Game play and adversarial search

State of the art in game play

- Checkers: 1994: First computer champion. 2007: Checkers solved!
- Chess: 1997 Deep Blue defeated human champion Gary Kasparov. Very sophisticated evaluation techniques, and significant computing power. These days: trivial computing power can defeat any human.
- Go: 2016, DeepMind AlphaGo defeats Lee Sedol, top Go player.
- Poker: Some variants were solved (eg. heads-up limit Texas hold'em).

Games

- Deterministic or stochastic?
- Is there randomness involved? Shuffled cards, dice?
- Complete or partial information game?
- Is a part of the information hidden?
- One, two or more players?
- Zero sum?
- If yes, the game is fully adversarial
- General games
- Outcome values might be more complex, they don't add up to zero
- Eg. monopoly, settles of Catan
- Players relative strategy can be of cooperation, indifference, competition, alliances, cliques, contracts etc.

Deterministic games

- States $S=\left\{s_{0}, \ldots\right\}$
- Players $P=\{1 \ldots N\}$, take turns
- Actions A. Not all actions might be available for every player at every state.
- Transition function $T(s, a) \rightarrow s^{\prime}$
- The fact that this is not probabilistic, makes this a deterministic game
- Terminal test: completed $(s) \rightarrow\{$ true, false $\}$
- Eg: checkmate!
- Eg: golden snitch was catched!
- (Terminal) utilities: $U(s, p) \in \mathbb{R}$

Game playing in AI

- Agent view of AI: the AI is one of the players.
- Let us assume players A and B who take actions successively.

$$
s_{0} \rightarrow a_{A 1} \rightarrow s_{1} \rightarrow a_{B 1} \rightarrow s_{2} \rightarrow a_{A 2} \rightarrow s_{3}
$$

- Usually, we cannot search for a plan, because the agents' actions are interleaved with the actions of the opponent!
- We will search for a policy instead: $\pi(s) \rightarrow a$

Single player, deterministic, complete information game

- Take actions, such that you maximize the value of the terminal state you reach!
- What is value of the intermediate states?
- Depends on where you go from there...
- But you should go in the direction you will eventually get better value
- A perfect player at any choice would choose the one with the maximum value

Terminal States:
$V(s)=$ known

The V value

- The V value of a state s, in many AI contexts, is the value you can achieve starting from s and acting perfectly from now on
- In the case of a one player game: just calculate it recursively by max. It gets harder later.
- For a terminal state: $V(s)=k n o w n$
- For a non-terminal state

$$
V(s)=\max _{s^{\prime} \in \text { successors }(s)} V\left(s^{\prime}\right)
$$

Example tic-tic-tic game

- Tic-tic-tic is one person tic-tac-toe, with limit of 3 moves
- $m=3$, average $b=8$
- How do we calculate the v values?

How to act in a single player deterministic, complete information game

- Your policy should be: take the action for which the successor has the largest value.

$$
\pi(s)=\underset{a}{\operatorname{argmax}} V(T(s, a))
$$

- Is this now gameplay or planning?
- Actually, both! You can calculate a list of actions to the end of the game.

Zero-sum games

- Agents have opposite utilities: for each terminal state they add up to zero:
$U\left(s, p_{1}\right)=-U\left(s, p_{2}\right)$
- Eg. chess, go, etc.
- We can think of a single value that one of the agents maximizes and the other minimizes.
- Purely adversarial

Adversarial search (Minimax)

- Assume deterministic, zero sum games
- Player one maximizes the result, the other one minimizes it
- We call it a maximizing player Δ and minimizing player ∇
- Minimax search tree
- State-space search tree, with a V value
- Players alternate turns, correspond to vertical layers in the tree

Minmax algorithm

```
def maxvalue(s)
    if s terminal return val(s)
    v = -\infty
    for s' in succ(s)
        v = max (v, minvalue(s'))
    return v
def maxvalue(s)
    if s terminal return val(s)
    v = \infty
    for s' in succ(s)
        v = min (v, maxvalue(s'))
    return v
```


Minmax example

- Tic-tac-toe - what is the value of this position?

Performance of minmax

- Similar to exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$
- It can solve any adversarial game, just not very efficiently
- Chess: $b \approx 35, m \approx 100 \rightarrow 35^{100}$
- Go: $b \approx 250, m \approx 210 \rightarrow 250^{210}$

Game style of minmax

- It works perfectly against a perfect player.
- It also works perfectly against a non-perfect opponent
- But this means that sometimes is too cautious

Resource limited search for minimax

- In practice, you can only search to a limited depth (plies) - 1 ply == 1 move by one of the players
- Eg. 4 plies ahead in chess
- More plies, better performance
- When you reach the limit, you still have to return something, without searching further.
- Return the value of an evaluation function
- It is a way to evaluate the current state of the game without rolling out a search, for instance, by adding up the strenghts of the piece.

Evaluation functions and depth

- An evaluation function is always imperfect
- If we can made an efficient and perfect evaluation function for a game, it is not much of a game.
- We can sometimes make evaluation functions better by expending more computation.
- Cheap evaluation function in chess: add up the nominal piece values (queen 9pts, rook 5 pts, bishop and knight 3 pts, pawn 1 pt) and return the difference.
- Cheap, not necessarily perfect
- More expensive one: calculate the positional values of the pieces.
- Very expensive one: look up the positions in a library of famous games

Evaluation functions and depth

- It turns out that the deeper in the tree the evaluation function is, the less its quality matters.
- Tradeoff:
- Cheap but weak evaluation function, go 8 plies deep?
- Expensive but good evaluation function, go 2 plies deep?

How to build an evaluation function?

- Ideal function: actual minimax value.
- A convenient way to think about it: weighted linear sum of features

$$
\operatorname{eval}(s)=w_{1} f_{1}(s)+\cdots+w_{n} f_{n}(s)
$$

- $f()$ - hand engineered features
- Eg. is the black king checked?
- w - weights, that can be manually set, or learned

Alpha-beta pruning

