Reinforcement learning



State: s
Reward: r

>/A t\\
gen
\

-

Environment

(&

\

Actions: a



RL model

e We assume a world governed by an MDP
o States s € S

o Actions A
o System dynamics T'(s, a, s')
o Reward function R(s, a, s')
e We are looking for the policy 7(s)
e But we don't know 1" and/or R as functions

e But if we take an action a, in state s, we can observe that we landed in s’ and
received reward r.



Model-based RL

e General idea: if there is a MDP M in the environment, we can find a way to

build an approximate model M that approximates it.
o Perform (or even better, observ) some actions a, count the outcomes s’
and r

o Normalize, to get the estimate of T'(s, a, s')
o Calculate the associated average reward to get R(s, a, s')

e Then, we can solve M using some technique (eg. value iteration or policy
iteration)



Input Policy

Assume:y=1

Observed Episodes (Training)

Episode 1

-
B, east, C, -1
C, east, D, -1

' +
L D, exit, x, +10 )

Episode 3

4 N
E, north, C, -1
C,east, D, -1

D, exit, x,+10
. J

Episode 2

-
B, east, C, -1
C, east, D, -1

i +
% D, exit, X, 10/

Episode 4

4 N
E, north, C, -1
C, east, A, -1

A, exit, x,-10
. J

Learned Model

T(S? a’? S,)

.

-

T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

~N

J

R(s,a,s")

-

.

R(B, east, C) = -1
R(C, east, D) =-1
R(D, exit, x) = +10

~N

J




Model-based RL

e Why it is good?
o We didn't need to invent any new techniques
o As an extra benefit, we get the 1" and R, which might come handy
o Itis very convenient if we can get the data from somebody else's runs

o It can be convenient, if we have some prior information about the T'or R

e Problems
o Often, we don't care about the 7" and R - getting a decent policy should
be much simpler than having a full model!



Model free RL

e Idea: we can try to evaluate the () value (or something of this sort) without
bothering to find the T or R.
o Then we can extract the 7 from the ()

o This is going to get us variations of Q-learning
= Another name: critic only algorithms

e Another idea: we can go directly to 7 without bothering to find the Q
o This is going to get as variations of policy gradient approaches

e Or we can try to do both simultaneously (actor-critic algorithms)
[LAST TWO: NOT COVERED IN THIS CLASS]



Direct evaluation of V

e Let us assume we have a policy
e Wehavearuns;,a1,71,82,a2...7,,8n

e et ussay we arein Sg

o Calculate the discounted rewards to the end of the run
G =T+ Yrre1 + Y ki1 Yy
e For all states s which have at least one run passing through them, average

these g values, that will be the estimate V()

e This is a Monte Carlo method



Input Policy

Assume:y=1

Observed Episodes (Training)

Episode 1

-
B, east, C, -1
C, east, D, -1

' +
L D, exit, x, +10 )

Episode 3

4 N
E, north, C, -1
C,east, D, -1

D, exit, x,+10
. J

Episode 2

-
B, east, C, -1
C, east, D, -1

i +
% D, exit, X, 10/

Episode 4

4 N
E, north, C, -1
C, east, A, -1

A, exit, x,-10
. J

Learned Model

T(S? a’? S,)

.

-

T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

~N

J

R(s,a,s")

-

.

R(B, east, C) = -1
R(C, east, D) =-1
R(D, exit, x) = +10

~N

J




Direct evaluation of V

e The good
o Simple to understand

o Doesn't require knowledge of T or R

o It converges to the correct values of the V' ™(s) given enough runs that
pass through the state

e The bad
o For rarely visited states, it can take a long while

o It does not exploit knowledge about the connections between states: for
all purposes, it learns each state separately.

o In the previous figure: why are the values of E and B so different, when
they both only go to C?



