
Tools for machine learning



Tools for machine learning
In recent years, the machine learning community had settled on a set of standard
software tools that are used.

These are not necessarily the best possible solutions for ML problems.

They were chosen because they reached maturity at the right moment, and they
work well together.

Also, they are open source, free to use and supported by very large communities of
users.
New systems might emerge in the future. For the time being make sure that you
understand them well

and only experiment with other tools once you know the standard ones well.



Objective of this lecture
Present the various tools.
Explain the logic behind their use.

Explain how they work together.

Not an objective:

Teach you the details of each tool.

Extensive resources available on the internet.

The tools' own tutorial the best starting point.



Python
The programming language of choice for Machine Learning.

Interpreted language (no compilation, execution of individual lines possible)

Favors compactness and readability
Extensive standard library

Slow!!! when compared to compiled languages like C/C++
But normally, you will only execute several dozen lines of python
The rest of the code will happen inside the libraries

Don't do loops over datasets in Python!

Looping over training epochs, or parameter alternatives is fine.



Jupyter notebook
A software / data format that allows you to combine into a notebook a number of
cells

Python code (other languages also supported)

Output of the code cells, text and visualization

Text, using the markdown format.
You can use it by:

Running jupyter on your computer and connecting through a web-browser

In vscode
In Google Colab, Microsoft Azure Notebook or Amazon Sagemaker Notebook.



How to use Jupyter notebook
Enables a workflow called interactive computing

Individual cells can be executed in any order, or re-executed

Static variables assigned are kept between cells
imports are not re-imported unless you restart the notebook



Python programming in Jupyter and outside
Python programming outside Jupyter

Proper programming techniques still apply

Functions, encapsulation, avoidance of global variables etc.
Object oriented programming is supported but not enforced

Functional programming is supported, but not enforced

Inside Jupyter
Short scripts, usually not encapsulated in functions

Global variables are the typical way of communicating between cells.

Cells should be short and individually debuggable.



Numpy: vector and matrix operations in Python
It is a library for matrix and vector computing in Python.
Primarily: it provides support for a data structure called ndarray

Why? Python already has an array data structure?
The Python array is an indexable list, collecting arbitrary data types.

a = ["apple", 7, 8.1, {"b" : 2}]

ndarray is a rectangular array, of a fixed data type (typically double or integer).
It is an array

a=np.array([[1,2,3,4],[3,4,6,7],[5,9,0,5]])



Numpy for machine learning

The numpy array is used as the underlying datastructure by every library for data
science, ML, deep learning, etc. in Python

When you have some data, you should convert it ASAP into a numpy array, and
from then, use numpy operations to manipulate it.

numpy has a useful collection of math algorithms. For instance: solving system of
linear equations:

x = np.linalg.solve(a, b)



SciPy: scientific computing in Python
Python library for scientific computing

Operates on numpy arrays

Extensive library of numerical algorithms. Some of them duplicate the ones in
numpy while being more general etc.

Interpolation, optimization, image processing, signal processing etc.

In ML practice, it is the first place where you go shopping for an implementation of
an algorithm. :-)



Pandas: manipulating datasets
pandas: python library for data manipulation operations.

Allows importing data from spreadsheets, databases, comma-separated text files
etc.

Primary data structure: DataFrame (approximately: a database table)
Convenient, python-style way to select data

You should use pandas functions for work with it!!!

Do not treat it as a huge array - do not iterate over it!

In machine learning, typically it is used for:
Data cleaning: filling in missing values, eliminating corrupt data

Data wrangling: converting formats to those appropriate to downstream tasks
(in this case, machine learning)



Pandas workflow:
Interactive:

Load the dataset

Look / visualize

Perform changes and corrections
If you are a "data scientist" you can continue in pandas to analyze etc.

Pandas workflow for ML:
i. Load your data in pandas / convert into appropriate data types
ii. Select the features you are interested

iii. Fill in defaults / Filter rows that are bad

iv. Convert to numpy

v. The rest of the work will happen in ML algorithms.



Matplotlib: plotting data
Matplotlib: python library for plotting and visualization

Almost universally used by ML and data science practitioners to investigate data
and present results

Uses numpy arrays for data storage

Provides a wide range of data plots:
https://matplotlib.org/stable/plot_types/index.html

Two ways to use:
function-based Matlab style interface (pyplot)

object-oriented Build the plot step by step.

In this class: you should learn how to use at least scatter plots (for data) and line
plots (for training progress)

https://matplotlib.org/stable/plot_types/index.html


scikit-learn (aka sklearn)
Scikit-learn: python-based library for machine learning algorithms

Uses numpy as underlying data structure
It is the first place you look for most classical machine learning algorithms

It can also be used for neural networks, but if you want to do deep learning,
more specialized libraries exist.

If you try to develop new ML algorithms, it is usually a good idea to see whether
you can beat scikit-learn



Deep learning libraries
Libraries supporting deep learning: tensorflow, pytorch, jax etc.

Almost always python, almost always building on numpy
Main functionality

Automatic differentiation - ability to find the gradient of functions

Libraries for commonly used neural network components
Parallelization support for different hardware types (GPUs, TPUs)


