Probabilities

Some material on these slides are derived from the slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley, available at
http://ai.berkeley.edu.


http://ai.berkeley.edu/

Reviewing probabilities

e Probabilities are an important component of modern artificial intelligence.
o While this material you probably covered in other classes, it is useful for us to review it.

e Topics:
o Random variables

o Joint and marginal distributions
o Conditional distributions
o Product rule, chain rule, Bayes' rule

o Independence



Uncertainty

Observed variables (evidence): the agent makes observations about the world.
These can be incomplete or noisy. They do not directly correspond to the state of the
world!

o Example: medical tests, lidar data

e Unobserved variables: the agent needs to reason about the state of the world to infer
them

o Example: medical diagnosis, location of the robot

(Probabilistic) model: the agent knows something about how the known variables
(observations) relate to the unknown variables

Probabilistic reasoning: gives us a framework to manage beliefs and knowledge



Random variable

o An aspect of the world about which we might have uncertainty. Denoted with capital
letters:
o R =isitraining?
o T'=is it hot or cold?

o S = stock market tomorrow

e They have domains, and can be discrete or continuous
o R € {true, false}

o T € {hot, cold}
o § €0,00)



Probability distributions

e Associate a probability with each value in the domain

o A probability is a single number: P(T' = hot) = 0.4
o We can simplify it to P(hot) if there is no chance of confusion

o A distribution is a table of probabilities of values
P(T)
T [

hot 0.4
cold 0.6

e Must have
V(z)P( X =2) >0and ), P(X=2x2)=1



Joint distributions

e Ajoint distribution over a set of random variables X, Xo, ... X,, specifies areal
number for each assignment (outcome)

P(X; =z1,X3 = x9,...X,, = ,) or can be simplified to P(x1, 2, ...T,)
e Must verify:

P(wl,xg,...a:n) ZO
ZP(ml,wg,...xn) =1



Joint distribution example P(T,W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2

cold rain 0.3



Probabilistic model

o A probabilistic model_ is ajoint distribution over a set of random variables
o A set of random variables with domains

o Assignments are called outcomes
o The joint distribution say which outcomes are more likely
o Normalized: sumto 1.0

e Why is this a "model"?
o |t allows me to infer from the known variables the probabilities of the unknown
("hidden") variables

o |deally, only certain variables interact directly



Events

e Aneventis a set E of outcomes
o Typically, the events we care about are partial assignments eg. P(T = hot)

o |f we have the joint distribution, we can calculate the probability of any event:

P(E) = Z P(x1,x9,...2y,)

(x1,x9,...2,)ER



Reasoning about events:

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2

cold rain 0.3

e What is the probability that it is hot AND sunny?
e Probability that it is hot?
e Probability that it is hot OR sunny?



Marginal distributions

e Marginal distributions are sub-tables that eliminate variables

e Marginalization (summing out) combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2

cold rain 0.3

P(s) = >, P(t,5)



sun 0.6
rain 0.4



Conditional probabilities

o Definition:
P(a,b
P(alb) = S5
e Example:

P(sun|cold) = P(sun,cold)/P(cold) = 0.2/0.5 = 0.4



Conditional distributions
P(W|T = hot)

W 10
sun 0.8
rain 0.2

P(W|T = cold)
W P

sun 0.4
rain 0.6



Normalization trick

e How to calculate the conditional distribution table for a certain evidence
o Start with the joint table

e Two steps:
o Select the joint probabilities matching the evidence

o Normalize the selection (make it sumto 1.0)
« Why does this work? Because the sum of selection is the P(evidence)
P(z1,3)  P(z1,%2)
P(z,) > g, Pla1, )

P(z1|zs) =



Example of the normalization trick

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2

cold rain 0.3



Normalization

e Procedure
o Compute Z = sum over all the entries

o Divide every entry by Z (also called normalization constant or partition
function)

e Premonition
o Normalization is simple as a procedure...

o ...but in more complex situations, it is a huge problem, because | need to sum
over all possible alternatives...