Temporal difference learning (TD-learning)

e We are still doing policy evaluation, learning the V'™ for a fixed 7

e Instead of waiting for a run to finish, learn from every transition (s,a,s',r)
o The idea is that we bootstrap the V(s) with the value of V(s’)

o Temporal difference: we go back to our history and update those values

e A sample (notice the similarity to be Bellman equation...) or TD-target
sample = R(s,n(s),s') +yV™(s")
e TD-update:
V™(s) « (1 —a)V™(s) + a- sample
or

V7™(s) + V7™ (s) + a(sample — V7 (s))



Wait, will this thing converge?

e o is the learning rate: if o = 1, we will keep replacing the value with a value
based on the next state, whatever that turns out to be this time...

e We need to decrease the o for it to converge

e A way to think about TD-learning is as follows:
o we are actually already in s’ but we are updating s (the previous one...
this is the temporal difference)

o we expect the sample to be V™ (s) ()
o if you got a very large reward, it makes the sample larger than expected

o this makes the sample — V large, and a part of it will be used to increase
V'™ such that next time you will not be surprised.

e Written like this, the reward is propagated only to the previous step (in one
event) but you can develop variants that go back multiple steps



TD-learning limitations

e Basically, we are mimicking the Bellman updates with running sample
averages
e Notice that this is an on-policy algorithm: we are following 7 and learning V'™

e The good: we are learning the V'™ without a model!

e A problem
o We can do policy iteration starting from this, but we need T and R

o So we still need a model, or an approximation of it



Are we really falling into the fire-pit?

e The 7 value was fixed
e The good: with this approach we can learn from other people's experiences

e The bad: we don't control where we are going



Active RL

e Setup: we choose the actions now!

e T(s,a,s') and R(s,a,s') are unknown

e Goal:learn7*, V*, Q*

e This time, the learner actually falls into the firepit.

e The choices of actions made during learning matter!
o For instance, exploration...



Q-value iteration?

e \We learned V-value iteration

Vii1(s) ma,xz (s,a,s’ +’ka(s’))
e But we can also do it for Q-values
Qri1(s,a) + ZT(s,a, s') (R(s,a, s') + ymax Qk(s’,a’))

e Why don't we do this for a known MDP? It is slower!



Q-learning

e Do the Q-value iteration using samples! Sample is like the one for TD-learning,
only replace V with max over Q.

sample = R(s,a,s’) + ymaxQ(s',a’)

Update Q(s,a) based on the sample, with a learning rate:
Q(s,a) + (1 — a)Q(s,a) + a - sample



Q-learning properties

e Does it converge?
o Yes. In fact it converges to (0%, regardless of what policy you use!!!

o off-policy learning
e With some limitations
o If you never perform an action a, you never learn about it
o If you have never been in a state s, you never learning about it

o o need to decrease for convergence, but if it is too small, convergence is
slow



Exploration vs. exploitation

e In Q-learning you only learn about
o actions you have actually took in

o states you have actually been
o This is a bit simplistic, but roughly true for most RL

e Exploitation: take advantage of what you learned
o Take action according to the g-values they currently have attached

o This means that in each state we always take the same action

o The only way we might land in a novel state is if the probabilistic I" lands
us there.

o When we deploy the (fixed) learned policy, we should do pure exploitation



Exploration

e As we only learn from states we have been and actions we took we should
explore by taking a variety of actions

e First approximation: act randomly! a ~ U(a)
o Problem: in many scenarios, we reach unfavorable terminal states very
soon, and never see advanced states closer to the goal!



Exploration (cont'd)

e Reset and act randomly! Go to state s and try all actions from there a ~ U(a).
Repeat for all states of interest.
o This is called reset to a state s

o Itis actually a very good strategy when it works

o It works in: simulation, board games, etc.
= \Whenever we have full control of the environment

= .. and the negative rewards are make-believe

o It doesn't work in: robotics, live finance, etc. - whenever the negative
rewards are real!



Exploration (cont'd)

e Second approximation: act according to the current best policy and let the
transition function take us to random places
o We would still not see new actions taken a

o The transition function might make some transitions extremely unlikely...



