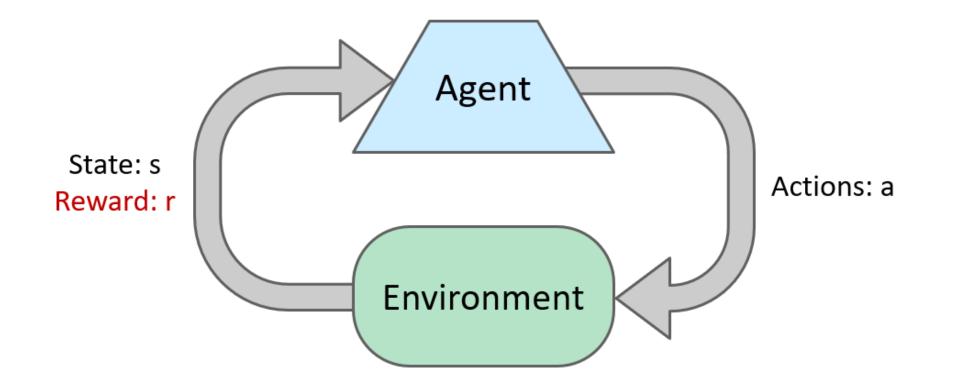
Reinforcement learning

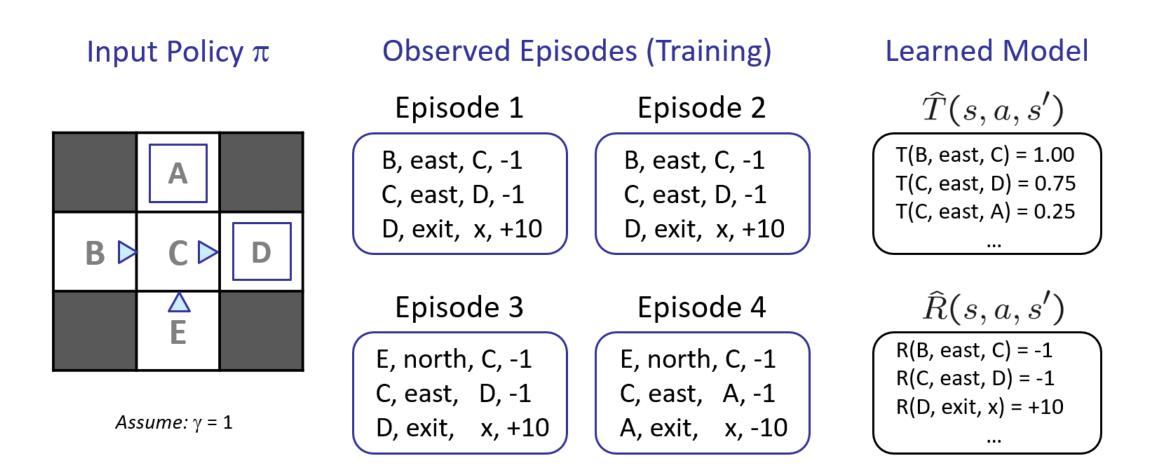


RL model

- We assume a world governed by an MDP
 - $\circ\;$ States $s\in S$
 - $\,\circ\,$ Actions A
 - $\,\circ\,$ System dynamics T(s,a,s')
 - $\circ\,$ Reward function R(s,a,s')
- We are looking for the policy $\pi(s)$
- But we don't know T and/or R as functions
- But if we take an action *a*, in state *s*, we can observe that we landed in *s'* and received reward *r*.

Model-based RL

- General idea: if there is a MDP M in the environment, we can find a way to build an approximate model \hat{M} that approximates it.
 - $\,\circ\,$ Perform (or even better, observ) some actions a , count the outcomes s' and r
 - $\circ\,$ Normalize, to get the estimate of $\hat{T}(s,a,s')$
 - $\circ~$ Calculate the associated average reward to get $\hat{R}(s,a,s')$
- Then, we can solve \hat{M} using some technique (eg. value iteration or policy iteration)



