Game play and adversarial search

State of the art in game play

- **Checkers**: 1994: First computer champion. 2007: Checkers **solved**!
- **Chess**: 1997 Deep Blue defeated human champion Gary Kasparov. Very sophisticated evaluation techniques, and significant computing power. These days: trivial computing power can defeat any human.
- **Go**: 2016, DeepMind AlphaGo defeats Lee Sedol, top Go player.
- **Poker**: Some variants were solved (eg. heads-up limit Texas hold'em).

Games

- Deterministic or stochastic?
 - Is there randomness involved? Shuffled cards, dice?
- Complete or partial information game?
 - Is a part of the information hidden?
- One, two or more players?
- Zero sum?
 - If yes, the game is fully adversarial
- General games
 - Outcome values might be more complex, they don't add up to zero
 - Eg. monopoly, settles of Catan
 - Players relative strategy can be of cooperation, indifference, competition, alliances, cliques, contracts etc.

Deterministic games

- States $S = \{s_0, \ldots\}$
- Players $P = \{1 \dots N\}$, take turns
- Actions A. Not all actions might be available for every player at every state.
- Transition function T(s,a) o s'
 - The fact that this is not probabilistic, makes this a deterministic game
- Terminal test: $completed(s) \rightarrow \{true, false\}$
 - Eg: checkmate!
 - Eg: golden snitch was catched!
- (Terminal) utilities: $U(s,p)\in\mathbb{R}$

Game playing in AI

- Agent view of AI: the AI is one of the players.
- Let us assume players A and B who take actions successively.

$$s_0
ightarrow a_{A1}
ightarrow s_1
ightarrow a_{B1}
ightarrow s_2
ightarrow a_{A2}
ightarrow s_3
ightarrow s_2
ightarrow a_{A2}
ightarrow s_3
ightarrow s_2
ig$$

- Usually, we cannot search for a **plan**, because the agents' actions are interleaved with the actions of the opponent!
- We will search for a **policy** instead: $\pi(s)
 ightarrow a$

Single player, deterministic, complete information game

- Take actions, such that you **maximize** the value of the terminal state you reach!
- What is value of the *intermediate* states?
 - Depends on where you go from there...
 - But you should go in the direction you will eventually get better value
 - A perfect player at any choice would choose the one with the maximum value

The V value

- The V value of a state s, in many AI contexts, is the value you can achieve starting from s and **acting perfectly from now on**
- In the case of a one player game: just calculate it recursively by max. It gets harder later.
- For a terminal state: V(s) = known
- For a non-terminal state

$$V(s) = {\displaystyle \mathop{max}\limits_{s' \in successors(s)}} V(s')$$

Example tic-tic-tic game

- Tic-tic-tic is one person tic-tac-toe, with limit of 3 moves
- m = 3, average b = 8
- How do we calculate the v values?

How to act in a single player deterministic, complete information game

• Your policy should be: take the action for which the successor has the largest value.

$$\pi(s) = \mathop{argmax}\limits_{a} V(T(s,a))$$

- Is this now gameplay or planning?
- Actually, both! You can calculate a list of actions to the end of the game.

Zero-sum games

- Agents have opposite utilities: for each terminal state they add up to zero: $U(s,p_1)=-U(s,p_2)$
 - $\circ\,$ Eg. chess, go, etc.
- We can think of a single value that one of the agents maximizes and the other minimizes.
- Purely adversarial

Adversarial search (Minimax)

- Assume deterministic, zero sum games
- Player one maximizes the result, the other one minimizes it $_\circ\,$ We call it a maximizing player Δ and minimizing player ∇
- Minimax search tree
 - State-space search tree, with a V value
 - Players alternate turns, correspond to vertical layers in the tree

Minmax algorithm

```
def maxvalue(s)
  if s terminal return val(s)
  V = -\infty
  for s' in succ(s)
    v = max (v, minvalue(s'))
  return v
def maxvalue(s)
  if s terminal return val(s)
  V = \infty
  for s' in succ(s)
   v = min (v, maxvalue(s'))
  return v
```

Minmax example

• Tic-tac-toe - what is the value of this position?

```
| X | O
| O |
X | X | O
```

Performance of minmax

- Similar to exhaustive DFS
 - $\circ\,$ Time $O(b^m)$
 - \circ Space O(bm)
- It can solve any adversarial game, just not very efficiently
 - $\circ\,$ Chess: bpprox 35, $mpprox 100
 ightarrow 35^{100}$
 - $\circ\,$ Go: bpprox 250, $mpprox 210
 ightarrow 250^{210}$

Game style of minmax

- It works perfectly against a perfect player.
- It also works perfectly against a non-perfect opponent
 But this means that sometimes is too cautious

Resource limited search for minimax

- In practice, you can only search to a limited depth (*plies*) 1 ply == 1 move by one of the players
 - Eg. 4 plies ahead in chess
 - More plies, better performance
- When you reach the limit, you still have to return something, without searching further.
 - Return the value of an **evaluation function**
 - It is a way to evaluate the current state of the game without rolling out a search, for instance, by adding up the strenghts of the piece.

Evaluation functions and depth

- An evaluation function is always imperfect
 - If we can made an efficient and perfect evaluation function for a game, it is not much of a game.
- We can sometimes make evaluation functions better by expending more computation.
 - Cheap evaluation function in chess: add up the nominal piece values (queen 9pts, rook 5 pts, bishop and knight 3 pts, pawn 1pt) and return the difference.
 - Cheap, not necessarily perfect
 - More expensive one: calculate the positional values of the pieces.
 - Very expensive one: look up the positions in a library of famous games

Evaluation functions and depth

- It turns out that the deeper in the tree the evaluation function is, the less its quality matters.
- Tradeoff:
 - Cheap but weak evaluation function, go 8 plies deep?
 - Expensive but good evaluation function, go 2 plies deep?

How to build an evaluation function?

- Ideal function: actual minimax value.
- A convenient way to think about it: weighted linear sum of features

$$eval(s) = w_1 f_1(s) + \dots + w_n f_n(s)$$

- f() hand engineered **features**
 - $\circ~$ Eg. is the black king checked?
- w weights, that can be manually set, or learned

Alpha-beta pruning