

Note: This parameterization is good when input image is registered (e.g., face recognition).

Locally Connected Layers

STATIONARITY? Statistics is similar at different locations

Example: 200x200 image 40K hidden units Filter size: 10x10 → 4M parameters

Share the same parameters across different locations (assuming input is stationary): Convolutions with learned kernels

Learn multiple filters.

E.g.: 200x200 image 100 Filters Filter size: 10x10 10K parameters

Convolution Layer

Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Filters always extend to the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

"Tensors" again

Because there are multiple channels in each data block, convolutional filters are normally specified by 4D arrays. Common dimensions are:

- = number of output channels
 - = number of input channels
 - = filter height
 - = filter width

Preview: ConvNet is a sequence of Convolution Layers, interspersed with nonlinear activation functions

Preview: ConvNet is a sequence of Convolution Layers, interspersed with nonlinear activation functions

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - \circ Number of filters K,
 - \circ their spatial extent F,
 - \circ the stride S,
 - $\circ\;$ the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $\circ W_2 = (W_1 F + 2P)/S + 1$
 - $\circ~~H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Pooling Layer

Let us assume filter is an "eye" detector.

Q.: how can we make the detection robust to the exact location of the eye?

Pooling Layer

By "pooling" (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

Х

max pool with 2x2 filters and stride 2

Slide based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

V

ConvNets: Typical Stage

One stage (zoom)

