Fully connected networks

Problem setup

- We are back to the problem setup of supervised learning
 - $\circ~n$ number of features

$$\circ~$$
 Input data $oldsymbol{x}^{(i)} = \left[x_1^{(i)}, x_2^{(i)}, \dots x_n^{(i)}
ight]$

- The features of the *i*-th training example
- \circ Output data y (a scalar)

Hypothesis function

• For
$$oldsymbol{x} = [x_1, x_2, \dots x_n]$$

$$f(\boldsymbol{x}, \boldsymbol{ heta}) = heta_0 + heta_1 x_1 + heta_2 x_2 \dots heta_n x_n$$

• For the convenience of notation, we can say $x_0=1$

$$\hat{y} = f(\boldsymbol{x}, \boldsymbol{\theta}) = \boldsymbol{\theta}^T \boldsymbol{x}$$

• But wait... isn't this linear regression? In fact, this is **exactly** linear regression

Multiple outputs

- Let us try something else.
- We will have a vector $oldsymbol{y}$ of size m as output
- Instead of a **vector** $\boldsymbol{\theta}$, we consider a **matrix** $\boldsymbol{W} = \{w_{ij}\}$, of size n imes m

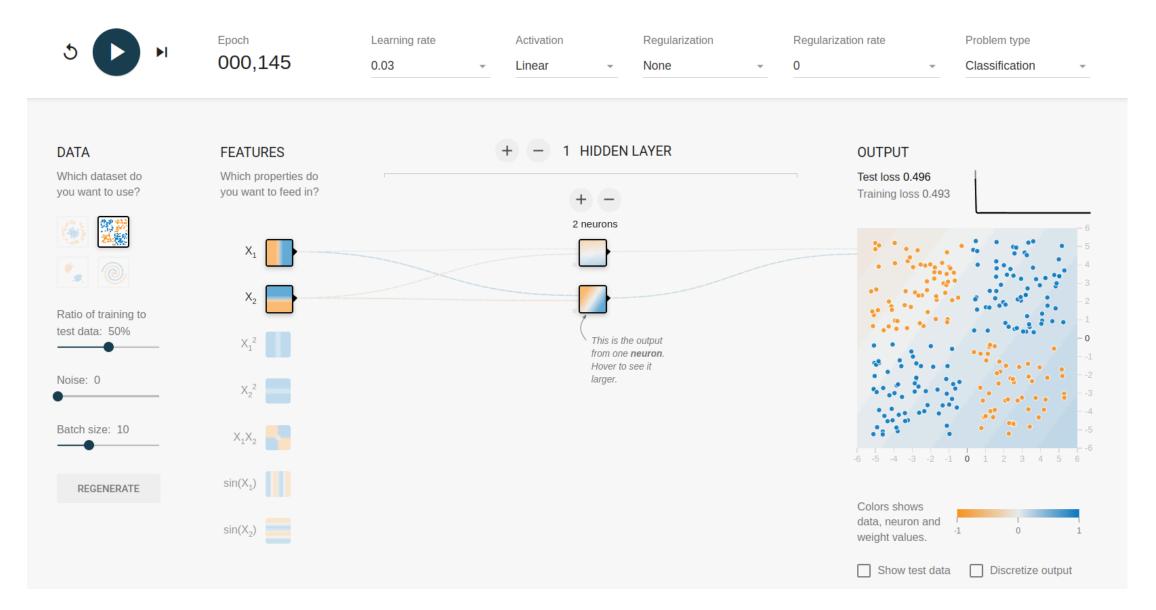
$$\hat{oldsymbol{y}} = f(oldsymbol{x},oldsymbol{ heta}) = oldsymbol{W}oldsymbol{x}$$

or, written out:

$$\hat{y_j} = \sum_i w_{ij} x_i$$

• But, wait: isn't this **still** just linear regression (in fact m linear regressions packaged together)?

