
Reinforcement learning





RL model
We assume a world governed by an MDP

States 
Actions 
System dynamics 
Reward function 

We are looking for the policy 
But we don't know  and/or  as functions
But if we take an action , in state , we can observe that we landed in  and
received reward .



Model-based RL
General idea: if there is a MDP  in the environment, we can find a way to
build an approximate model  that approximates it.

Perform (or even better, observ) some actions , count the outcomes 
and 

Normalize, to get the estimate of 

Calculate the associated average reward to get 

Then, we can solve  using some technique (eg. value iteration or policy
iteration)





Model-based RL
Why it is good?

We didn't need to invent any new techniques
As an extra benefit, we get the  and , which might come handy
It is very convenient if we can get the data from somebody else's runs
It can be convenient, if we have some prior information about the  or 

Problems
Often, we don't care about the  and  - getting a decent policy should
be much simpler than having a full model!



Model free RL
Idea: we can try to evaluate the  value (or something of this sort) without
bothering to find the  or .

Then we can extract the  from the 
This is going to get us variations of Q-learning

Another name: critic only algorithms
Another idea: we can go directly to  without bothering to find the Q

This is going to get as variations of policy gradient approaches
Or we can try to do both simultaneously (actor-critic algorithms)
[LAST TWO: NOT COVERED IN THIS CLASS]



Direct evaluation of V
Let us assume we have a policy 
We have a run 
Let us say we are in 

Calculate the discounted rewards to the end of the run

For all states  which have at least one run passing through them, average
these  values, that will be the estimate 
This is a Monte Carlo method





Direct evaluation of V
The good

Simple to understand
Doesn't require knowledge of T or R
It converges to the correct values of the  given enough runs that
pass through the state

The bad
For rarely visited states, it can take a long while
It does not exploit knowledge about the connections between states: for
all purposes, it learns each state separately.
In the previous figure: why are the values of E and B so different, when
they both only go to C?



Temporal difference learning (TD-learning)
We are still doing policy evaluation, learning the  for a fixed 
Instead of waiting for a run to finish, learn from every transition (s,a,s',r)

The idea is that we bootstrap the  with the value of 
Temporal difference: we go back to our history and update those values

A sample (notice the similarity to be Bellman equation...) or TD-target

TD-update:

or



Wait, will this thing converge?
 is the learning rate: if , we will keep replacing the value with a value

based on the next state, whatever that turns out to be this time...
We need to decrease the  for it to converge
A way to think about TD-learning is as follows:

we are actually already in  but we are updating  (the previous one...
this is the temporal difference)
we expect the sample to be  ()
if you got a very large reward, it makes the sample larger than expected
this makes the  large, and a part of it will be used to increase

 such that next time you will not be surprised.
Written like this, the reward is propagated only to the previous step (in one
event) but you can develop variants that go back multiple steps



TD-learning limitations
Basically, we are mimicking the Bellman updates with running sample
averages
Notice that this is an on-policy algorithm: we are following  and learning 
The good: we are learning the  without a model!
A problem

We can do policy iteration starting from this, but we need T and R
So we still need a model, or an approximation of it



Are we really falling into the fire-pit?
The  value was fixed
The good: with this approach we can learn from other people's experiences
The bad: we don't control where we are going



Active RL
Setup: we choose the actions now!
T(s,a,s') and R(s,a,s') are unknown
Goal: learn , , 
This time, the learner actually falls into the firepit.
The choices of actions made during learning matter!

For instance, exploration...



Q-value iteration?
We learned V-value iteration

But we can also do it for Q-values

Why don't we do this for a known MDP? It is slower!



Q-learning
Do the Q-value iteration using samples! Sample is like the one for TD-learning,
only replace V with max over Q.

Update Q(s,a) based on the sample, with a learning rate:



Q-learning properties
Does it converge?

Yes. In fact it converges to , regardless of what policy you use!!!
off-policy learning

With some limitations
If you never perform an action , you never learn about it
If you have never been in a state , you never learning about it

 need to decrease for convergence, but if it is too small, convergence is
slow



Exploration vs. exploitation
In Q-learning you only learn about

actions you have actually took in
states you have actually been
This is a bit simplistic, but roughly true for most RL

Exploitation: take advantage of what you learned
Take action according to the q-values they currently have attached
This means that in each state we always take the same action
The only way we might land in a novel state is if the probabilistic  lands
us there.
When we deploy the (fixed) learned policy, we should do pure exploitation



Exploration
As we only learn from states we have been and actions we took we should
explore by taking a variety of actions
First approximation: act randomly! 

