Locally Connected Layers

Example: 200x200 image
40K hidden units
Filter size: 10x10
- 4M parameters

Note: This parameterization is good when
input image is registered (e.g., face recognition).
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Locally Connected Layers

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
- 4M parameters
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Convolutional Layer

Share the same parameters across different
locations (assuming input is stationary):
Convolutions with learned kernels
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Convolutional Layer

Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters
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Convolution Layer

32x32x3 Image

32 height

32 width

3 Depth (color)
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Convolution Layer

32x32x3 Image

5x5x3 filter
32 7
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32
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CO nVOIUtion Layer Filters always extend to the
/ full depth of the input volume

32x32x3 Image /
5x5x3 filter
32 7
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32
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Convolution Layer

« 32x32x3 image
5x5x3 filter w

¥~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

3 wlez+b
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Convolution Layer

activation map

« 32x32x3 image
5x5x3 filter

.

convolve (slide) over all
spatial locations

32 28
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Convolution Layer consider a second, green filter

- 32x32x3 image activation maps
5x5x3 filter

i=—

convolve (slide) over all
spatial locations

32 / 28
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For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

32

28

—>
Convolution Layer

32 28
3 6

We stack these up to get a “new image” of size 28x28x6!

Slide based on ¢s231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson




“Tensors” again

Because there are multiple channels in each data block, convolutional filters are normally
specified by 4D arrays. Common dimensions are:

= number of output channels
= number of input channels
= filter height
= filter width
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with non-
linear activation functions

32 28

—>
CONYV,
RelLU
e.g. 6

5x5x3
32 filters 28
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with non-
linear activation functions

32 28 24
— — —
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g. 6 e.g. 10
5x5x3 5x5x6
32 filters 28 filters 24
3 6 10
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Summary. To summarize, the Conv Layer:

 Accepts a volume of size W; x Hy; x D,
» Requires four hyperparameters:
o Number of filters K,
o their spatial extent F,
o the stride S,
o the amount of zero padding P.
 Produces a volume of size Wy x Hy x Dy where:
o Wo=(Wy —F+2P)/S+1
o Hy = (Hy — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)
° D2 =05
« With parameter sharing, it introduces F' - F' - D; weights per filter, for a total of (F' - F' - Dy ) - K weights
and K biases.
« In the output volume, the d-th depth slice (of size W5 x Hy) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.
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Pooling Layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to the
exact location of the eye?
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Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.
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Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool

—_—

—i 112
downsampling
112
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MAX POOLING

Single depth slice
1 2 | 4

max pool with 2x2 filters
and stride 2 6 8

>

/7 | 8
110 3| 4
3 | 4
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ConvNets: Typical Stage

One stage (zoom)

Rectification

: +
Filter Bank Contrast

courtesy of Normalization
K. Kavukcuoglu

Pooling
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