One layer network with two outputs



Multiple layers

- What about multiple layers?
- We can have multiple layers with matrices $oldsymbol{W}^{(1)}$, $oldsymbol{W}^{(2)}$... $oldsymbol{W}^{(k)}$
- We have some **hidden layers** $oldsymbol{z}^c$ with $c=0\dots k$
 - $\circ~$ Of some size n^c
 - $\circ~oldsymbol{z}^{(0)}$ is the input $oldsymbol{x}$
 - $\circ ~oldsymbol{z}^{(k)}$ is the output $oldsymbol{y}$

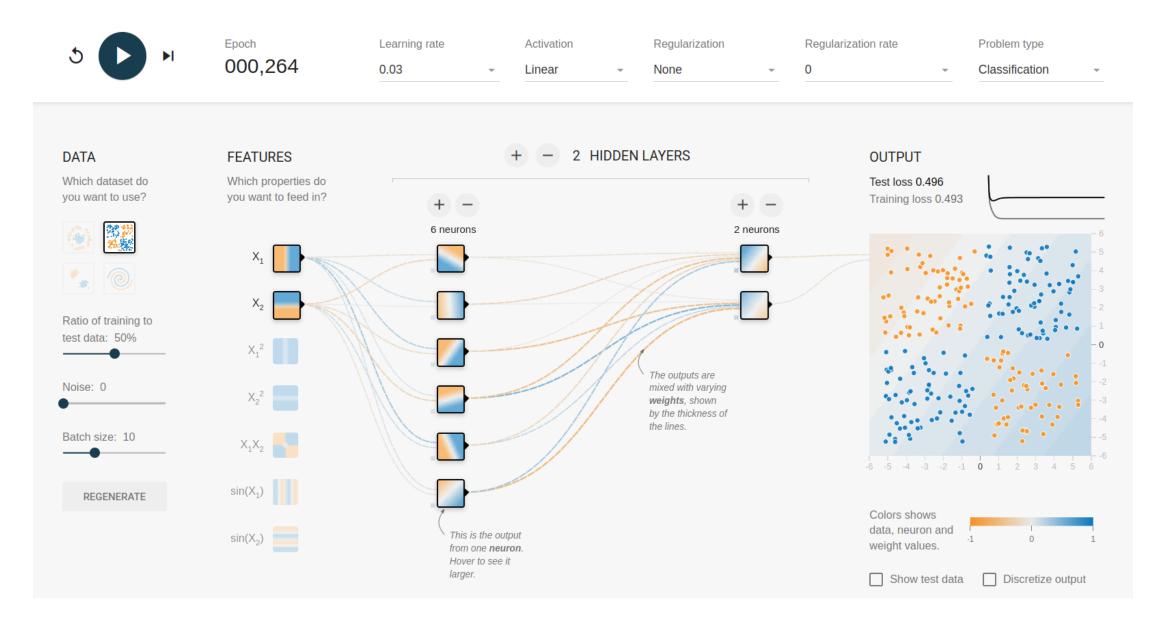
$$oldsymbol{z}^{(c+1)} = oldsymbol{W}^{(c)}oldsymbol{z}^{(c)}$$

