Linear regression multiple variables

Let us say that you have data of this kind

SquareFt	Bedrooms	Bathrooms	Price
1000	3	2	\$350,000
3000	5	5	\$765,000
800	1	1	\$320,000
2100	4	3	\$540,000
2200	3	4	\$520,000

Notations

- *n* number of features (3)
- Input data $oldsymbol{x}^{(i)} = [x_1^{(i)}, x_2^{(i)}, \dots x_n^{(i)}]$

 \circ The features of the *i*-th training example

- Output data y
- Training set size m
- This is a **regression** problem we are trying to predict a floating point number.

The hypothesis function

• It was:

$$f(x,oldsymbol{ heta})= heta_1x+ heta_0$$

• Now it will be, for
$$m{x}=[x_1,x_2,\dots x_n]$$
 $f(m{x},m{ heta})= heta_0+ heta_1x_1+ heta_2x_2\dots heta_nx_n$

• For the convenience of notation, we can say $x_0 = 1$

$$f(oldsymbol{x},oldsymbol{ heta})=oldsymbol{ heta}^Toldsymbol{x}$$

Gradient descent in multiple variables

- Wait, we already did this: previously θ had two components
- Now it has n + 1 components. Nothing else changes.

$$egin{aligned} & heta_0 \leftarrow heta_0 - lpha rac{\partial \mathcal{L}(heta_0, \dots, heta_n)}{\partial heta_0} \ & heta_1 \leftarrow heta_1 - lpha rac{\partial \mathcal{L}(heta_0, \dots, heta_n)}{\partial heta_1} \ & heta_2 \leftarrow heta_2 - lpha rac{\partial \mathcal{L}(heta_0, \dots, heta_n)}{\partial heta_2} \end{aligned}$$

. . .

Tips and tricks

Feature scaling and mean normalization

- Bedrooms change on the range of 1-5
- Square feet change on the range of 800 5000
- All the surfaces will be elongated, which makes gradient descent either unstable or slow.
- Solution:
 - $\circ\,$ Feature scaling: get every feature to the range of approximately $-1 \leq x_i \leq 1$
 - Mean normalization: get the feature to approximately zero mean

 $x_i \leftarrow x_i - \mu_i$

- $\circ\;$ Do not apply it to $x_0=1$
- Remember the transformations for the test data!!!

Learning rate

$$heta_i \leftarrow heta_i - lpha rac{\partial \mathcal{L}(heta_0, \dots, heta_n)}{\partial heta_i}$$

• How to choose α ?

How do you know it is done?

- Visual inspection of the learning curve: plot \mathcal{L} wrt iterations or epochs \circ See if it flattens out
- Automatic convergence test: declare convergence if ${\cal L}$ decreases by less than 10^-03 (or something) in one iteration

Tweaking $\boldsymbol{\alpha}$

- For a sufficiently small α , the loss should decrease at every iteration
- But if α is too small, it will be slow to converge
- If it α is too big, it will be unstable, diverge, or cycle

Feature engineering, polynomial regression etc.

- Linear regression, assumes that there is a linear relationship between the features x_i and parameters θ_i
- But in many applications, the relationship between the regression output and input features is not linear
 - \circ House width x_1
 - \circ House length x_2
- But usually, the price is linearly proportional to area, so we create $x_3 = x_1 x_2$
- Similarly we can create features by squaring, taking square root, taking the log, taking the exponential etc.

Polynomial regression

Take

$$f(x)= heta_0+ heta_1x+ heta_2x^2+\dots+ heta_nx^n$$

Rest is like linear regression.

Solving linear regression with a normal equation

• If your loss function is least squares, then you can find the optimal $\boldsymbol{\theta}$ analytically:

$$\boldsymbol{\theta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

- $oldsymbol{X}$ and $oldsymbol{y}$ are all the training data stuck on top of each other
- This is one line in numpy.
- Why do we bother with gradient descent?

Gradient descent vs normal equation

- Normal equation
 - \circ No need to choose α . Analytical. One shot.
 - \circ You need to compute $(m{X}^Tm{X})^{-1}$ an n imes n matrix, with n number of features. It is an $O(n^3)$ operation
 - Only works for the least squares loss.
- Gradient descent
 - \circ You need to choose α . Iterative.
 - Works for almost every loss.
 - \circ Works with large n

What if $(\mathbf{X}^T \mathbf{X})^{-1}$ gives an error?

- If $X^T X$ is not invertible, it means that the features are linearly dependent
- Eg. you used
 - $\circ~$ heated area
 - unheated area
 - \circ total area