
Linear regression



Let us say that you have data of this kind
SquareFt Price

1000 $350,000

3000 $765,000

800 $320,000

2100 $540,000

2200 $520,000



Let us set this up as a supervised learning
problem

Input data  single value
But we will still write it as a vector

Output data 
Training set size 
This is a regression problem - we are trying to predict a floating point
number.



Model hypothesis
We will predict the output using 
But we will not consider an arbitrary function 
We will make a hypothesis about a family of functions  among which we will
search

This will restrict our search to a set of functions...
If we get it right, it makes our job easier
If the family of functions does not cover the real one, we are out of luck
We say that the hypothesis functions are not expressive



Model hypothesis for linear regression
We will assume that the function is of a following form

with 

These functions are lines



Loss function

What do we choose as ``distance''?
We can choose a number of functions:

Euclidean distance
Manhattan distance
squared Euclidean distance   there is a historical preference
for this (least squares)



Gradient descent for single-variable linear
regression
We want to find:

Start with some  and 
Keep changing  and  to reduce  until we hopefully end up at a minimum



Gradient descent algorithm
Repeat until convergence

 is the learning rate
When implementing, you need to do the updates simultaneously







Why is this gradient descent?
Because the gradient appears with the negative: we are moving downwards.
The other direction would be gradient ascent or hill climbing



Batch and stochastic gradient descent
In this example we calculated the gradient for the complete training data and
we averaged it. This is technically called batch gradient descent.

If the training dataset is large, this is an expensive operation.
But because we are averaging over many training data points, we can be
sure that the landscape is not changing a lot between iterations.

We could actually calculate it for just a single  pair. Then in the next
iteration, we choose a different pair.

Much cheaper / iteration
But because we have a different iteration at each step, we might be
taking steps in different direction



Stochastic minibatch gradient descent
What we do in practice: choose randomly a minibatch of about 16 or 32
training examples
In the next iteration, choose another minibatch, etc. until you covered the
whole training set, then start again.

Much cheaper than full batch, especially if you can fit the entire
computation into the GPU
Still sufficiently smoothed

It is stochastic (a.k.a. random) because the minibatch is chosen randomly.
Stochastic minibatch gradient descent or stochastic gradient descent (SGD) -
the most popular / powerful optimization algorithm in machine learning.



Intuitions about the learning rate
 too small, taking too small steps, gradient descent will be slow
 too large, steps too large, might overshoot the minimum. It may fail to

converge, or even diverge.
Something like  is a good start
More sophisticated algorithms play with the  values in clever ways:

Different values for different parameters
Adjusting  as the learning progresses
etc. Beyond the scope of this class.



Intuitions about the variable numbers and
function shape

For  variable linear regression (input a single number )
We had  parameters of the loss function , 

Can be written as a 2-dimensional vector 
In other situations we might have a ten, thousand, million, billion, trillion
dimensional 

Gradient descent remains the same. But you better have enough
compute power.

We need the loss function to be differentiable - such that we can take the
gradient.

We can do various clever tricks if it is not quite differentiable.



Why do we like least squares?
Let us write out the loss function for linear regression with least squares

This function is going to be quadratic in  and  - so it will have a sort of
parabolic bowl shape.





There are two reasons why we like least squares
We like the bowl shape because it is convex - it has a single, global minimum -
and this is what we are searching for.

In general, if a function is convex, we have efficient ways to find the
global minimum.
This applies for other convex functions as well, not only least squares.

For least squares, we can also have an analytic solution
Not necessarily of high importance in the practice of ML