SO

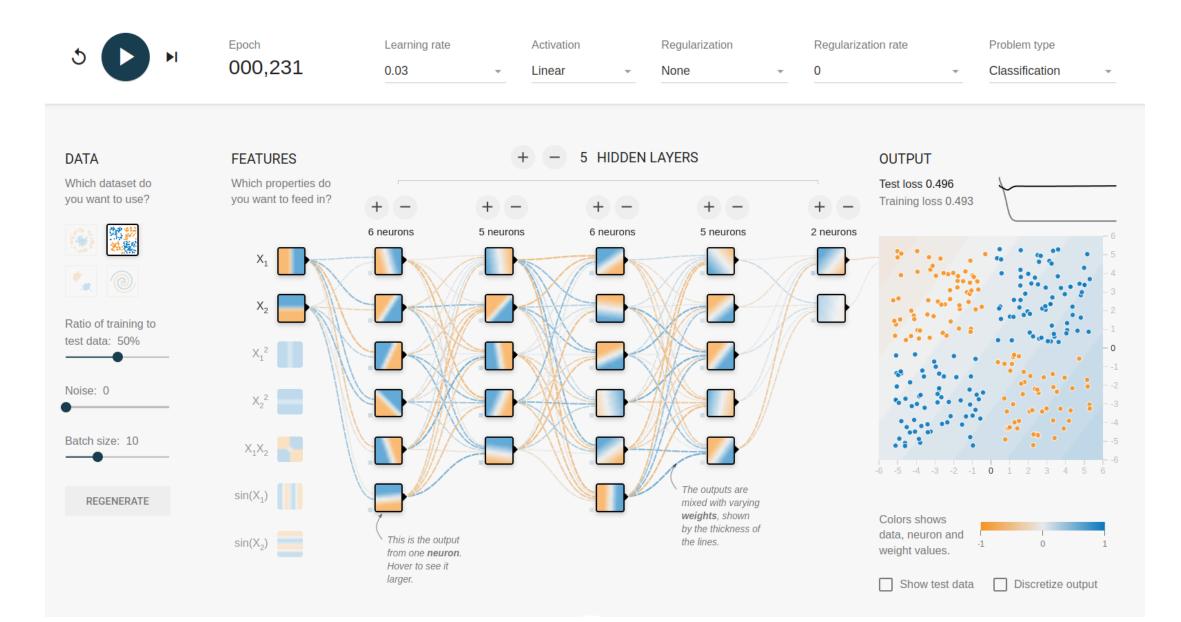
$$\hat{oldsymbol{y}} = oldsymbol{W}^{(k)}oldsymbol{W}^{(k-1)}\dotsoldsymbol{W}^{(0)}oldsymbol{x}$$

• We can designate $oldsymbol{ heta} = \{oldsymbol{W}^{(1)},oldsymbol{W}^{(2)}...oldsymbol{W}^{(k)}\}$

One hidden layer linear network



Four hidden layers linear network



But, wait...

• Can't we just multiply together the matrices W?

$$oldsymbol{W} = oldsymbol{W}^{(k)}oldsymbol{W}^{(k-1)}\dotsoldsymbol{W}^{(0)}$$

• Then we can just write

$$\hat{oldsymbol{y}} = f(oldsymbol{x},oldsymbol{ heta}) = oldsymbol{W}oldsymbol{x}$$

- So this is **still** just linear regression.
 - We did not gain **anything** in expressivity
 - $\circ~$ Cannot solve problems that are not linear, and of course, now we have a large number of totally superflous parameters in $\pmb{\theta}$
- Basically, this is what Minsky based his attack on perceptrons

Nonlinearity

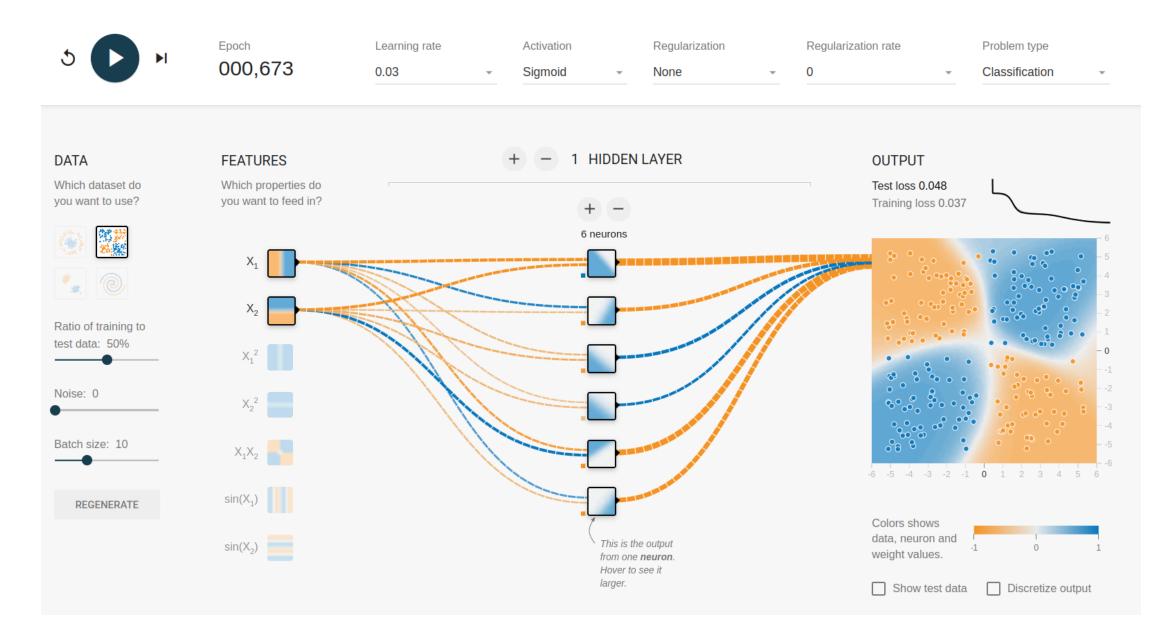
• What about we introduce a **nonlinear** function $g(\cdot)$ and we say:

