
When learning fails: underfitting, overfitting



Why can learning fail?
Distribution change
Underfitting
Overfitting



Training data
We train the system with training data.

Sqft Price

3000 $400,000

2000 $300,000

1500 $250,000

What is the simplest way to return the correct  value?



Test data
We are not interested in the values for the training data, we want predictions
for the values we don't already know!

Sqft Price

3200 ?

1900 ?

1450 ?

We want our model to generalize to data that it didn't previously seen!



Generalization
Is this even possible?
It is a deep theoretical question, beyond the scope of this class but...
If the training data and test data are completely unrelated, learning cannot
work.
The simplest assumption we can make is that the test data is drawn from
the same probability distribution as the training data.



Distribution drift
Sqft Price

3200 $3,200,000

1900 $2,400,000

1450 $1,200,000

What just happened?
The training data was for house prices in Orlando in 2005, the test data was
for San Francisco in 2020. They are not the same distribution!



Distribution drift
The distribution shifted between the training and testing
Some reasons:

We apply it to a new model (different geographic area)
Changes in time
Changes in the underlying problem

Trying to predict COVID cases was a notorious case where none of the
predictions ever worked, as the problem kept shifting!
Also known as distribution shift, data drift, covariate shift etc.



Distribution drift
Major problem, no obvious solution.
We should at least be aware of it, and detect it.

Then we know that we cannot trust our predictions
Sometimes, if we understand the nature of the shift we can compensate for it
in the output (eg. inflation, or price variations due to local taxes)
Sometimes, we can retrain our model with relatively small amount of new
data.



Underfitting
Draw figure here.



Underfitting
If the hypothesis function family cannot represent the patterns of the data,
we are underfitting
Even if we find the minimum of the loss function within the given family, we
still don't have a good prediction.
Solution: find a more expressive hypothesis.



Overfitting
Draw figure here (training data + test data)



Overfitting
What happened?
The loss is very low on the training data, but high on test data.
This is a deep theoretical problem...

The training data is where you get your information from...
The loss function is what describes what you want...
The test data is unknown at training time...
So, how do you even approach this problem?



Some ways to avoid overfitting
"Your model is too expressive"

Solution: use "less expressive" models are less likely to overfit.
Rule of thumb: number of parameters  number of training data
point

Historically, this was a dominant view...
But these days, we are using neural networks that are very expressive

"Your data is too noisy"
Some of the features in the training data are very noisy - the model
overfit on them, so what you learn is the noise, not the underlying pattern
Solution: manually select which features to keep, do not include noisy
ones in training



Some ways to avoid overfitting
"Regularization"

Change the loss function by adding one of more regularization terms
These express preferences about the parameters we are looking for
Keep all the features, keep the expressivity
But you will need to settle that the part of the loss function describing the
error might not be optimized



Example: regularization for linear regression
Unregularized least squares

Regularized least squares



What does regularization do?
It penalizes the models that have a  component to have a magnitude that is
too big (either in positive or negative direction)

For instance, it prevents the model focusing on only one feature
As this is square of length, it is called -regularization

It has a set of other fancy names: ridge regression, weight decay,
Tikhonov regularization,

Other regularization techniques are possible: -regularization (with the
absolute values), combinations etc.
Does it break stochastic gradient descent?

NO! It is differentiable in 
DRAW FIGURE
Secret insight: regularization usually expresses some kind of prior
knowledge about the model


