
Linear regression multiple variables

Let us say that you have data of this kind
SquareFt Bedrooms Bathrooms Price

1000 3 2 $350,000

3000 5 5 $765,000

800 1 1 $320,000

2100 4 3 $540,000

2200 3 4 $520,000

Notations
 number of features (3)

Input data
The features of the -th training example

Output data

Training set size
This is a regression problem - we are trying to predict a floating point number.

The hypothesis function
It was:

Now it will be, for

For the convenience of notation, we can say

Gradient descent in multiple variables
Wait, we already did this: previously had two components
Now it has components. Nothing else changes.

Tips and tricks

Feature scaling and mean normalization
Bedrooms change on the range of 1-5
Square feet change on the range of 800 - 5000

All the surfaces will be elongated, which makes gradient descent either unstable or
slow.
Solution:

Feature scaling: get every feature to the range of approximately

Mean normalization: get the feature to approximately zero mean

Do not apply it to

Remember the transformations for the test data!!!

Learning rate

How to choose ?

How do you know it is done?
Visual inspection of the learning curve: plot wrt iterations or epochs

See if it flattens out

Automatic convergence test: declare convergence if decreases by less than
 (or something) in one iteration

Tweaking
For a sufficiently small , the loss should decrease at every iteration

But if is too small, it will be slow to converge

If it is too big, it will be unstable, diverge, or cycle

Feature engineering, polynomial regression etc.
Linear regression, assumes that there is a linear relationship between the features

 and parameters

But in many applications, the relationship between the regression output and input
features is not linear

House width

House length
But usually, the price is linearly proportional to area, so we create

Similarly we can create features by squaring, taking square root, taking the log,
taking the exponential etc.

Polynomial regression
Take

Rest is like linear regression.

Solving linear regression with a normal equation
If your loss function is least squares, then you can find the optimal analytically:

 and are all the training data stuck on top of each other

This is one line in numpy.
Why do we bother with gradient descent?

Gradient descent vs normal equation
Normal equation

No need to choose . Analytical. One shot.
You need to compute an matrix, with number of features.
It is an operation

Only works for the least squares loss.
Gradient descent

You need to choose . Iterative.

Works for almost every loss.
Works with large

What if gives an error?
If is not invertible, it means that the features are linearly dependent

Eg. you used
heated area

unheated area

total area

