Informed search for plans

Goal information

- The algorithms we discussed until now (depth first, breadth first, uniform cost search) assumed that the only information we have about the goal is a binary $G(\cdot)$ function
- We know that we found the goal, when we get there.

Goal information (cont'd)

- How do we go from Orlando to San Francisco?
 - It is to the west from us.
 - So we probably have to go mostly to west
 - But taking every action "to west" does not take you there
- In practice, we might have more information about the goal
 - But this information can be vague, incomplete, uncertain, probabilistic or wrong
- **Challenge:** how do we integrate additional information about the goal into our

Heuristics

- A function that provides an estimate for how far is a state from the goal h(s)
- It is a way to encapsulate knowledge about the goal
- Examples:
 - The "as-the-crow-flies" distance to San Francisco
 - The number of horcruxes remaining

Greedy search

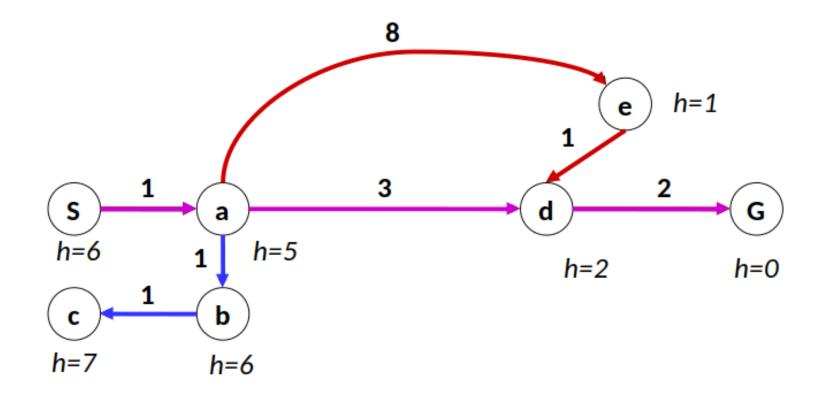
- Strategy: expand the node with the lowest heuristic value
 - $\circ\,$ Make the fringe a priority queue ordered by h(s)
 - Pick the smallest
- Sometimes also called as **best-first search**
- How good it is? Depends on the quality of the heuristics
 - If the heuristics gets the ordering right (not necessarily the values) you go straight to the solution!
 - If the heuristic is wrong, you can end up like in DFS
- The quality of the heuristics reflects our understanding of the problem.

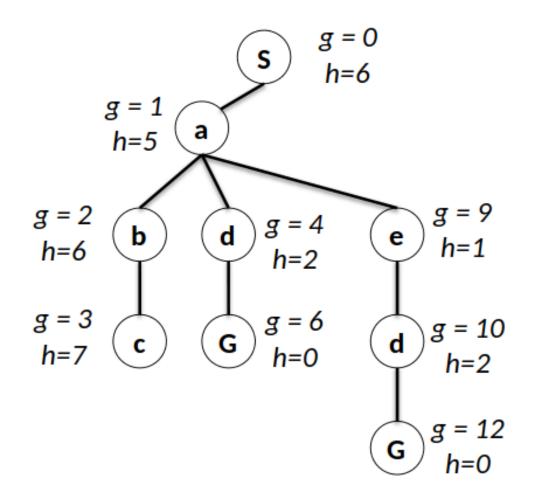
Greedy search (cont'd)

- Optimal: no, the heuristics might lead you on a non-optimal path or to the non-optimal goal.
- Space and time complexity: can range anything between BFS and DFS.
- Insight: DFS and BFS are heuristic search with a particular type of heuristic
- Can you get **stuck**?
 - No, if you are following the standard tree search algorithm you will explore the other ones later.
 - But you can end up endlessly deep, like in DFS.

A* search

- Combines UCS and Greedy
 - \circ Uniform cost orders by path cost g(n) aka *backward cost*
 - $\circ\,$ Greedy orders by goal proximity h(n) aka *forward cost*
 - $\circ\,$ A* orders by sum f(n)=g(n)+h(n)



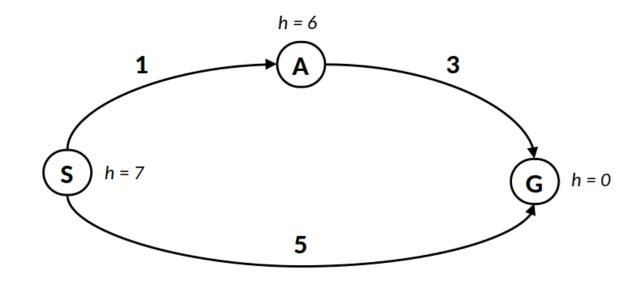


When should A* terminate

- Don't stop when we add the goal to the fringe!
 - The fringe is not FIFO it is possible that the goal we added is not the one that will come out first!
- Only stop when we take out a node labeled with a goal from the fringe

Is A* optimal?

