
1

Minimax Example

12 8 5 23 2 144 6

32

2

Minimax Pruning

12 8 5 23 2 14

33

3

Alpha-Beta Pruning

 General configuration (MIN version)
 We’re computing the MIN-VALUE at some node n

 We’re looping over n’s children

 n’s estimate of the childrens’ min is dropping
 Who cares about n’s value? MAX

 Let a be the best value that MAX can get at any choice
point along the current path from the root

 If n becomes worse than a, MAX will avoid it, so we can
stop considering n’s other children (it’s already bad
enough that it won’t be played)

 MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

34

4

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor, α,
β))

if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor, α,
β))

if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

35

5

Alpha-Beta Pruning Properties

 This pruning has no effect on minimax value computed for the root!

 Values of intermediate nodes might be wrong
 Important: children of the root may have the wrong value
 So the most naïve version won’t let you do action selection

 Good child ordering improves effectiveness of pruning

 With “perfect ordering”:
 Time complexity drops to O(bm/2)
 Doubles solvable depth!
 Full search of, e.g. chess, is still hopeless…

 This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

36

6

Alpha-Beta Quiz

37

7

Alpha-Beta Quiz 2

38