Problem: in many scenarios, we reach unfavorable terminal states very
soon, and never see advanced states closer to the goal!



Exploration (cont'd)
Reset and act randomly! Go to state  and try all actions from there .
Repeat for all states of interest.

This is called reset to a state 
It is actually a very good strategy when it works
It works in: simulation, board games, etc.

Whenever we have full control of the environment
... and the negative rewards are make-believe

It doesn't work in: robotics, live finance, etc. - whenever the negative
rewards are real!



Exploration (cont'd)
Second approximation: act according to the current best policy and let the
transition function take us to random places

We would still not see new actions taken 
The transition function might make some transitions extremely unlikely...



Stochastic policies
Make the policy  stochastic

Deterministic policy: 
Stochastic policy:  - the likelihood that the action  will be
taken in state 

There are scenarios where the optimal policy is a stochastic one
Eg. rock, paper, scissors...
There are algorithms that learn that.

Alternatively, we can use a stochastic policy during learning, for exploration,
and reset to a deterministic one during deployment.



-greedy
Consider a probability number  (eg. 0.2)
At every time step in state 

with a probability  choose 
with probability  choose random 

 determines the balance between exploration and exploitation
Often, we reduce  during learning.



Exploration functions and novelty seeking
A disadvantage of -greedy is that it is taking random actions even in well
known states.
We would like to seek out novel information.
One way to do it is to keep count of how many times we have been in a state
and taken action  and calculate a novelty function similar to this:

The exact form can vary, but the idea is that the less we visited a state/action
pair, the more attractive it seems



Using the exploration functions
We replace

with

The idea is that we give an extra novelty reward to unknown 
combinations
This novelty will propagate into the Q! So we will seek those out from afar!
But in the long run, it will decay, and the real rewards will dominate.



Summary: exploration vs exploitation
Very important for all RL algorithms
Plenty of human and animal analogies exist

Of various levels of plausibility and relevance
It is almost sure that you will need to do at least -greedy
Recent years several high profile works in curiosity-driven exploration had
became highly cited, as they were claiming success with approaches that
learned with rewards coming exclusively from novelty.



Regret
We need to find a measure of the efficiency of learning
We define regret as the gap between the learned policy and the optimal policy
Let us consider that we are repeatedly solving a problem 

At each step, we start from  (chosen by nature or an adversary)
After each run, we are using RL to improve our policy, 

Algorithms that have lower regret are less costly to train than those with high
regret

Even if the final policy and the number of runs is the same!



Approximate Q-learning
In a realistic situation, we cannot keep a table of Q values

Also, we cannot visit all of them in training.
We want to generalize from experience to similar states

Falling into a firepit in the library bad  falling into the firepit bad in
most locations

It is helpful to consider Q(s,a) a function:
Can be implemented as a lookup table (as we did until now)
Can be a linear expression of features
Can be a neural network (deep RL)



Feature-based representation
Idea: engineer a series of features that capture aspects of the problem

They are often functions  or  from state to a  or 
range.
Traditionally, they are engineered by experts and capture human
expertise and experience.
We only need to ask the expert to give us "things that are important", not
to put an exact weight on them.

Advantage: can represent large spaces with a few numbers!
Disadvantage: if the set of the features does not capture everything about the
state, states similar in features might be very diffrenet in value



Examples
Examples for :

Distance to the monster (normalized to maximum)
Distance to the exit (normalized to maximum)
Are we in a tunnel? (yes/no)

Examples for :
Moving towards monster? (yes/no)
Bumping into wall? (yes/no)



Linear value functions



Approximate Q-learning with linear Q-functions
Line in exact Q-learning, we consider a sample of the transition (s,a,r,s')

The exact update rule was:

The update rule will be now:



Intuitive interpretation of approximate Q-
learning

Note that we multiply the update with the feature value
Intuition: if we got a big negative reward, we blame the features that
were present, not the ones that are not!

Formal justification of this model is from the theory of online least squares


