
Agent view of AI

Reflex vs. planning agents.
Reflex agents

Choose an action based on current observations (and maybe memory)
Do not consider the future consequences of actions

Can a reflex agent be rational?
Well chosen reflex agents can actually go very far in implementing useful
behaviors
Many animals might be reflex agents, humans have many reflexive
behaviors.

How do you implement it?
Simplest: lookup table
Function approximation:

Planning agents
Plan a certain set of actions
During execution time, just execute the actions, as listed in the plan
Planning:

Ask "what if" a certain action is done, make decisions based on the
(hypothesised consequences)
Must have a world model which tells how the world evolves
in response to actions

Partial, complete and shortest paths

Partial plan: it does not reach the goal
Complete plan: goal is achieve at the end
Optimal plan: some kind of additional optimization criteria

Lowest number of actions
Lowest cost (cost associated with actions) - eg time, energy
Preferred states visited along the plan

Challenges of planning
Uncertainty in actions (probabilistic)
Other agents acting in the world
Replanning:

Redo the planning whenever situations diverge from what was expected
Contingency plans
Model predictive control: Make a complete plan, but only perform first
action, replan at every step afterwards

Search problem
A search problem consists of

State space
Successor function
Start state
Goal test

Together, they imply a state space graph
Solution: a set of actions == a plan that transforms the start state to goal
state

Modeling
The search problem is a given only in AI class homework and exam problems.
Otherwise: setting up the problem correctly is critical.
The search problem is a model: a mathematical object that captures those
aspects of the world that are useful for the solution or the problem and
ignores the rest
We need to distinguish between the world state which is always very large
and complex and the model state which we try to tailor to the problem.

Modeling exercise
Harry Potter (HP)
Map: Hogwards (hw), Hogsmeade (hm), Gringotts (gr) and London (ln)
hw-hm, hm-gr, hm-ln, ln-gr
P1: path planning
P2: one horcrux HX in total
P3: each location might have a horcrux

State space considerations
Exponential explosion of number of states
Building the state space graph explicitly is often impossible
In some cases, states are only revealed during the search

e.g. fog of war in games
In other times, we generate them as we go

Search tree
Root node: labeled with the start state
Downward edges from nodes: actions
Nodes: labeled with the state

A state can appear multiple times in the search tree!
As this is a tree, for each node, there is a unique path from the root

The edges of that path is the plan that gets us to this state!

Search tree considerations
Can get very large, unlikely that we can build it completely.
It can get infinitely large, if there is a loop in the state graph
For the Harry Potter example: hw - hm - gr - ln - gr - ln ...

Tree search algorithm
Consider nodes as partial plans
Start from the root
Moving from a note to its children is called expanding a node
Maintain a collection datastructure called the fringe: nodes that we know that
we need to expand
Stop when we found a complete plan: the node we are expanding is in the
goal set.

General tree search
function TREE_SEARCH({S, T, s_0, G}, strategy):
 fringe = {s_0}
 loop
 if fringe == {} return failure
 choose node n from fringe according to strategy
 if G(n) return solution
 remove n from fringe
 create successor nodes of n based on T(n) and add them to fringe

General tree search
Amazing algorithm, works for any problem!
Critical part: strategy

How to pick the next node from the fringe
The fringe, as a datastructure, should support the strategy

Determines:
Whether we find a solution
Whether we find the optimal solution
How long do we search until we find a solution
...

Properties of a
search algorithm

Completeness: guaranteed to
find a solution if one exists?
Optimal: least cost plan?
Time complexity?
Space complexity?
 branching factor

 maximum depth
Total nodes?

Depth-first tree search
Strategy: expand a deepest node first

Practically, this means expand the nodes you just put in
Last in first out

Fringe: stack

Properties of DFS
What does DFT expand?

Some left prefix of the tree
Could process the whole
tree

Space complexity: fringe only
has the siblings of the current
path to root
Complete: no, if m is infinite!
Optimal: no, it finds the
leftmost solution

Breadth first search
Strategy: expand a shallowest node first

Practically, this means that expand the oldest nodes in the fringe
First in, first out

Fringe: queue

Properties of BFS
What nodes are expanded?

All nodes above the
shallowest solution, which
is at depth
Search time

Space complexity: fringe can
have the last tier, so
Complete: yes, when it reaches
the depth , it will find it
Optimal: it will find the
shallowest solution

Depth first vs. breadth first search
When will BFS outperform DFS?

Complex search graph, but solution relatively near
DFS can get lost, or even stuck in a loop

When will DFS outperform BFS:
Finding the ocean from a desert island
Many solutions, but not nearby

Iterative deepening
DFS has the advantage of a low spatial complexity. Can we get this advantage
with the BFS's shallow-solution advantages?
Iterative deepening

Run a DFS with depth limit 1 - time cost . If no solution...
Run a DFS with depth limit 2 - time cost . If no solution...
....

What do we gain: the low space complexity of DFS
What do we loose: repeated traversal of the upper parts of the tree

But for most , most of the work happens in the last layer.

Cost-based search
Breadth first search finds the shortest plan in terms of number of actions.
But in many situations different actions have different costs:

Road segments have different length - find the shortest plan.
Some road segments have length + toll - find the cheapest plan.
Some actions take a different amount of time - find the fastest plan.

Very often we are searching for a plan which has the lowest cost, where the
costs are added up along the actions in the plan.

Other possibilities exist

Uniform cost search (UCS)
A variation of tree search that:

Sorts the fringe by the cummulative cost of actions from the root
Practically: implement the fringe as a priority queue

Partial plans will be investigated in the order of their cost!

Properties of uniform cost search
Let us say the cheapest solution has cost . How deep is that?

If you have actions with zero cost, it can be infinitely deep!
Assume each action has a cost of at least
Then the deepest it can be is - we call this the effective depth

Time complexity
Process all partial plans with cost less than the cheapest solution
Time, exponential like in breadth first search, but this time with effective
depth

Properties of uniform cost search (cont'd)
Space complexity

The width of the last tier:
Is it complete?

With some easy assumptions, yes.
Assumptions: and finite

Is it optimal?
Yes.

What do we think about UCS?
Complete and optimal!
Space complexity problematic
Can be applied to anything, it doesn't use any information about the goal.
Often we know something about the goal:

Defeat all the monsters
Collect all horcruxes
Go to San Francisco with flowers in your hair

Can we take advantage of what we know about the goal

