Machine learning, a modern view

e Supervised training data D

e Seen as a sampling from a probability distribution P(x, y)
e Test data seen sampled from P(x)

e 4y = f(x), loss function L(y, 3)

e We are trying to minimize the expectation of loss E, (L)

e How to do it? Minimize empirical risk
o Minimize the loss on the training data, hope to work at test/deployment

time



The shape of f(x)

e Parameterized family of functions f(x; 0)
e Neural network, fully connected layers (aka multilayer perceptron MLB)

e Non-linearities



Training neural networks

e Training neural networks == Optimizing the loss function over the training
data

0" = argmin, L(0)
e Stochastic gradient descent in the loss function space
e Why it works?
o @Gradient descent works on convex functions

o Loss surface is not convex

o But it has many identical and or similar minima, and you will likely end up
in one of them



Convolutional neural networks



The image domain

e The image domain has special properties

o Input data arranged as a map, with channels (eg. 3000 x 4000, with red,
blue, green as channels)

o Number of features is very large (36M in this case)

o Conveniently represented as a multidimensional array, aka tensor in
machine learning (not the same as tensors in physics)

o Local relationships between features matter
= If we flatten the data into a vector, important information is lost.

e Fully connected layers are unpractical in the image domain (too large!)



Problems for the visual domain

e The visual domain creates new type of machine learning problems
e Image classification: output discrete value (cat / dog)
e Image detection: output bounding box of image (x, y, h, w)

e Image segmentation: output a map identifying the different objects.



Convolution

e Discrete convolution: mathematical operation between two matrices:

h(z,y) = (f * g)(z,y) Y YfZJ

1=—00 J=—00

e In practice:
o fisthe signal (large)

o gis the convolution kernel (usually small 3x3, 5x5 etc)

e Convolutions can be used to implement several simple image processing
operations
o Commonly called filters



Vertical edge detection with a convolution
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Blur with a convolution
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Shift with a convolution
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Convolutional layers in neural networks

e If we flatten the input and the output matrices, we can view a convolution as:
o a matrix multiplication

o ... with a matrix of a particular sparcity pattern (only non-zero in a
neighborhood)

o ... where non-zero weights repeat the same way for each neighborhood

e S0 a convolution is a peculiar type of fully connected network
o We could try to learn this...

o But in practice we just enforce this pattern and use a parameterized
convolution as a layer followed by a non-linearity

e As an individual convolution is very specific, we will do a collection of several
convolutions



Convolutional layer
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Convolutional layer with multiple filters /
activation maps

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

activation maps
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We stack these up to get a “new image” of size 28x28x6!
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Pooling

e Makes the representations smaller and more manageable

e Operates over each activation map independently
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Max Pooling

e Early CNN used averaging pooling

e In later work, it was considered that the output of convolutions show yes/no
type presence of certain features - this would be diluted by averaging

e — max pooling!
Single depth slice
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Convolutional neural network

e Standard architecture of a modern convolutional neural network:
o (Convolution layer + Nonlinearity + Max Pool) repeated several times

o one, two or three fully connected layer
o softmax output

e Trained with a cross-entropy or softmax loss



Losses

e Cross-entropy loss (two way classification)

1
Y = sigmoid(z) = e
e z

H(p,q) = — sz- log(q;) = —ylog(y) — (1 — y) log(1 — )

e Softmax loss (n-way)

A

y; = softmax(z;) =




What is being learned at the intermediary
levels?

e Features
e These are things that we previously hand-engineered

e Examples from Chris Olah



Feature Visualization

How neural networks build up their understanding of images
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Convnet architectures

e Typical convnets (LeNet, AlexNet)
o Several blocks of (Convolution + Nonlinearity + Pooling)

o One fully connected layer at the end with the number of outputs equal to
the number of classes n

o Cross-entropy loss (if n = 2) or softmax loss (if n > 2)



LeNet (1998) vs AlexNet (2012)

LeNet AlexNet

| Image: 28 (height) x 28 (width) x 1 (channel) | Image: 224 (height) x 224 (width) x 3 (channels) |
v

| Convolution with 5x5 kemel+2padding:28x28x6 | | Convolution with11x11kemel+4stride:54x54x96
\ sigmoid v ReLu

| Pool with 2x2 average kernel+2 stride:14x14x6 | | Pool with 3x3 max. kemel+2 stride: 26x26x96 |
v V

| Convolution with 5x5 kemel (no pad): 10x10x16 | Convolution with 5x5 kernel+2 pad:26x26x256 |
\ sigmoid v Relu

| Pool with 2x2 average kemnel+2 stride: 5x5x16 | | Pool with 3x3 max.kernel+2stride: 12x12x256 |
v flatten v

| Dense: 120 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x384 |
\ sigmoid v ReLu

| Dense: 84 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x384 |
\ sigmoid v ReLu

| Dense: 10 fully connected neurons /| Convolution with 3x3 kernel+1 pad:12x12x256 |
v J ReLu

Output: 1 of 10 classes | Pool with 3x3 max.kemel+2stride:5x5x256 |

| flatten

\ Dense: 4096 fully connected neurons \
V RelLu, dropout p=0.5

| Dense: 4096 fully connected neurons |
V RelLu, dropout p=0.5

| Dense: 1000 fully connected neurons |

v

Output: 1 of 1000 classes




VGG series

e VGG - a series of architectures developed at the Visual Geometry Group at
University of Oxford.
o Pretrained versions of 11, 16, 19 layers available



VGG-16

224 x 224 x3 224 x 224 x 64
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Convnet architecture (ResNet)

e A modification of the architecture, where the input is added to the output:
y=F(x)+x
e Why would you do this?
o Avoid loosing the input in deep network

e Allows very deep layers networks with 50, 101 and 152 layers



ResNet architecture

VGG-19

34-layer plain

34-layer residual
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