
Game play and adversarial search

State of the art in game play
Checkers: 1994: First computer champion. 2007: Checkers solved!
Chess: 1997 Deep Blue defeated human champion Gary Kasparov. Very
sophisticated evaluation techniques, and significant computing power. These
days: trivial computing power can defeat any human.
Go: 2016, DeepMind AlphaGo defeats Lee Sedol, top Go player.
Poker: Some variants were solved (eg. heads-up limit Texas hold'em).

Games
Deterministic or stochastic?

Is there randomness involved? Shuffled cards, dice?
Complete or partial information game?

Is a part of the information hidden?
One, two or more players?
Zero sum?

If yes, the game is fully adversarial
General games

Outcome values might be more complex, they don't add up to zero
Eg. monopoly, settles of Catan
Players relative strategy can be of cooperation, indifference, competition,
alliances, cliques, contracts etc.

Deterministic games
States
Players , take turns
Actions . Not all actions might be available for every player at every state.
Transition function

The fact that this is not probabilistic, makes this a deterministic game
Terminal test:

Eg: checkmate!
Eg: golden snitch was catched!

(Terminal) utilities:

Game playing in AI
Agent view of AI: the AI is one of the players.
Let us assume players A and B who take actions successively.

Usually, we cannot search for a plan, because the agents' actions are
interleaved with the actions of the opponent!
We will search for a policy instead:

Single player, deterministic, complete
information game

Take actions, such that you maximize the value of the terminal state you
reach!
What is value of the intermediate states?

Depends on where you go from there...
But you should go in the direction you will eventually get better value
A perfect player at any choice would choose the one with the maximum
value

The V value
The value of a state , in many AI contexts, is the value you can achieve
starting from and acting perfectly from now on
In the case of a one player game: just calculate it recursively by max. It gets
harder later.
For a terminal state:
For a non-terminal state

Example tic-tic-tic game
Tic-tic-tic is one person tic-tac-toe, with limit of 3 moves
m = 3, average b = 8
How do we calculate the v values?

How to act in a single player deterministic,
complete information game

Your policy should be: take the action for which the successor has the largest
value.

Is this now gameplay or planning?
Actually, both! You can calculate a list of actions to the end of the game.

Zero-sum games
Agents have opposite utilities: for each terminal state they add up to zero:

Eg. chess, go, etc.
We can think of a single value that one of the agents maximizes and the other
minimizes.
Purely adversarial

Adversarial search (Minimax)
Assume deterministic, zero sum games
Player one maximizes the result, the other one minimizes it

We call it a maximizing player and minimizing player
Minimax search tree

State-space search tree, with a V value
Players alternate turns, correspond to vertical layers in the tree

Minmax algorithm
def maxvalue(s)
 if s terminal return val(s)
 v = -∞
 for s' in succ(s)
 v = max (v, minvalue(s'))
 return v

def maxvalue(s)
 if s terminal return val(s)
 v = ∞
 for s' in succ(s)
 v = min (v, maxvalue(s'))
 return v

Minmax example
Tic-tac-toe - what is the value of this position?

 | x | o

o
x | x | o

Performance of minmax
Similar to exhaustive DFS

Time
Space

It can solve any adversarial game, just not very efficiently
Chess: ,
Go: ,

Game style of minmax
It works perfectly against a perfect player.
It also works perfectly against a non-perfect opponent

But this means that sometimes is too cautious

Resource limited search for minimax
In practice, you can only search to a limited depth (plies) - 1 ply == 1 move by
one of the players

Eg. 4 plies ahead in chess
More plies, better performance

When you reach the limit, you still have to return something, without
searching further.

Return the value of an evaluation function
It is a way to evaluate the current state of the game without rolling out a
search, for instance, by adding up the strenghts of the piece.

Evaluation functions and depth
An evaluation function is always imperfect

If we can made an efficient and perfect evaluation function for a game, it
is not much of a game.

We can sometimes make evaluation functions better by expending more
computation.

Cheap evaluation function in chess: add up the nominal piece values
(queen 9pts, rook 5 pts, bishop and knight 3 pts, pawn 1pt) and return the
difference.

Cheap, not necessarily perfect
More expensive one: calculate the positional values of the pieces.
Very expensive one: look up the positions in a library of famous games

Evaluation functions and depth
It turns out that the deeper in the tree the evaluation function is, the less its
quality matters.
Tradeoff:

Cheap but weak evaluation function, go 8 plies deep?
Expensive but good evaluation function, go 2 plies deep?

How to build an evaluation function?
Ideal function: actual minimax value.
A convenient way to think about it: weighted linear sum of features

 - hand engineered features
Eg. is the black king checked?

 - weights, that can be manually set, or learned

Alpha-beta pruning