Stochastic policies

e Make the policy 7 stochastic
o Deterministic policy: w(s) — a
o Stochastic policy: w(s,a) — |0, 1] - the likelihood that the action a will be
taken in state s

e There are scenarios where the optimal policy is a stochastic one
o EQ. rock, paper, scissors...

o There are algorithms that learn that.

e Alternatively, we can use a stochastic policy during learning, for exploration,
and reset to a deterministic one during deployment.



e-greedy

e Consider a probability number € (eg. 0.2)

e At every time step in state s
o with a probability 1 — € choose a = argmaz Q(s, a)

o with probability e choose random a
e e determines the balance between exploration and exploitation

e Often, we reduce € during learning.



Exploration functions and novelty seeking

e A disadvantage of e-greedy is that it is taking random actions even in well
known states.

e \We would like to seek out novel information.

e One way to doitis to keep count of how many times we have been in a state
and taken action count(s, a) and calculate a novelty function similar to this:
()

count(s,a) + 1

f(u,a) =u+

e The exact form can vary, but the idea is that the less we visited a state/action
pair, the more attractive it seems



Using the exploration functions

e We replace
Quia(sa) (1 @)Qu(5,a) + o (Rls,a.8) + 7 max Qu(s'a)
with
Quir(5,0) « (1— a)Qi(s,a) +a (R(s, a,8') + ymax £ (Qu(s', a'), count(s' a’)))

e The idea is that we give an extra novelty reward to unknown s, a
combinations

e This novelty will propagate into the Q! So we will seek those out from afar!

e Butin the long run, it will decay, and the real rewards will dominate.



Summary: exploration vs exploitation

e Very important for all RL algorithms

e Plenty of human and animal analogies exist
o Of various levels of plausibility and relevance

e Itis almost sure that you will need to do at least e-greedy

e Recent years several high profile works in curiosity-driven exploration had
became highly cited, as they were claiming success with approaches that
learned with rewards coming exclusively from novelty.



Regret

e We need to find a measure of the efficiency of learning
e We define regret as the gap between the learned policy and the optimal policy

e Let us consider that we are repeatedly solving a problem 1... K
o At each step, we start from sy (chosen by nature or an adversary)
o After each run, we are using RL to improve our policy, 71 ... T
K

Regret = Z (V*(sk) — V™ (s1))
k=1

e Algorithms that have lower regret are less costly to train than those with high
regret
o Even if the final policy and the number of runs is the same!



Approximate Q-learning

e In a realistic situation, we cannot keep a table of Q values
o Also, we cannot visit all of them in training.

e We want to generalize from experience to similar states
o Falling into a firepit in the library bad — falling into the firepit bad in
most locations

e Itis helpful to consider Q(s,a) a function:
o Can be implemented as a lookup table (as we did until now)

o Can be a linear expression of features

o Can be a neural network (deep RL)



Feature-based representation

e Idea: engineer a series of features that capture aspects of the problem
o They are often functions f(s) or f(s,a) from statetoa [0,1] or 0, 1
range.

o Traditionally, they are engineered by experts and capture human
expertise and experience.

o We only need to ask the expert to give us "things that are important”, not
to put an exact weight on them.

e Advantage: can represent large spaces with a few numbers!

e Disadvantage: if the set of the features does not capture everything about the
state, states similar in features might be very diffrenet in value



Examples

e Examples for f(s):
o Distance to the monster (normalized to maximum)

o Distance to the exit (normalized to maximum)
o Are we in a tunnel? (yes/no)

e Examples for f(s,a):
o Moving towards monster? (yes/no)

o Bumping into wall? (yes/no)



Linear value functions



Approximate Q-learning with linear Q-functions

e Line in exact Q-learning, we consider a sample of the transition (s,a,rs')
difference = r + ymax' Q(s’,a’) — Q(s, a)
a
The exact update rule was:
Q(s,a) < Q(s,a) + «a - difference

The update rule will be now:

w; < w; + « - difference - f;(s,a)



Intuitive interpretation of approximate Q-
learning

e Note that we multiply the update with the feature value
o Intuition: if we got a big negative reward, we blame the features that
were present, not the ones that are not!

e Formal justification of this model is from the theory of online least squares



