
Fully connected networks



Problem setup
We are back to the problem setup of supervised learning

 number of features

Input data 

The features of the -th training example
Output data  (a scalar)



Hypothesis function
For 

For the convenience of notation, we can say 

But wait... isn't this linear regression? In fact, this is exactly linear regression



Multiple outputs
Let us try something else.
We will have a vector  of size  as output
Instead of a vector , we consider a matrix , of size 

or, written out:

But, wait: isn't this still just linear regression (in fact m linear regressions
packaged together)?



One layer network with two outputs



Multiple layers
What about multiple layers?
We can have multiple layers with matrices , ...
We have some hidden layers  with 

Of some size 
 is the input 
 is the output 

so

We can designate , ...



One hidden layer linear network



Four hidden layers linear network



But, wait...
Can't we just multiply together the matrices ?

Then we can just write

So this is still just linear regression.
We did not gain anything in expressivity
Cannot solve problems that are not linear, and of course, now we have a
large number of totally superflous parameters in 

Basically, this is what Minsky based his attack on perceptrons



Nonlinearity
What about we introduce a nonlinear function  and we say:

This means that we apply  individually to each element of the vector.
We cannot multiply through any more.



One hidden layer with sigmoid nonlinearity



Fully connnected network, multi-layer
perceptron

This is called a fully connected neural network (as every node is connected to
every node in the next layer and the previous layer, if they exist)
It is also called a multi-layer perceptron or MLP



Nonlinearity: ReLU



Nonlinearity: sigmoid



Did we gain anything in expressivity?
Yes!!!
A series of theorems called universal approximation theorems show that
this model can approximate arbitrary functions to arbitrary precision with
only one hidden layer and very mild requirements for the nonlinear function

But it needs an infinitely large hidden layer to do that...

Pretty much all the nonlinearities we discussed before work



How do we train a system like this?
The most traditional way is to separate the trainable parts into two
components:

Architecture: number of layers, size of each layer, the nonlinearity
applied to it

This is typically not trained, but engineered. We choose them based
on our experience and/or intuition.
We can see these as hyperparameters

Parameters: we designate , ...
This only make sense once the architecture is fixed.
We train this using stochastic gradient descent (or variants) just like
we did for linear regression.



How do we train a system like this?
Remember we have input and output data pairs: 

We design a loss function which looks roughly like this:

Of course, we need to choose the distance function (which might not be quite-
quite a distance function)
Also we might add some extra terms (regularization etc.)
We find the best  that minimizes the loss:



Number of parameters
How many parameters we have: , ...

First matrix: size of input  size of first hidden layer, +
Second matrix: size of first hidden layer  size of second hidden layer, +

 +
size of last hidden layer  size of output

If the input dimensions are high, and number of layers is high, the size of
parameters  will be high.



Taking the gradient
We have to take 

Problem  might not be differentiable
For instance, ReLU is not differentiable at 0.
Just wing it. Eg. set it to .

Problem it doesn't sound fun to differentiate a function with millions of
parameters.

Solution: automatic differentiation
Frameworks such as pytorch, tensorflow etc. implement this for you

Problem intermediate tables in the automatic differentiation can be huge
Solution: efficient way of calculating the partial derivatives, going
backward and using the chain rule ("backpropagation")



Global and unique solution
For linear regression, with least squares, the loss surface is convex

So we have a unique solution, and gradient descent leads us there.
For a fully connected neural network the loss function is nowhere convex

We have many optimal solutions!
For instance, if we have a hidden layer with 1000 nodes, we will have

 equivalent minimum loss points!
And likely many other local minima as well.

Gradient descent appears hopeless
Yet, it is actually working quite well in practice!
No theoretical guarantees of finding an optimum



Exercise
Fully connected layers
https://playground.tensorflow.org/
Exercise 1: Classify linearly separatable data sets with a linear regressor
Exercise 2: Classify linearly separatable data sets with multi-layer linear
regressor
Exercise 3: Classify non-linearly separatable data sets with multi-layer linear
regressor.

https://playground.tensorflow.org/

