K-nearest neighbors

Parametric methods

e Supervised learning setting: training data
e We consider a parameterized family of functions f(x;0) — ¢

e We consider a loss: L(8), roughly defined as average error (plus regularization)

e Learning:find the @ that minimizes the loss
e Inference: evaluate f(z; @) for new x from test data

e As 0 is a parameter of f, this type of methods are called parametric.

Some properties of parametric methods

e The expressivity of the function family f limits how good the learning can be.

e @ is avector of constant size
o It's size doesn't depend on D

o In many classic ML approaches it is quite small!
e Once learning is done, we can dispose of the training data, and only keep 0

e Cost of inference: constant (and usually quite low)

Non-parametric methods

e Methods that don't use a parameterized family of functions and don't search for 6

K-nearest neighbors

e Supervised learning setting: training data
D={.. (ziy)...)

e We consider:

o k - small integer number (eg. 3, 5 etc.)

o dist - distance function dist(®1, ®2) € R
e |earning: nothing done during learning. (*)
e |nference for input data a:

o calculate the distance between @ and all the @; in D

o choose the k closest ones
o if regression: return the average of the corresponding y;-s

o if classification: return the corresponding y; with the highest occurence.

Intuition behind k-NN

e Similar inputs have similar
outputs

e kis not something that we are
adjusting during training - it is
not a parameter but a
hyperparameter

e The larger the k the smoother
the output

FOpaT
‘?.?Fo’:o

The distance function

e \What is the distance function we can use?

e Euclidean

dist(a,b) = \ Z(ai — b;)?

e Manhattan

The distance function (cont'd)

e Minkovski distance

1
n
dist(a,b,p) = (Z la; — bip>
i=1
e For p=1 — Manhattan distance

e For p=2 — Euclidean distance

. n
e For p=0co — Chebyshev distance, max lz; — y4
1=

The distance function (cont'd)

e The different dimensions of the distance function might have different scales or
different importances
o 3 sqgft difference in area vs 3 sq meter difference in area

o vs a difference of 3 bedrooms (4 bedrooms vs one)
e The distance function is a critical component of k-NN

e |t basically describes our intuition of "what matters"

Performance of kNN

e There is no training cost.
e We need to carry with us the complete training data D

e The cost of inference increases with the size of D
o In a naive implementation we need to calculate the distance to every training
data point

o In practice, we can pre-index the training data for a faster search, but it will still
increase with D

Problem in high dimensions: "curse of
dimensionality”

e Qur intuitions that about "nearests neighbors are close" are based on our 3D

world.
o High dimensions are weird and our intuitions mislead us.

e Consider n = 1000 samples, with each being a vector & of d dimensions, each
element being between z; € [0, 1]
o This means that they are in a unit lenght hypercube

e |Letus consider k = 10

e What size is a hypercube that contains the k-nearest neighbors?

Curse of dimensionality

d I
1 0.01
2 0.1
10 0.63
100 0.955
1000 0.9954

As d increases, almost the entire space is needed to find the 10-NN. So they are not
particularly closer than any other point!

Some conclusions

e k-NN is a very good model for low dimensional data
o Especially if we can engineer a distance function that captures our intuition

e |t breaks down for high dimensionality

e |t breaks down if the training data is very large

Moving beyond k-NN

e The insight that similar inputs map to similar outputs is important, but it needs to
be refined

e There are several ways we can move on from this:
o Manifold learning: maybe the interesting data is on a manifold of lower

dimensionality (eg. images)

o Metric learning: maybe we can learn a distance function that captures what
we want?

o Representation learning: maybe we can learn a function that transforms the
input into a representation where a simple distance function captures what we
want?

o Prototype learning: find a prototype x for every class, and measure distance
only to that one...

