
Machine learning, a modern view
Supervised training data 
Seen as a sampling from a probability distribution 
Test data seen sampled from 

, loss function 
We are trying to minimize the expectation of loss 
How to do it? Minimize empirical risk

Minimize the loss on the training data, hope to work at test/deployment
time



The shape of 
Parameterized family of functions 
Neural network, fully connected layers (aka multilayer perceptron MLB)
Non-linearities



Training neural networks
Training neural networks == Optimizing the loss function over the training
data

Stochastic gradient descent in the loss function space
Why it works?

Gradient descent works on convex functions
Loss surface is not convex
But it has many identical and or similar minima, and you will likely end up
in one of them



Convolutional neural networks



The image domain
The image domain has special properties

Input data arranged as a map, with channels (eg. 3000 x 4000, with red,
blue, green as channels)
Number of features is very large (36M in this case)
Conveniently represented as a multidimensional array, aka tensor in
machine learning (not the same as tensors in physics)
Local relationships between features matter

If we flatten the data into a vector, important information is lost.
Fully connected layers are unpractical in the image domain (too large!)



Problems for the visual domain
The visual domain creates new type of machine learning problems
Image classification: output discrete value (cat / dog)
Image detection: output bounding box of image (x, y, h, w)
Image segmentation: output a map identifying the different objects.



Convolution
Discrete convolution: mathematical operation between two matrices:

In practice:
 is the signal (large)
 is the convolution kernel (usually small 3x3, 5x5 etc)

Convolutions can be used to implement several simple image processing
operations

Commonly called filters



Vertical edge detection with a convolution



Blur with a convolution



Shift with a convolution



Convolutional layers in neural networks
If we flatten the input and the output matrices, we can view a convolution as:

a matrix multiplication
... with a matrix of a particular sparcity pattern (only non-zero in a
neighborhood)
... where non-zero weights repeat the same way for each neighborhood

So a convolution is a peculiar type of fully connected network
We could try to learn this...
But in practice we just enforce this pattern and use a parameterized
convolution as a layer followed by a non-linearity

As an individual convolution is very specific, we will do a collection of several
convolutions



Convolutional layer



Convolutional layer with multiple filters /
activation maps



Pooling
Makes the representations smaller and more manageable
Operates over each activation map independently



Max Pooling
Early CNN used averaging pooling
In later work, it was considered that the output of convolutions show yes/no
type presence of certain features - this would be diluted by averaging

 max pooling!



Convolutional neural network
Standard architecture of a modern convolutional neural network:

(Convolution layer + Nonlinearity + Max Pool) repeated several times
one, two or three fully connected layer
softmax output

Trained with a cross-entropy or softmax loss



Losses
Cross-entropy loss (two way classification)

Softmax loss (n-way)



What is being learned at the intermediary
levels?

Features
These are things that we previously hand-engineered
Examples from Chris Olah





Convnet architectures
Typical convnets (LeNet, AlexNet)

Several blocks of (Convolution + Nonlinearity + Pooling)
One fully connected layer at the end with the number of outputs equal to
the number of classes 
Cross-entropy loss (if ) or softmax loss (if )



LeNet (1998) vs AlexNet (2012)



VGG series
VGG - a series of architectures developed at the Visual Geometry Group at
University of Oxford.

Pretrained versions of 11, 16, 19 layers available



VGG-16



Convnet architecture (ResNet)
A modification of the architecture, where the input is added to the output:

Why would you do this?
Avoid loosing the input in deep network

Allows very deep layers networks with 50, 101 and 152 layers



ResNet architecture