o eg. | want the probability of COVID infection
= But now | have to sum the probabilities of every single other disease

= Creative ways to avoid calculating the Z are a major research direction



Probabilistic inference

e |n general: compute a certain probability we are interested in from other probabilities
we know.

o Most of the time we are interested in a joint probability along the lines of
P(xlei, ez, ...ep)
o This is called the belief of the agent given the evidence.

o Probabilities change with new evidence (can increase or decrease) — updating
beliefs



Inference by Enumeration

* Works fine with

" General case: * We want: multiple query
: gvidenfe Vafrislbles; FEq... Ek =e€1...€L le XQ, - P(Ql varSables, too
uery  variable: . 81 ... e
. : . All variables k
Hidden variables: H;y...H,
" Step 1: Select the " Step 2: Sum out H to get joint " Step 3: Normalize
entries consistent of Query and evidence

with the evidence

1
X_
A

1 0.2
S 0.01 b‘—-_-_—‘
- -@’ Z=ZP(Q,€1---ek)
P(Qael"'ek): !

P(Qler--ei) = ZP(Qrer - ex)



Example

S
summer
summer
summer
summer
winter
winter
winter

winter

.
hot
hot
cold
cold
hot
hot
cold

cold

W
sun
rain
sun
rain
sun
rain
sun

rain

P
0.30
0.05
0.10
0.05
0.10
0.05
0.15
0.20



Example

P(W|winter)
P(W|winter, hot)



Inference by enumeration

e Did we just solve probabilistic reasoning once for all?

e Obvious problems:
o Worst case time complexity O(d™)

o Space complexity O(d™) to store the joint distribution

o ...and who will give us the joint table, anyhow?



The product rule

« P(y)P(z|ly) = P(z,y)
e |tis notreally a "rule", just turning around the definition of the conditional

P(z,y)
P(y)

P(z|y) =



The chain rule

e Extending the product rule to multiple conditionals
P(ZEl, L9, 5133) — P(Cbl)P(a?Q’CEl)P(CE;;’ZEl, 5132)

P(xi,22,...2,) = HP(zci]azl, CXi1)



Bayes' rule

e Let us start with the insight that the order of variables in the joint does not matter

P(z,y) = P(y, z)
o This is not the same for conditionals: P(x|y) # P(y|x)

e So, the product rule (or, for that matter the chain rule) can be written for any of these

orders
P(z,y) = P(z|y)P(y) = P(y|z)P(z)

e Dividing, we get Bayes' rule:

P(z|y) =



The importance of Bayes' rule

o Allows us to calculate P(z|y) from P(y|x)

e There are many scenarios where one conditional is difficult, but the reverse is not
o P(covid|high_fever) - how do we even start to think about this?

o P(high_fever|covid) - easy peasy, about 0.9



Famous example of inference with Bayes' rule

e m: meningitis, s: stiff neck
e givens:
P(+m) = 0.0001
P(+s|+m) =10.8
P(+s| —m) = 0.01
We want to calculate P(+m/| + s)



Inference with Bayes' rule

Let us try to apply Bayes' rule
P(+s| +m)P(+m)
P(+s)

We don't have P(+s)! But we get it by marginalization
P(+s) = P(+s,+m) + P(+s,—m)

And get the joints from the conditionals using the product rule
P(+s,4+m) = P(+s| + m)P(+m)
P(+s,4+m) = P(+s| — m)P(—m)

P(+m| +s) =

Also, due to probabilities summing to 1.0
P(—m) =1.0 — P(+m)



Inference with Bayes' rule

0.8 x 0.0001
0.8 x 0.0001 4+ 0.01 x 0.999
e [tis about 0.00795, approximately 0.8%

e SO, just because you have a stiff neck, the likelihood of meningitis is still low, because

P(+m| +s) =

the overall occurrence of meningitis is low.

e This is a very big problem for many medical diagnosis systems, because a test for a
symptom that appears for 99% for a certain disease might still not be a good predictor
of the disease!