$$oldsymbol{z}^{(c+1)} = g\left(oldsymbol{W}^{(c)}oldsymbol{z}^{(c)}
ight)$$

- This means that we apply *g* individually to each element of the vector.
- We cannot multiply through any more.

$$\hat{\boldsymbol{y}} = g^{(k)} \left(\boldsymbol{W}^{(k)} \cdot g^{(k-1)} \left(\boldsymbol{W}^{(k-1)} \dots g^{(0)} \left(\boldsymbol{W}^{(0)} \boldsymbol{x} \right) \dots \right)
ight)$$

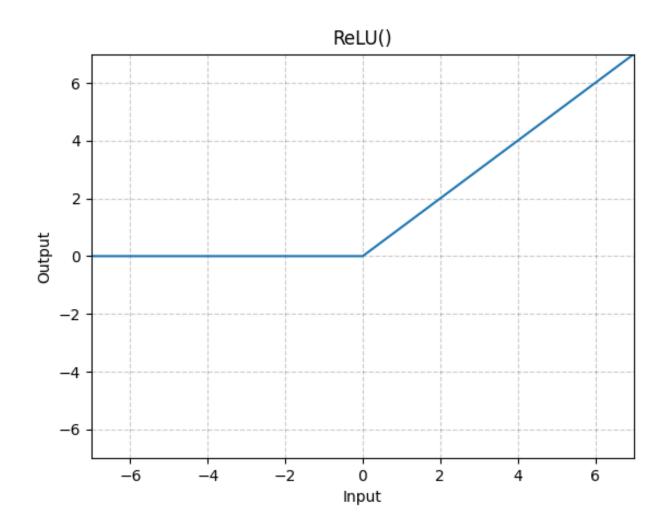
One hidden layer with sigmoid nonlinearity



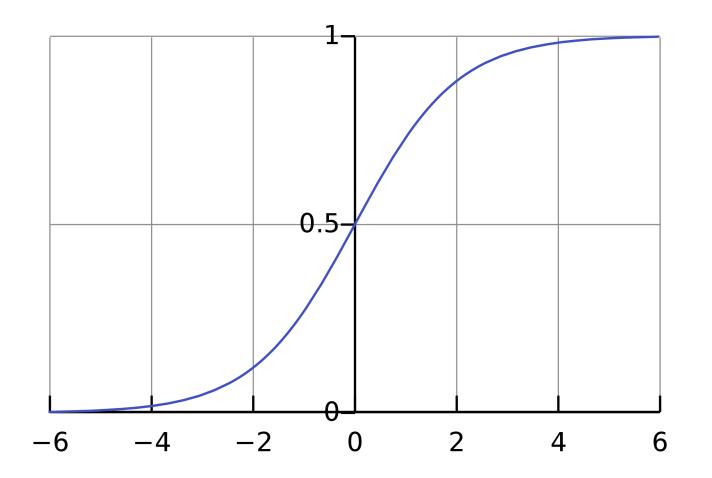
Fully connnected network, multi-layer perceptron

- This is called a **fully connected** neural network (as every node is connected to every node in the next layer and the previous layer, if they exist)
- It is also called a **multi-layer perceptron** or MLP

Nonlinearity: ReLU



Nonlinearity: sigmoid



Did we gain anything in expressivity?

