
Ensemble methods
We were talking about a machine learning algorithm  creating a regression
or classification model  from a dataset 
Ensemble models create a series of models 

Obviously, either the  has to vary in some way
Or the  should vary (slightly different parameters)
Or some kind of randomness should be involved in the learning.

The models of the ensemble are combined in some ways to create a new,
more powerful model 
They are the most powerful models currently known, usually win
competitions, etc.

Arguments were made that the human brain is an ensemble model



Remember the expected error?



Goal: reduce the variance

Let us try to reduce the variance term 

We want 
The model learned on  should get close to the average model

Average of random samples converges to the mean! (weak law of large
numbers)
One way to achieve this is:

Pick random training data sets , 
Train a model on them 

Average the model in predictions to get the 

This would reduce the variance to zero!
Problem: we don't have 



Bagging ("Bootstrap aggregating")
Algorithm invented by Leo Breiman in 1996
As we don't have 
Idea: draw  uniformly with replacement from 

 will have the same size as  but some of the members will be missing
and some of them will be replicated

Train on each of them 

Return the average 
The larger the , the better, but at some point it will have diminishing results
(but not a decrease in accuracy)



Why is this working?
We are not drawing i.i.d from the original distribution
But it can be shown that the datasets are drawn from P, only not
independently.
In practice, it reduces variance very efficiently.



Predicting uncertainty
As the prediction is obtained as an average of  classifiers, we can use these
numbers to also obtain a variance
This variance can be interpreted as the uncertainty of the prediction



Predicting the test error
Normally, it is difficult to predict the test error only from the training data.
With bagging, we can provide an unbiased estimate for this.
As  will have duplicated elements, there will be some elements of  which
are not going to be in it (out of the bag elements)

For each training point 
We can identify the datasets that do not contain it
Train a bagging model on these
Check the error on 
Average over all -s



Random Forest
A famous, and very well performing bagged algorithm
Sample  data sets  from  with replacement
For each  train a decision tree 

Modification: at each split randomly subsample  features and only
consider these at the split

Final classifier: 



Random Forest evaluation
It is one of the best-performing, most popular and easiest to use classifiers /
regressors



What makes a machine learning algorithm
easy/hard to use?

Implementation difficulties? NO
Except in a class, you will probably not have to implement established
algorithms by hand
Of course, if you propose a new algorithm, you will have to implement it.
There are many subtle tricks in implementations...

What makes an algorithm hard to use is many sensitive hyperparameters
Works well if initialized with small random numbers, but diverges if the
random numbers are larger than 0.02
Converges once out of 100 random initializations
Does not learn for learning rate , oscillates if .
7 hyperparameters, you need to get each of them just right



What makes a machine learning algorithm
easy/hard to use? (cont'd)

Limitations and requirements on the type of features you can use
Dimensionality requirements
Specific type of encoding needed



What makes Random Forest easy to use?
Has only two hyperparameters: number of trees  and split subset 

It is extremely unsensitive to both of them
You get them wrong, it will still mostly work

A good choice for  is the square root of the number of features 
 - the higher the better.

in practice you stop when you run out of your time budget.
Decision trees don't have complex requirements on features

Can take a mixture of discrete features, numerical features with different
ranges etc.


