Boosting

Breaking down the expected text error:

Ep-pn(a)-p [(fo(@) = 1)*] =

J

N

Expected Test Error

Eep [(fp(m) - f(:c))2] +

\ J/
N

Variance

Em,y [(g(w) o y)z)} T

\ - _J/
V

Noise

E. |(f(2) - §(2))?]

A\ J/
-~

Bias

Combining weak learners

e \Weak learner
o A regressor or classifier which is just barely better than random guessing

e Famous question: Michael Kearns (1988) - Can weak learners be combined to
create a strong learner with low bias?

e Famous answer: Robert Schapire (1990) - Yes.

Boosting

e Start with some weak learners f;()
o For instance, CART trees with very limited depth (1-2)

* The ensemble classifier will be F'(z) = Fy,(x) = > o fi(x)
e |[nference: evaluate all classifiers and return the weighted sum

e Training: build the classifiers f; and weights «; iteratively

Boosting training

e We will create Fi(x), Fs(x),...

e Very similar to gradient descent but
o instead of modifying the parameters

o we add a new function to the ensemble

e Our loss will be:

L(F) = =3 £ (Flai),)

What are we optimizing when adding a new
function?

e |et us say that we are at iteration ¢, with F}; being our current ensemble classifier
e What are we searching for in the new function (weak learner) to add for the
ensemble?
e The one that minimizes the loss the most!
fir1 = argming o L(F; + of)

e Then, our new classifier will be:
Fioi =F+ afi

Gradient descent in functional space

e The problem with this is the argmin!
o Before, we were calculating minimums in an n-dimensional space of numbers

R’n
o This happens in the space of functions!

o the math is a bit more advanced...

e But maybe we can do some approximations
o Assume that the loss function L is linear in the neighborhood (i.e. for small o)

o So we can just work with the first two terms of the Taylor approximation
o This is gradient descent, a problem we had seen before

o But now in functional space.

Generic boosting (a.k.a Anyboost)

Input: g, «, {(xi:yi)}: A
Hy=0
for t=0:T-1 do

VI ;= 85((Hf(xl),%1$,(.;;()Ht(xﬂ),yn))

Figi = A{(X1571)s550 s KnsTh)}) =argming g 3 ¢ rih(x;)
if " rihit1(xi) < 0 then
Hip1 = Hy + opyr1he
clse
| return (H;)

end

end
return Hr

Algorithm 1: AnyBoost in Pseudo-Code

Specific implementations

e There are many variants and implementations
e (Classification and regression

e Various kinds of small learners

e Various ways to approximate the minimum

e Various ways to choose the new learner A
o |t doesn't have to be perfect!

o As long as we make progress, i.e. decrease the loss

Gradient boosted regression tree (GBRT)

e Used for: classification y; € {41, —1} or regression (single or multidimensional)
Y; € R¥

e Weak learners: f € [are regressors, typically fixed-depth (eg. depth = 4)
regression trees

e Step size: a fixed to a small constant (hyper parameter)

e Loss function: can be any differentiable, convex loss that decomposes over the
samples

AdaBoost

e Used for: classification $y_i (but had been extended to regression)

e Weak learners: binary classifiers
o Typically decision stumps: very shallow decision trees

e Loss function: Exponential loss

n

L(E) =) et

i=1
e Step size: in the settings of AdaBoost we can find the optimal step size o in closed

form!
o Then, you need to update all the weights and re-normalize

AdaBoost general picture

e Name comes from Adaptive Boosting

e |t is adaptive in the sense that new weak learners added are tweeked to classify
correctly instances misclassified by previous learners

e The fact that o can be computed in closed form, makes AdaBoost converge
extremely fast!
o Training loss decreases exponentially!

o It reaches zero training error in O(log(n)) time

o |n practive it often makes sense to continue boosting after no classification
mistakes are done...

AdaBoost general picture

e AdaBoost can turn any weak learner that can classify slightly better than 0.5 into a
strong learner

e AdaBoost with decision trees as weak learners is in competition to be one of the
best out of the box algorithms

