
Linear regression multiple variables



Let us say that you have data of this kind
SquareFt Bedrooms Bathrooms Price

1000 3 2 $350,000

3000 5 5 $765,000

800 1 1 $320,000

2100 4 3 $540,000

2200 3 4 $520,000



Notations
 number of features (3)

Input data 
The features of the -th training example

Output data 

Training set size 
This is a regression problem - we are trying to predict a floating point number.



The hypothesis function
It was:

Now it will be, for 

For the convenience of notation, we can say 



Gradient descent in multiple variables
Wait, we already did this: previously  had two components
Now it has  components. Nothing else changes.



Tips and tricks



Feature scaling and mean normalization
Bedrooms change on the range of 1-5
Square feet change on the range of 800 - 5000

All the surfaces will be elongated, which makes gradient descent either unstable or
slow.
Solution:

Feature scaling: get every feature to the range of approximately 

Mean normalization: get the feature to approximately zero mean

Do not apply it to 

Remember the transformations for the test data!!!



Learning rate

How to choose ?



How do you know it is done?
Visual inspection of the learning curve: plot  wrt iterations or epochs

See if it flattens out

Automatic convergence test: declare convergence if  decreases by less than
 (or something) in one iteration



Tweaking 
For a sufficiently small , the loss should decrease at every iteration

But if  is too small, it will be slow to converge

If it  is too big, it will be unstable, diverge, or cycle



Feature engineering, polynomial regression etc.
Linear regression, assumes that there is a linear relationship between the features

 and parameters 

But in many applications, the relationship between the regression output and input
features is not linear

House width 

House length 
But usually, the price is linearly proportional to area, so we create 

Similarly we can create features by squaring, taking square root, taking the log,
taking the exponential etc.



Polynomial regression
Take

Rest is like linear regression.



Solving linear regression with a normal equation
If your loss function is least squares, then you can find the optimal  analytically:

 and  are all the training data stuck on top of each other

This is one line in numpy.
Why do we bother with gradient descent?



Gradient descent vs normal equation
Normal equation

No need to choose . Analytical. One shot.
You need to compute  an  matrix, with  number of features.
It is an  operation

Only works for the least squares loss.
Gradient descent

You need to choose . Iterative.

Works for almost every loss.
Works with large 



What if  gives an error?
If  is not invertible, it means that the features are linearly dependent

Eg. you used
heated area

unheated area

total area