- Yes!!!
- A series of theorems called **universal approximation theorems** show that this model can approximate **arbitrary** functions to **arbitrary** precision with only **one hidden layer** and very mild requirements for the nonlinear function *g*

But it needs an infinitely large hidden layer to do that...

• Pretty much all the nonlinearities we discussed before work

How do we train a system like this?

- The most traditional way is to separate the trainable parts into two components:
 - Architecture: number of layers, size of each layer, the nonlinearity applied to it
 - This is typically not trained, but engineered. We choose them based on our experience and/or intuition.
 - We can see these as **hyperparameters**
 - \circ **Parameters**: we designate $oldsymbol{ heta} = \{oldsymbol{W}^{(1)}, oldsymbol{W}^{(2)}...oldsymbol{W}^{(k)}\}$
 - This only make sense once the architecture is fixed.
 - We train this using stochastic gradient descent (or variants) just like we did for linear regression.

How do we train a system like this?

- Remember we have input and output data pairs: $\mathcal{D} = \{(m{x}_i, m{y}_i)\}$
- $\hat{oldsymbol{y}} = f(oldsymbol{x},oldsymbol{ heta})$
- We design a loss function which looks roughly like this:

$$\mathcal{L}(oldsymbol{ heta}) = rac{1}{N}\sum_{i=1}^N dist(\hat{oldsymbol{y}},oldsymbol{y})$$

- Of course, we need to choose the distance function (which might not be quitequite a distance function)
- Also we might add some extra terms (regularization etc.)
- We find the best $oldsymbol{ heta}$ that minimizes the loss:

$$oldsymbol{ heta}^* = argmin \ \mathcal{L}(oldsymbol{ heta})$$

Number of parameters

- How many parameters we have: $oldsymbol{ heta} = \{oldsymbol{W}^{(1)},oldsymbol{W}^{(2)}...oldsymbol{W}^{(k)}\}$
 - $\circ\,$ First matrix: size of input imes size of first hidden layer, +
 - $\circ\,$ Second matrix: size of first hidden layer imes size of second hidden layer, +
 - • • +
 - \circ size of last hidden layer \times size of output
- If the input dimensions are high, and number of layers is high, the size of parameters $\pmb{\theta}$ will be high.

Taking the gradient

• We have to take
$$\nabla \mathcal{L} = \left[\dots \frac{\partial \mathcal{L}}{\partial \theta_i} \dots \right]$$

- **Problem** \mathcal{L} might not be differentiable
 - For instance, ReLU is not differentiable at 0.
 - $\,\circ\,$ Just wing it. Eg. set it to 0.5.
- **Problem** it doesn't sound fun to differentiate a function with millions of parameters.
 - Solution: automatic differentiation
 - Frameworks such as pytorch, tensorflow etc. implement this for you
- **Problem** intermediate tables in the automatic differentiation can be huge
 - Solution: efficient way of calculating the partial derivatives, going backward and using the chain rule ("backpropagation")

Global and unique solution

- For linear regression, with least squares, the loss surface is convex
 - $\circ~$ So we have a unique solution, and gradient descent leads us there.
- For a fully connected neural network the loss function is nowhere convex
 - We have many optimal solutions!
 - $^\circ~$ For instance, if we have a hidden layer with 1000 nodes, we will have $1000! \approx 4\cdot 10^{2567}$ equivalent minimum loss points!
 - And likely many other local minima as well.
- Gradient descent appears hopeless
 - Yet, it is actually working quite well in practice!
 - No theoretical guarantees of finding an optimum

Exercise

- Fully connected layers https://playground.tensorflow.org/
- Exercise 1: Classify linearly separatable data sets with a linear regressor
- Exercise 2: Classify linearly separatable data sets with multi-layer linear regressor
- Exercise 3: Classify non-linearly separatable data sets with multi-layer linear regressor.