Model-based RL

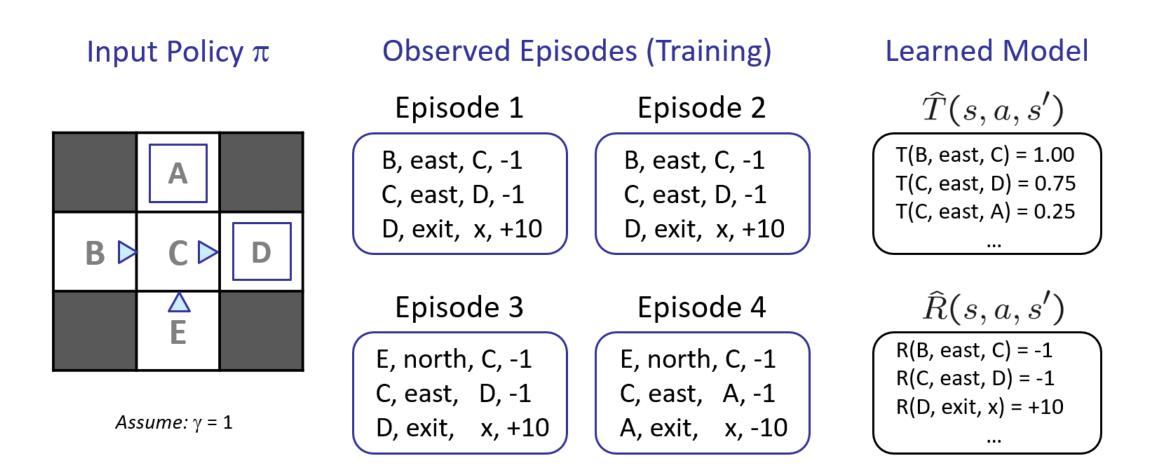
- Why it is good?
 - We didn't need to invent any new techniques
 - $\circ\,$ As an extra benefit, we get the T and R, which might come handy
 - $\circ~$ It is very convenient if we can get the data from somebody else's runs
 - $\circ~$ It can be convenient, if we have some prior information about the T or R
- Problems
 - $\circ~$ Often, we don't care about the T and R getting a decent policy should be much simpler than having a full model!

Model free RL

- Idea: we can try to evaluate the Q value (or something of this sort) without bothering to find the T or R.
 - $\,\circ\,$ Then we can extract the π from the Q
 - This is going to get us variations of Q-learning
 - Another name: **critic only** algorithms
- Another idea: we can go directly to π without bothering to find the Q
 This is going to get as variations of **policy gradient** approaches
- Or we can try to do both simultaneously (**actor-critic algorithms**) [LAST TWO: NOT COVERED IN THIS CLASS]

Direct evaluation of V

- Let us assume we have a policy π
- We have a $\operatorname{\mathsf{run}} s_1, a_1, r_1, s_2, a_2 \dots r_n, s_n$
- Let us say we are in s_k
 - $\circ\,$ Calculate the discounted rewards to the end of the run $G=r_k+\gamma r_{k+1}+\gamma^2 r_{k+1}\ldots\gamma^{n-k-1}r_n$
- For all states s which have at least one run passing through them, average these g values, that will be the estimate $\hat{V}(s)$
- This is a Monte Carlo method



Direct evaluation of V

- The good
 - Simple to understand
 - $\circ~$ Doesn't require knowledge of T or R
 - $\circ\,$ It converges to the correct values of the $V^{\pi}(s)$ given enough runs that pass through the state
- The bad
 - For rarely visited states, it can take a long while
 - It does not exploit knowledge about the connections between states: for all purposes, it learns each state separately.
 - In the previous figure: why are the values of E and B so different, when they both only go to C?

Temporal difference learning (TD-learning)

- We are still doing policy evaluation, learning the V^{π} for a fixed π
- Instead of waiting for a run to finish, learn from every transition (s,a,s',r)
 - $\circ\,$ The idea is that we **bootstrap** the V(s) with the value of V(s')
 - **Temporal difference**: we go back to our history and update those values
- A **sample** (notice the similarity to be Bellman equation...) or **TD-target**

$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

• TD-update:

$$V^{\pi}(s) \leftarrow (1-lpha) V^{\pi}(s) + lpha \cdot sample$$

or

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + lpha(sample - V^{\pi}(s))$$

Wait, will this thing converge?

