
Decision trees
Our ongoing assumption: similar inputs have similar outputs
The way kNN reformulated this is close points have similar labels
But defining labels in terms of training data points led to problems:

Memory consumption (at inference time)
Computational cost (at inference time)
Makes output dependent of the distance function, which then might
trigger its own learning problem.

NOTE: in this lecture we will assume that we are doing classification. Many of
the results here can be also adapted to regression.



Decision trees (cont'd)
A new formulation: points from the same region of space have similar
labels
Benefits:

We don't need to carry the data set
If we split space in an efficient way, the inference will be very fast
The various scales of features are captured in the way we split space, we
don't need to learn a metric.





Binary decision tree - outline of the training
process

We recursively divide the space into regions until a region has only one label.
The root node represents the whole dataset
The set is split roughly in half along one dimension using a threshold  on a
single feature 

Left subtree 
Right subtree 

We stop subdividing once a region has only one label, or if it cannot be
subdivided (eg. there are two identical points with different labels)

This is a pure leaf node



Binary decision tree - inference
For a datapoint with an unknown label 
Start at the top of the tree
Follow the branches down using the features
Return the label associated with the leaf node we reached!



What does a decision tree remind us?
What does a decision tree reminds us:

embedded collections of if-then-else statements...
in artificial intelligence: an expert system
business processes
laws and regulations

Decision trees are a good match to the way in which humans explain the
decisions they make

They often show up in explainable artificial intelligence
By the way: it is not quite sure that this is indeed the way humans make
decisions. It is likely more like a neural network.



Training a minimum size tree
The critical aspect of decision tree training is how to pick the feature  and
threshold  when we split a branch.
Objective: find a maximally compact tree, which only has pure leaves

This is always possible if there are no two identical training datapoints
with different labels
But it is an NP-hard problem!
Fortunately, it can be approximated well with a greedy algorithm.



Impurity functions
Eventually, we want pure leaves, so our greedy approach will be to maximally
increase purity at every split.

, where  where  is the
number of classes
Gini impurity measure

 the subsets of the inputs where the label is 

 - the fraction of inputs with label 



Gini impurity of a tree
Let us say that we are at a branch that splits the data into two subsets  and

The Gini impurity of the tree will be:

NOTE: there are other measures of impurity for classification (for instance,
using entropy)



The ID3 algorithm
"Iterative Dichotomiser 3" invented by Ross Quinlan
Base cases (no further splits are needed):

If all datapoints have the same label , return the label
If all datapoints have the same input , return the mode label (for
classification) or median (for regression)

Splitting:
Try all the features and all possible splits (it is a discrete number, it only
makes sense to split between values)
Pick the split that minimizes impurity

NOTE: even if a split does not improve the impurity, keep splitting until we
reach a base case.



More advanced decision tree algorithms
There are several more advanced decision tree algorithms that can:

handle a mix of discrete and continuous features
handle missing values
weights / costs on different features
perform pruning of the trees
identify and remove unhelpful attributes

Examples C4.5, C5.0, See5, etc.
some of these are commercial

Practical rule: use the most advanced algorithm to which you have access.



CART: classification and regression trees
Assume continuous labels 
Define the returned label as the average 

Define the impurity as the average squared difference from the label



CART
Split based on this definition of impurity
Very cheap! (costs only O(n logn))
Is it any good as a regressor or classifier?

Nope. Especially if they are shallow, they are sometimes referred as weak
learners: just barely better than random guessing

But they can become very strong using ensemble methods such as
bagging (Random Forests)
boosting (Gradient Boosted Trees, Adaboost etc.)


