Linear regression

Let us say that you have data of this kind

SquareFt Price

1000 $350,000

3000 $765,000
300 $320,000
2100 $540,000

2200 $520,000

Let us set this up as a supervised learning
problem

e Input data @ = |z] single value
o But we will still write it as a vector

e Qutputdatay

e Training set size m

e This is a regression problem - we are trying to predict a floating point
number.

Model hypothesis

e We will predict the output using y = f(x, 0)
e But we will not consider an arbitrary function f

e We will make a hypothesis about a family of functions f among which we will
search

o This will restrict our search to a set of functions...
o If we get it right, it makes our job easier
o If the family of functions does not cover the real one, we are out of luck

o We say that the hypothesis functions are not expressive

Model hypothesis for linear regression

We will assume that the function is of a following form
f(CU, 0) — (915[3 -+ 9()
with @ = [90, (91]

e These functions are lines

Loss function

£O) = = dist(y., f(:,0)

e \What do we choose as distance"?

e \We can choose a number of functions:
o Euclidean distance

o Manhattan distance

o squared Euclidean distance (3§ — y)2 < there is a historical preference
for this (least squares)

Gradient descent for single-variable linear
regression

We want to find:
05,07 = argmin L(60y,01)
e Start with some 6y and 0,

e Keep changing 8y and 6 to reduce L until we hopefully end up at a minimum

Gradient descent algorithm

e Repeat until convergence

0L(6y,01)
Oy +— 0y — «
0 0 890
0L(6y,01)
91 <— 91 — 8(91

e (v isthe learning rate

e When implementing, you need to do the updates simultaneously

T TN

J(00,07) o |-

wrrr e ey

J(6,,9,)

Why is this gradient descent?

e Because the gradient appears with the negative: we are moving downwards.

e The other direction would be gradient ascent or hill climbing

Batch and stochastic gradient descent

e In this example we calculated the gradient for the complete training data and
we averaged it. This is technically called batch gradient descent.
o If the training dataset is large, this is an expensive operation.

o But because we are averaging over many training data points, we can be
sure that the landscape is not changing a lot between iterations.

e We could actually calculate it for just a single (x;, y;) pair. Then in the next
iteration, we choose a different pair.
o Much cheaper / iteration

o But because we have a different iteration at each step, we might be
taking steps in different direction

Stochastic minibatch gradient descent

e What we do in practice: choose randomly a minibatch of about 16 or 32
training examples

e In the next iteration, choose another minibatch, etc. until you covered the
whole training set, then start again.
o Much cheaper than full batch, especially if you can fit the entire
computation into the GPU

o Still sufficiently smoothed
e Itis stochastic (a.k.a. random) because the minibatch is chosen randomly.

e Stochastic minibatch gradient descent or stochastic gradient descent (SGD) -
the most popular / powerful optimization algorithm in machine learning.

Intuitions about the learning rate

e o too small, taking too small steps, gradient descent will be slow

e (too large, steps too large, might overshoot the minimum. It may fail to
converge, or even diverge.

e Something like « = 0.01 is a good start

e More sophisticated algorithms play with the « values in clever ways:
o Different values for different parameters

o Adjusting o as the learning progresses

o etc. Beyond the scope of this class.

Intuitions about the variable numbers and
function shape

e For one variable linear regression (input a single number x)

 We had two parameters of the loss function 6, 64
o Can be written as a 2-dimensional vector @ = [0, 01]%

e In other situations we might have a ten, thousand, million, billion, trillion
dimensional 0
o Gradient descent remains the same. But you better have enough
compute power.

e We need the loss function to be differentiable - such that we can take the
gradient.
o We can do various clever tricks if it is not quite differentiable.

Why do we like least squares?

e et us write out the loss function for linear regression with least squares

L(0) = % id’iSt(yi, f(z:,0))

1 m
L(6o,01) = — ;(91%‘ +6p —y1)°
e This function is going to be quadratic in 8y and 6 - so it will have a sort of
parabolic bowl shape.

e G

RS
Al el
oS L LA AT L e R el
s |, ST I 5.2 5

T i es ety
2 S S e

s sy “&‘“‘W‘;"”

e S LS i
AR R A Sy
L T o T i o)
AR
——

Andrew Ng

There are two reasons why we like least squares

e We like the bowl shape because it is convex - it has a single, global minimum -
and this is what we are searching for.
o In general, if a function is convex, we have efficient ways to find the
global minimum.

o This applies for other convex functions as well, not only least squares.

e For least squares, we can also have an analytic solution
o Not necessarily of high importance in the practice of ML