- α is the learning rate: if $\alpha = 1$, we will keep replacing the value with a value based on the next state, whatever that turns out to be this time...
- We need to decrease the α for it to converge
- A way to think about TD-learning is as follows:
 - \circ we are actually already in s' but we are updating s (the previous one... this is the temporal difference)
 - $\circ\,$ we expect the sample to be $V^{\pi}(s)$ ()
 - $\circ~$ if you got a very large reward, it makes the sample larger than expected
 - $\circ~$ this makes the sample-V large, and a part of it will be used to increase V^{π} such that next time you will not be surprised.
- Written like this, the reward is propagated only to the previous step (in one event) but you can develop variants that go back multiple steps

TD-learning limitations

- Basically, we are mimicking the Bellman updates with running sample averages
- Notice that this is an **on-policy** algorithm: we are following π and learning V^{π}
- The good: we are learning the V^{π} without a model!
- A problem
 - $\circ~$ We can do policy iteration starting from this, but we need T and R
 - So we still need a model, or an approximation of it

Are we really falling into the fire-pit?

- The π value was fixed
- The good: with this approach we can learn from other people's experiences
- The bad: we don't control where we are going

Active RL

- Setup: we choose the actions now!
- T(s,a,s') and R(s,a,s') are unknown
- Goal: learn π^* , V^* , Q^*
- This time, the learner actually falls into the firepit.
- The choices of actions made during learning matter!
 - For instance, exploration...

Q-value iteration?

• We learned V-value iteration

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} ig(R(s,a,s') + \gamma V_k(s') ig)$$

• But we can also do it for Q-values

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left(R(s,a,s') + \gamma \max_{a'} Q_k(s',a')
ight)$$

• Why don't we do this for a known MDP? It is slower!

Q-learning

• Do the Q-value iteration using samples! Sample is like the one for TD-learning, only replace V with max over Q.

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

Update Q(s,a) based on the sample, with a learning rate:

$$Q(s,a) \leftarrow (1-lpha)Q(s,a) + lpha \cdot sample$$

Q-learning properties

- Does it converge?
 - $\circ\,$ Yes. In fact it converges to Q^* , regardless of what policy you use!!!
 - off-policy learning
- With some limitations
 - $\circ~$ If you never perform an action a, you never learn about it
 - $\circ\,$ If you have never been in a state s, you never learning about it
 - $\circ \,\, \alpha$ need to decrease for convergence, but if it is too small, convergence is slow

Exploration vs. exploitation

- In Q-learning you only learn about
 - actions you have actually took in
 - states you have actually been
 - This is a bit simplistic, but *roughly* true for most RL
- Exploitation: take advantage of what you learned
 - Take action according to the q-values they currently have attached
 - This means that in each state we always take the same action
 - $\circ~$ The only way we might land in a novel state is if the probabilistic T lands us there.
 - When we deploy the (fixed) learned policy, we should do pure exploitation

Exploration

- As we only learn from states we have been and actions we took we should explore by taking a variety of actions
- First approximation: act randomly! $a \sim U(a)$
 - Problem: in many scenarios, we reach unfavorable terminal states very soon, and never see advanced states closer to the goal!

Exploration (cont'd)

- Reset and act randomly! Go to state s and try all actions from there $a \sim U(a)$. Repeat for all states of interest.
 - This is called **reset** to a state *s*
 - $\circ~$ It is actually a very good strategy when it works
 - It works in: simulation, board games, etc.
 - Whenever we have full control of the environment
 - ... and the negative rewards are make-believe
 - It doesn't work in: robotics, live finance, etc. whenever the negative rewards are real!

Exploration (cont'd)

- Second approximation: act according to the current best policy and let the transition function take us to random places
 - \circ We would still not see new actions taken a
 - The transition function might make some transitions extremely unlikely...

Stochastic policies

- Make the policy $\pi \operatorname{stochastic}$
 - $\circ\;$ Deterministic policy: $\pi(s)
 ightarrow a$
 - $\,\circ\,$ Stochastic policy: $\pi(s,a) \to [0,1]$ the likelihood that the action a will be taken in state s
- There are scenarios where the optimal policy is a stochastic one
 - Eg. rock, paper, scissors...
 - There are algorithms that learn that.
- Alternatively, we can use a stochastic policy during learning, for exploration, and reset to a deterministic one during deployment.

ϵ -greedy

- Consider a probability number ϵ (eg. 0.2)
- At every time step in state \boldsymbol{s}
 - $\circ\,$ with a probability $1-\epsilon$ choose $a=argmax\,Q(s,a)$
 - \circ with probability ϵ choose random a
- ϵ determines the balance between exploration and exploitation
- Often, we reduce ϵ during learning.