- Not in this case!
- The heuristic misled us!
- But if we need a perfect heuristic, why do we bother with A*
- Turns out we don't need the heuristic to be perfect, we only need it to be **optimistic**



Admissible heuristics

- Inadmissible (pessimistic) heuristics break optimality by trapping good plans far down on the fringe
- Admissible (optimistic) heuristics never overweigh true costs:

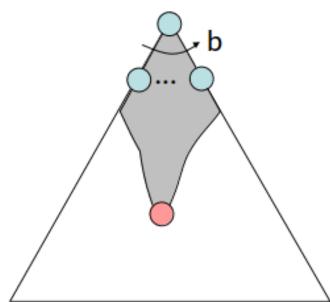
 $0 \leq h(n) \leq h^*(n)$

• where $h^*(n)$ is the true cost to a nearest goal.

A* properties

- Uniform cost expands equally in all directions
- Greedy expands sharply towards what it thinks is the goal
- A* expands mainly towards the goal but also other directions

Uniform-Cost ۰b ...



 A^*

A* applications

Very extensive set of applications

- Pathing, routing problems
- Resource planning problems
- Video games
- Robot motion planning

Previously also used for

- Language analysis
- Machine translation
- Speech recognition

Creating admissible heuristics

- The critical challenge in making A* work for you is to come up with a good admissible heuristic
- Trivial admissible heuristic: h(n)=0

• Reverts A* to uniform cost search

- Perfect heuristic $h(n) = h^*(n)$
 - $\circ~$ Go straight to the goal
- There is a partial ordering between admissible heuristics (*dominance*)
- The max of admissible heuristics is admissible

 $h(n) = max(h_a(n), h_b(n))$

Relaxed problems

- How do we get good admissible heuristics?
- One way: try to solve a **relaxed problem**
 - A problem which is in some way easier than the original one
- One easy way to create a relaxed problem: add new actions
 - Imagine that the agent is a superhero!!!
 - Eg. ability to fly Euclidean distance
 - Eg. ability to pass through walls Manhattan distance
 - Eg. ability to destroy horcruxes from distance horcrux count

Extra work in tree search

- Until now, all the algorithms were variations of **tree search**
 - You can have many plans in the tree labeled with the same node
 - Can lead to (exponentially more) extra work

Graph search

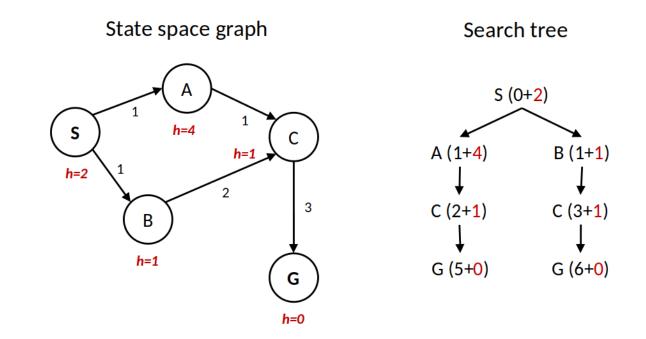
- Idea: never **expand** a state twice
- Augment the tree search algorithm with a **closed set** the set of expanded states
- Before expanding a node, check if the state was expanded before
 Yes: skip it
 - No: expand it and add it to the closed set
- The closed set only used for membership check: implement as a hashset.

Graph search properties

- Any tree search algorithms can be converted to graph search
- Graph search obviously avoids some expansions
- Does it change the properties?
 - Space complexity: increased, due to the closed set
 - Completeness: whatever states had been expanded before, they will be expanded now as well, so the algorithm retains completeness
 - Optimality?

A* graph search optimality

- Admissible heuristic not sufficient
- Heuristics also needs to be consistent



Consistent heuristics

- Admissibility: heuristic cost \leq actual cost to goal $h(A) \leq$ actual cost from A to G
- Consistence: heuristic "arc" cost \leq actual cost for each arc $h(A)-h(C)\leq$ cost(A to C)
- Consequences of consistency:
 - The f value along a path never decreases
 - A* graph search is optimal
- How do we find consistent heuristics?
 - Relaxed problems will be consistent