Minimax Example

Minimax Pruning

Alpha-Beta Pruning

- General configuration (MIN version)
- We're computing the MIN-VALUE at some node n
- We're looping over n's children
- n 's estimate of the childrens' min is dropping
- Who cares about n's value? MAX
- Let a be the best value that MAX can get at any choice point along the current path from the root
- If n becomes worse than a, MAX will avoid $i t$, so we can stop considering n 's other children (it's already bad enough that it won't be played)

- MAX version is symmetric

Alpha-Beta Implementation

```
a: MAX's best option on path to root
\(\beta\) : MIN's best option on path to root
```

def max-value(state, α, β):
initialize v = $-\infty$
for each successor of state:
$v=\max (v$, min-value(successor, α, β))
if $v \geq \beta$ return v
$\alpha=\max (\alpha, v)$
return v
def min-value(state, α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, max-value(successor, α, β)
if $\mathrm{v} \leq \alpha$ return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!
- Values of intermediate nodes might be wrong
- Important: children of the root may have the wrong value
- So the most naïve version won't let you do action selection
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
- Time complexity drops to $O\left(b^{m / 2}\right)$

- Doubles solvable depth!
- Full search of, e.g. chess, is still hopeless...
- This is a simple example of metareasoning (computing about what to compute)

Alpha-Beta Quiz

Alpha-Beta Quiz 2