Exploration functions and novelty seeking

- A disadvantage of ϵ -greedy is that it is taking random actions even in well known states.
- We would like to seek out novel information.
- One way to do it is to keep count of how many times we have been in a state and taken action count(s, a) and calculate a **novelty** function similar to this:

$$f(u,a) = u + rac{v}{count(s,a)+1}$$

• The exact form can vary, but the idea is that the less we visited a state/action pair, the more attractive it seems

Using the exploration functions

• We replace

$$Q_{t+1}(s,a) \leftarrow (1-lpha) Q_t(s,a) + lpha \left(R(s,a,s') + \gamma \max_{a'} Q_t(s',a')
ight)$$

with

$$Q_{t+1}(s,a) \leftarrow (1-lpha) Q_t(s,a) + lpha \left(R(s,a,s') + \gamma \max_{a'} f\left(Q_t(s',a'), count(s',a')
ight)
ight)$$

- The idea is that we give an extra novelty reward to unknown $\boldsymbol{s}, \boldsymbol{a}$ combinations
- This novelty will propagate into the Q! So we will seek those out from afar!
- But in the long run, it will decay, and the real rewards will dominate.

Summary: exploration vs exploitation

- Very important for all RL algorithms
- Plenty of human and animal analogies exist
 - Of various levels of plausibility and relevance
- It is almost sure that you will need to do at least ϵ -greedy
- Recent years several high profile works in curiosity-driven exploration had became highly cited, as they were claiming success with approaches that learned with rewards coming **exclusively** from novelty.

Regret

- We need to find a measure of the efficiency of learning
- We define regret as the gap between the learned policy and the optimal policy
- Let us consider that we are repeatedly solving a problem $1 \dots K$
 - $\circ\,$ At each step, we start from s_k (chosen by nature or an adversary)
 - \circ After each run, we are using RL to improve our policy, $\pi_1 \dots \pi_K$

$$Regret = \sum_{k=1}^K \left(V^*(s_k) - V^{\pi_k}(s_k)
ight)$$

- Algorithms that have lower regret are less costly to train than those with high regret
 - Even if the final policy and the number of runs is the same!

Approximate Q-learning

- In a realistic situation, we cannot keep a table of Q values
 - $\circ\,$ Also, we cannot visit all of them in training.
- We want to generalize from experience to similar states
 - $\circ~$ Falling into a firepit in the library bad \rightarrow falling into the firepit bad in most locations
- It is helpful to consider Q(s,a) a function:
 - Can be implemented as a lookup table (as we did until now)
 - Can be a linear expression of **features**
 - Can be a **neural network** (deep RL)

Feature-based representation

- Idea: engineer a series of **features** that capture aspects of the problem
 - $\circ\;$ They are often functions f(s) or f(s,a) from state to a [0,1] or 0,1 range.
 - Traditionally, they are engineered by experts and capture human expertise and experience.
 - We only need to ask the expert to give us "things that are important", not to put an exact weight on them.
- Advantage: can represent large spaces with a few numbers!
- Disadvantage: if the set of the features does not capture everything about the state, states similar in features might be very diffrenet in value

Examples

- Examples for f(s):
 - Distance to the monster (normalized to maximum)
 - Distance to the exit (normalized to maximum)
 - Are we in a tunnel? (yes/no)
- Examples for f(s, a):
 - Moving towards monster? (yes/no)
 - Bumping into wall? (yes/no)

Linear value functions

$$V(s) = \sum_i^n w_i f_i(s)
onumber \ Q(s,a) = \sum_i^n w_i f_i(s,a)$$

Approximate Q-learning with linear Q-functions

• Line in exact Q-learning, we consider a sample of the transition (s,a,r,s')

$$ext{difference} = r + \gamma \max_a' Q(s',a') - Q(s,a)$$

The exact update rule was:

$$Q(s,a) \leftarrow Q(s,a) + lpha \cdot ext{difference}$$

The update rule will be now:

$$w_i \leftarrow w_i + lpha \cdot ext{difference} \cdot f_i(s,a)$$

Intuitive interpretation of approximate Qlearning

- Note that we multiply the update with the feature value
 - Intuition: if we got a big negative reward, we blame the features that were present, not the ones that are not!
- Formal justification of this model is from the theory of online least squares