
CAP 5636 – Advanced Artificial Intelligence

Hidden Markov Models

Instructor: Lotzi Bölöni 
[These slides were adapted from the ones created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley, available at http://ai.berkeley.edu.]



Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Video of Demo Pacman – Sonar (no beliefs)



Probability Recap

▪ Conditional probability

▪ Product rule

▪ Chain rule 

▪ X, Y independent if and only if:

▪ X and Y are conditionally independent given Z if and only if:



Hidden Markov Models



Hidden Markov Models

▪ Markov chains not so useful for most agents
▪ Need observations to update your beliefs

▪ Hidden Markov models (HMMs)
▪ Underlying Markov chain over states X

▪ You observe outputs (effects) at each time step
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Example: Weather HMM
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▪ An HMM is defined by:
▪ Initial distribution:
▪ Transitions:
▪ Emissions:



Example: Ghostbusters HMM

▪ P(X1) = uniform

▪ P(X|X’) = usually move clockwise, but 
sometimes move in a random direction or 
stay in place

▪ P(Rij|X) = same sensor model as before:
red means close, green means far away.
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[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]



Video of Demo Ghostbusters – Circular Dynamics -- HMM



Joint Distribution of an HMM

▪ Joint distribution:

▪ More generally:

▪ Questions to be resolved:
▪ Does this indeed define a joint distribution?

▪ Can every joint distribution be factored this way, or are we making some assumptions about the 
joint distribution by using this factorization?
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▪ From the chain rule, every joint distribution over                                           can be written as:

▪ Assuming that

 

    

gives us the expression posited on the previous slide: 
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Chain Rule and HMMs



Chain Rule and HMMs

▪ From the chain rule, every joint distribution over                                         can be written as:

▪ Assuming that for all t: 
▪ State independent of all past states and all past evidence given the previous state, i.e.: 

▪ Evidence is independent of all past states and all past evidence given the current state, i.e.:

    

      gives us the expression posited on the earlier slide: 
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Implied Conditional Independencies

▪ Many implied conditional independencies, e.g.,

▪ To prove them

▪ Approach 1: follow similar (algebraic) approach to what we did in the 
Markov models lecture

▪ Approach 2: directly from the graph structure (3 lectures from now)

▪ Intuition: If path between U and V goes through W, then
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[Some fineprint later]



Real HMM Examples

▪ Speech recognition HMMs:
▪ Observations are acoustic signals (continuous valued)

▪ States are specific positions in specific words (so, tens of thousands)

▪ Machine translation HMMs:
▪ Observations are words (tens of thousands)

▪ States are translation options

▪ Robot tracking:
▪ Observations are range readings (continuous)

▪ States are positions on a map (continuous)



Filtering / Monitoring

▪ Filtering, or monitoring, is the task of tracking the distribution 
Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time

▪ We start with B1(X) in an initial setting, usually uniform

▪ As time passes, or we get observations, we update B(X)

▪ The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program



Example: Robot Localization

t=0

Sensor model: can read in which directions there is a wall, 
never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer



Example: Robot Localization

t=1

Lighter grey: was possible to get the reading, but less likely b/c 
required 1 mistake

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



Inference: Base Cases

E1

X1

X2X1

𝛼 is a 

normalizing 

constant making 

prob. add up to 

1.



Passage of Time

▪ Assume we have current belief P(X | evidence to date)

▪ Then, after one time step passes:

▪ Basic idea: beliefs get “pushed” through the transitions

▪ With the “B” notation, we have to be careful about what time step t the belief is about, and what 
evidence it includes
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▪ Or compactly:



Example: Passage of Time

▪ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Observation

▪ Assume we have current belief P(X | previous evidence):

▪ Then, after evidence comes in:

▪ Or, compactly:
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▪ Basic idea: beliefs “reweighted” 
by likelihood of evidence

▪ Unlike passage of time, we have 
to renormalize



Example: Observation

▪ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117



The Forward Algorithm

▪ We are given evidence at each time and want to know

▪ We can derive the following updates
We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…



Online Belief Updates

▪ Every time step, we start with current P(X | evidence)

▪ We update for time:

▪ We update for evidence:

▪ The forward algorithm does both at once (and doesn’t normalize)
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Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Video of Demo Pacman – Sonar (with beliefs)



Next Time: Particle Filtering and Applications of HMMs
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