional independence
 - The arrows only reflect correlation, not causation.
 - This is good, because we can build a Bayes net even if we don't understand causation
- Sometimes we can build the Bayes net such that it really reflects causality
 - Often simpler (nodes have fewer patterns)
 - Often easier to think about
 - Often easier to elicit from experts

What do we think about Bayes nets?

- The whole area of probabilistic graphical models was the last great AI idea before the deep learning revolution
- It is still in the spirit of expert systems:
 - Interview an expert to deduct the structure of the Bayes net
 - Ask the expert for the probabilities or learn the probabilities from data.
- They still have benefits:
 - Explainability: they can be understood by humans
 - Often learning can be more efficient if we first restrict what we are learning by recognizing conditional independencies.