
K-nearest neighbors



Parametric methods
Supervised learning setting: training data

We consider a parameterized family of functions 

We consider a loss: , roughly defined as average error (plus regularization)
Learning:find the  that minimizes the loss

Inference: evaluate  for new  from test data

As  is a parameter of , this type of methods are called parametric.



Some properties of parametric methods
The expressivity of the function family  limits how good the learning can be.

 is a vector of constant size
It's size doesn't depend on 

In many classic ML approaches it is quite small!

Once learning is done, we can dispose of the training data, and only keep 
Cost of inference: constant (and usually quite low)



Non-parametric methods
Methods that don't use a parameterized family of functions and don't search for 



K-nearest neighbors
Supervised learning setting: training data

We consider:
 - small integer number (eg. 3, 5 etc.)

 - distance function 

Learning: nothing done during learning. (*)
Inference for input data :

calculate the distance between  and all the  in 

choose the  closest ones
if regression: return the average of the corresponding -s

if classification: return the corresponding  with the highest occurence.



Intuition behind k-NN
Similar inputs have similar
outputs

 is not something that we are
adjusting during training - it is
not a parameter but a
hyperparameter

The larger the  the smoother
the output



The distance function
What is the distance function we can use?

Euclidean

Manhattan



The distance function (cont'd)
Minkovski distance

For p=1  Manhattan distance

For p=2  Euclidean distance

For p=   Chebyshev distance, 



The distance function (cont'd)
The different dimensions of the distance function might have different scales or
different importances

3 sqft difference in area vs 3 sq meter difference in area
vs a difference of 3 bedrooms (4 bedrooms vs one)

The distance function is a critical component of k-NN

It basically describes our intuition of "what matters"



Performance of kNN
There is no training cost.

We need to carry with us the complete training data 
The cost of inference increases with the size of 

In a naive implementation we need to calculate the distance to every training
data point

In practice, we can pre-index the training data for a faster search, but it will still
increase with 



Problem in high dimensions: "curse of
dimensionality"

Our intuitions that about "nearests neighbors are close" are based on our 3D
world.

High dimensions are weird and our intuitions mislead us.

Consider  samples, with each being a vector  of  dimensions, each
element being between 

This means that they are in a unit lenght hypercube

Let us consider 
What size is a hypercube that contains the k-nearest neighbors?



Curse of dimensionality
d l

1 0.01

2 0.1

10 0.63

100 0.955

1000 0.9954

As  increases, almost the entire space is needed to find the 10-NN. So they are not
particularly closer than any other point!



Some conclusions
k-NN is a very good model for low dimensional data

Especially if we can engineer a distance function that captures our intuition

It breaks down for high dimensionality

It breaks down if the training data is very large



Moving beyond k-NN
The insight that similar inputs map to similar outputs is important, but it needs to
be refined

There are several ways we can move on from this:
Manifold learning: maybe the interesting data is on a manifold of lower
dimensionality (eg. images)
Metric learning: maybe we can learn a distance function that captures what
we want?

Representation learning: maybe we can learn a function that transforms the
input into a representation where a simple distance function captures what we
want?
Prototype learning: find a prototype  for every class, and measure distance
only to that one...


