Locally Connected Layers

Note: This parameterization is good when
input image is registered (e.g., face recognition).

Locally Connected Layers

Convolutional Layer

Share the same parameters across different locations (assuming input is stationary): Convolutions with learned kernels

Convolutional Layer

E.g.: 200x200 image 100 Filters Filter size: 10×10 10K parameters

Convolution Layer

$32 \times 32 \times 3$ image

Convolution Layer

Convolution Layer

Filters always extend to the full depth of the input volume

$32 \times 32 \times 3$ image

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Convolution Layer

activation map

Convolution Layer

consider a second, green filter

For example, if we had 65×5 filters, we'll get 6 separate activation maps:
activation maps

We stack these up to get a "new image" of size $28 \times 28 \times 6$!

"Tensors" again

Because there are multiple channels in each data block, convolutional filters are normally specified by 4D arrays. Common dimensions are:
= number of output channels
= number of input channels
= filter height
$=$ filter width

Preview: ConvNet is a sequence of Convolution Layers, interspersed with nonlinear activation functions

Preview: ConvNet is a sequence of Convolution Layers, interspersed with nonlinear activation functions

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires four hyperparameters:
- Number of filters K,
- their spatial extent F,
- the stride S,
- the amount of zero padding P.
- Produces a volume of size $W_{2} \times H_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F+2 P\right) / S+1$
- $H_{2}=\left(H_{1}-F+2 P\right) / S+1$ (i.e. width and height are computed equally by symmetry)
- $D_{2}=K$
- With parameter sharing, it introduces $F \cdot F \cdot D_{1}$ weights per filter, for a total of $\left(F \cdot F \cdot D_{1}\right) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_{2} \times H_{2}$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Pooling Layer

Let us assume filter is an "eye" detector.
Q.: how can we make the detection robust to the exact location of the eye?

Pooling Layer

By "pooling" (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

ConvNets: Typical Stage

One stage (zoom)

