Ensemble methods

e We were talking about a machine learning algorithm A creating a regression
or classification model f from a dataset D

e Ensemble models create a series of models f1, fo,...
o Obviously, either the D has to vary in some way

o Or the A should vary (slightly different parameters)
o Or some kind of randomness should be involved in the learning.

e The models of the ensemble are combined in some ways to create a new,
more powerful model f

e They are the most powerful models currently known, usually win
competitions, etc.

o Arguments were made that the human brain is an ensemble model



Remember the expected error?

Eppr (@y)~P (fo(®) —y)?] =

_J/

Eqe.p [(fp(w) - (=) 2] T

vV a

Variance

Expected Test Error




Goal: reduce the variance

_ 2
e Letus try to reduce the variance term E, p [(fp(m) — f(zc)) ]

e Wewant fp — f
o The model learned on D should get close to the average model

e Average of random samples converges to the mean! (weak law of large
numbers)

e One way to achieve this is:
o Pick random training datasets D; ~ P,1=1...m

o Train a model on them f; = A(Di)
Z?il fi

m

o Average the model in predictions to get the f =
e This would reduce the variance to zero!

e Problem: we don't have D1,Dy, -+ ~ P



Bagging ("Bootstrap aggregating")

e Algorithm invented by Leo Breiman in 1996
e Aswe don't have D{,D,y,...D,, ~ P

e Idea: draw D; uniformly with replacement from D
o D; will have the same size as D but some of the members will be missing
and some of them will be replicated

e Train on each of them f; = A(Di)

e Return the average f

e The larger the m, the better, but at some point it will have diminishing results
(but not a decrease in accuracy)



Why is this working?

e We are not drawing i.i.d from the original distribution

e But it can be shown that the datasets are drawn from P, only not
independently.

e In practice, it reduces variance very efficiently.



Predicting uncertainty

e As the prediction is obtained as an average of m classifiers, we can use these
numbers to also obtain a variance

e This variance can be interpreted as the uncertainty of the prediction



Predicting the test error

e Normally, it is difficult to predict the test error only from the training data.
e With bagging, we can provide an unbiased estimate for this.
e As D; will have duplicated elements, there will be some elements of D which
are not going to be in it (out of the bag elements)
o For each training point (&;, y;)
o We can identify the datasets that do not contain it
o Train a bagging model on these
o Check the error on (@, y;)

o Average over all 1-s



Random Forest

e Afamous, and very well performing bagged algorithm

e Sample m data sets D1 ...D,, from D with replacement

e For each D, train a decision tree f;

o Modification: at each split randomly subsample £ < d features and only
consider these at the split

e Final classifier: f(z) = = > i1 fi(®)



Random Forest evaluation

e Itis one of the best-performing, most popular and easiest to use classifiers /
regressors



What makes a machine learning algorithm
easy/hard to use?

e Implementation difficulties? NO

o Exceptin a class, you will probably not have to implement established
algorithms by hand

o Of course, if you propose a new algorithm, you will have to implement it.
o There are many subtle tricks in implementations...

e What makes an algorithm hard to use is many sensitive hyperparameters

o Works well if initialized with small random numbers, but diverges if the
random numbers are larger than 0.02

o Converges once out of 100 random initializations

o Does not learn for learning rate < 0.001, oscillates if > 0.0014.

o 7 hyperparameters, you need to get each of them just right



What makes a machine learning algorithm
easy/hard to use? (cont'd)

e Limitations and requirements on the type of features you can use
o Dimensionality requirements

o Specific type of encoding needed



What makes Random Forest easy to use?

e Has only two hyperparameters: number of trees m and split subset k
o It is extremely unsensitive to both of them

o You get them wrong, it will still mostly work
e A good choice for k is the square root of the number of features k = Vd

e m - the higher the better.
o in practice you stop when you run out of your time budget.

e Decision trees don't have complex requirements on features
o Can take a mixture of discrete features, numerical features with different
ranges etc.



